
epstad (9C|O1O handbook series

Make contact with your computer facility by what-

ever means the facility has established (e.g., acous-

tic coupler, telephone, or data phone).

Turn the little plastic knob on the right-hand side

of the Teletype to ON.

Type AC on the Teletype (i.e., hold down the

CTRL key while striking C). This establishes com-

munication with the Time-Sharing Monitor. The

Monitor signifies its readiness to accept commands

by responding with a period (.).

Type LOGIN, or LOG, followed by a carriage re-

turn. The system will respond with an informative

message like the following:
JOB n NAME OF SYSTEM

=
JOB n is the job number the system has just as-

signed to you. NAME OF SYSTEM is usually the

Monitor name and version number,

Type your project-programmer numbers after the

number sign, followed by a carriage return.

The time-sharing system will then type
PASSWORD:

Type your secret password followed by a carriage

return, The system will keep the password secret

by not printing it on the paper.

If the project-programmer numbers and the pass-

word match the project-programmer numbers and

password stored in the system accounting file, the

system responds with the time, date, TTY number,

AC, and a period.
Example:

1301 8-Aug-69 TTY23

AC

Now the time-sharing system is ready to accept any

commands you wish to type in. You may direct it

to load and start a program from the System Li-

brary (.R prog), start a program already loaded in

core (.START), or perform any of a variety of

other operations. (See inside of back cover for a

summary of Time-Sharing Monitor commands.)

PDP-10
REFERENCE
HANDBOOK

_ Prepared by
The Software Writing Group
Programming Department

Digital Equipment Corporation

Additional copies of this handbook may be ordered from the Pro-

gram Library, DEC, Maynard, Mass. 01754. Order code: AIW. $5.00

each, Discounts available on five or more copies.

PDP-10 HANDBOOK SERIES

The material in this handbook, including but not limited to instruction

times and operating speeds, is for information purposes and is subject
to change without notice.

Copyright © 1969 by

Digital Equipment Corporation

PDP-10 System Reference Manual, Copyright ©, 1968, by Digital Equip-

ment Corporation. MACRO-I0 Assembler, Copyright ©, 1967, 1968, 1969,
by Digital Equipment Corporation. Time-Sharing Monitors, Copyright ©,

1968, 1969, by Digital Equipment Corporation. DDT-10, Copyright ©,
1968, 1969, by Digital Equipment Corporation. PIP, Peripheral Inter-

change Program, Copyright ©, 1968, 1969, by Digital Equipment
Corporation.

The following are trademarks of Digital Equipment Corporation,
Maynard, Massachusetts:

DEC PDP
FLIP CHIP FOCAL
DIGITAL COMPUTER LAB

I

FOREWORD

One of the significant measures of the quality of a computing system

like the PDP-10 is the utility and availability of systems documenta-

tion. Good manuals are the vital communications link between DEC

and the people who use our systems,

This collection has been organized for the convenience of PDP-10

programmers, systems analysts, engineers and others who work at the

machine language level.

I’m pleased to acknowledge here the work of the many DEC system

designers, engineers, and system programmers who continue to ad-

vance the state of the time-sharing art in both hardware and software.

Also, to our PDP-10 users, who during the past two years, have helped

immeasurably to improve and refine the system, and to the DEC soft-

ware writers and technical artists who prepared this volume, our special

thanks.

President, Digital Equipment Corporation

Til

PREFACE |
This volume is a comprehensive library of information for experi-

enced programmers, systems analysts, and engineers who are interested

in writing and operating assembly-language programs in the PDP-10

time-sharing environment.

The first three chapters deal with program preparation. Chapters 4

and 5 are about loading, editing, testing, debugging, and running source

language programs, Chapter 6 contains a miscellaneous collection of

utility programs that have proven most useful to system designers and

experienced programmers.

As we expect to improve this book in future revisions, all readers are

earnestly requested to send corrections and comments to:

Manager, Software Writing Group

Programming Department

Digital Equipment Corporation

Maynard, Mass. 01754

A companion volume for beginning programmers and others who pre-

fer to write programs in one of the popular compiler or conversational

languages is scheduled for publication in 1970.

IV

Foreword ...

Preface...

System Overview

Introduction

Book 1

CONTENTS

Programming with the PDP-10 Instruction Setcessseessesscesesenseeeseeseeeeeenes

Description of the Central Processor Structure, General Word Format, Memory

Book 2

Book 3

Book 4

Book 5

Book 6

Appendices

Characteristics, and Assembler Source-Programming Conventions, Followed by

a Presentation of the Specific Instruction Format, Mnemonic and Octal Op

Codes, Functions and Timing Formulas.

ASsem blin patho: SOULCE PLO SLAM iirc iescrcee ubrsss teres asencsssacaeivecesessenrs estes caweasent soe

Reference Information for the PDP-10 Assembly System, containing Explana-

tion of Format of Statements, Use of Pseudo-Operations and the Coding of

Macro Instructions.

Communicatin gawith the: Monit teen cseserra coset rece essere cersveter renee a tase tueaeoreeas

Complete Guide to the Use of the Time-Sharing Monitors: Monitor Commands,

Allocation of Facilities, Relocation and Protection of User Programs, and De-

scription of the Reentrant Capability.

Editing the Source Progrann<.-.-.-:-c.t--c-soreeccssucuodecaserencstencstereceseseensicsnsacsecesstersesees

Procedures for Creating, Modifying and Displaying Source Files Recorded in

ASCII Characters.

Executing thes Pro gratin: On-line rit. ccsacacorese- ss iasesccereet cnscscrssnesensccnetesaledssrarsss}scss

Description of Loading and Linking of Relocatable Binary Programs Generated

by MACRO-10 or FORTRAN IV and Exposition of Commands and Tech-

niques for On-Line Checkout and Testing of MACRO-10 and FORTRAN IV

Programs.

WitilitysP ro or amiss aia teecevec secce on st ese rhea aoa ec saat st ote oe Dato wsstepessaante save ckeceaut

Transferring Data Files Between Standard Devices, Updating Files Containing 5

Relocatable Binary Programs, Manipulating Programs within Program Files,

Cross-Referencing User Defined Operators, Op Codes, Pseudo-Op Codes and

Global Symbols, Comparing Source Files and Comparing Binary Files, Serving

and Restoring Core Images on DECtape.

Master Index/Glossaryccsccecccesccesccescerseesrscssscesssessces caccesceesecnecessensccnscssssensccsseensesnsenaees

187.

283.

491

525

583

SYSTEM OVERVIEW

The PDP-10 is the successful culmination of many years

of computer design research — a process which has

enabled Digital Equipment Corporation to provide bet-

ter computers at the lowest possible prices.

Starting with the PDP-1 in 1959, DIGITAL has pio-
neered the development of real-time systems for science

and industry. Since then, each new system has increased

in versatility, yet has consistently decreased the cost of

computation. The PDP-1 was the first powerful real-time

computer for under $150,000. The PDP-8 showed that

an effective computer could sell for less than $20,000,

and newer models in the PDP-8 family have lowered the

cost to less than $10,000.

In developing its time-sharing capability, DIGITAL has

built a history of success very similar to the company’s

record in real-time applications. DIGITAL’s customers
have been building time-sharing systems around PDP

computers since 1960. And, in 1963, DIGITAL devel-

oped its own time-sharing computer, PDP-6 — the first

to be delivered with manufacturer-supplied hardware and

software. .

The PDP-10 reflects DIGITAL experience in both real-

time and time-sharing. The system performs time-shar-

ing and real-time operations equally well and simultane-

ously and provides concurrent batch processing.

In conversational time-sharing, up to 63 users at local
and remote locations can simultaneously develop pro-

grams on remote consoles and receive answers to mathe-

matical or engineering problems in seconds. PDP-10

time-sharing monitors provide instantaneous response

for the users so that they can perform on-line composi-

tion, editing, and debugging of programs in FORTRAN

IV, MACRO-10, COBOL, BASIC, and AID, with the
use of EDITOR, TECO and DDT. The monitors can

handle any mixture of these languages and programs

concurrently. And most of the software is re-entrant so

that multiple users can share the same compiler or utility

program for increased efficiency.

For programs that don’t require immediate processing,

users may initiate batch processing — a task which pro-
ceeds concurrently with time-sharing and real-time

tasks. In batch processing, the PDP-10 can handle any

stream of programs, such as a mixture of FORTRAN,

MACRO-10 and COBOL. Normally, batch processing

operates without operator attention. However,the PDP-10

allows the operator to stop or start the batch system, re-

arrange the queue or call for a print-out to analyze pro-

gram errors. The operator can also select and assign the

desired input, output, and temporary storage devices to

be used in batch processing.

When real-time operations such as data acquisition and

control are the primary purpose of the PDP-10, system

software provides response in microseconds, processing

information at speeds that meet the-most demanding re-

quirements. High priority real-time tasks are interfaced

directly to the priority interrupt system and contro] their

Own input/output operations for unlimited flexibility.

Less critical real-time jobs are monitor controlled with

a real-time clock assuring that each task does not exceed

its allotted time and destroy the response of other pro-

grams. For even greater efficiency, time not used by the

real-time programs can be used for conversational time-

sharing and/or batch processing.

Structure of the PDP-10

Every PDP-10 uses one of three levels of monitors to

allocate resources and perform input/output functions.

The single-user monitor is used for dedicated systems

which operate one program at a time. The multi-pro-

gramming monitor controls the execution of multiple

programs in core, switching between them at microsec-
ond speeds. The swapping monitor effectively increases

the available core by swapping programs between high

speed disk or drum storage and core memory. Thus

more users can be served by a given amount of core.

All language processors (FORTRAN, MACRO-10,

COBOL, BASIC, and AID) operate identically under

the multi-programming and swapping monitors.

To make efficient use of memory, language processors

and important utility programs are re-entrant, that is,

the pure code for each program can be shared by mul-

"tiple users. Re-entrancy is possible since any program

VI

may be separated into a pure segment that never requires

modification, and a segment which contains code or data

which is relevant only to a particular user. For example,

a re-entrant system can service three FORTRAN users

with one 8 K compiler (pure code) and three 2 K user

areas, a total of 14 K, whereas a non-re-entrant system

would require 30 K for the same programs. Since more

users can occupy a given amount of core space, system
response improves and swapping time is reduced. Dual

protection and relocation registers protect the active user

and allow the program segments to reside in two non-

contiguous sections of core memory.

The PDP-10 has a 36-bit word length allowing it to

store 25 to 30 percent more information than a 32-bit

system. The system stores five 7-bit USACII characters

whereas the smaller word length computer stores only

four characters. It also provides more accuracy in single

precision floating arithmetic than computers with 32-bit

word size.

The PDP-10 has a large instruction repertoire to sim-

plify assembly coding and reduce the size of higher level

programs. Its 366 instructions divide logically into fami-

lies and are easily learned. The list also includes an ex-

tensive set of floating point and byte manipulation

instructions. Due to instruction set efficiency, fewer in-

structions are required to perform a given function. As--

sembly language programs are therefore shorter than

with other computers and the instruction set simplifies

monitor systems, language processors, and utility pro-

grams. For example, compiled programs are 30 to 50 per
cent shorter, require less memory, and execute faster

than those of comparable computers.

Sixteen high speed integrated circuit registers also help

improve program execution. Depending on program re-

quirements, these registers can serve as accumulators,

normal memory location, and/or index registers. Inter-

mediate results of computations are stored in the regis-

ters rather than in core memory; thus, no instructions

are needed to store and retrieve the data and data is

available in nanoseconds. Fifteen of the registers can be

used as fast memory locations so that program segments

with sixteen or fewer instructions can be executed repet-

itively at very high rates.

vil

The PDP-10 memory bus structure gives the central

processor and high speed data channels simultaneous

access to separate memory modules. Only when the proc-

essor and a data channel access the same module does

the processor lose a memory cycle. Modules contain up

to four ports, allowing access to a total of four processors

and/or channels. Such parallel operation improves proc-

essor utilization, yielding manyfold improvements over

systems which provide only a single path to memory. The

bus system allows each data channel to transmit full 36-

bit words at speeds of up to one million words (5 mil-

lion 7-bit characters) per second. :

Memory can be modularly expanded to 262,144 words

of core, all of which (including the 16 accumulators

and 15 index registers) can be directly addressed. Total

memory capacity can be comprised of combinations of

modules in 8,192-, 16,384-, 32,768-, 65,356-, and
131,072-word blocks. Memory banks are asynchronous

allowing interleaving and making it possible to intermix

memories of different cycle times.

To provide immediate service to real-time requests, the

PDP-10 has a multi-level priority interrupt system. The

system is a hardware feature, but is programmable for

increased flexibility. Devices may be assigned to any level

under program control and the entire interrupt system

or any level may be selectively turned on or off.

PDP-10 Configurations

The modularity of PDP-10 hardware and software

makes it economical to configure a wide variety of sys-

tems and easy to expand the systems in the field. (See

PDP-10 hardware list in Appendix A.) An individual

can buy a single user system and, at some later date, ex-

pand to a small time-sharing system. Or the small time-

sharing user can expand his system to serve 63 users

simultaneously. Within any basic configuration, the user

has a wide choice of memory sizes and speeds, input/out-

put equipment, and storage facilities. For example, the

input/output system alone can accommodate up to 128

discrete devices and device controllers, permitting al-

most limitless expansion of on-line storage and other in-

put/output equipment.

The single-user system in Figure 1 can be simple or
as elaborate as the user requires. As shown, it consists of

an arithmetic processor, one or more core memory mod-

ules, a DECtape control and DECtape units1, a console

teletype, and a paper tape reader and punch, By adding

more core memory and data line scanner, the system can

easily be converted to multi-programming.

MEMORY

ARITHMETIC
PROCESSOR

UP TO 8

DECTAPES

DECTAPE
CONTROL

DECTAPE DECTAPE
UNIT UNIT

1/O BUS

REAL TIME

FIGURE 1. SINGLE-USER SYSTEM

MEMORY MEMORY

ARITHMETIC
PROCESSOR

DATA
CHANNEL

DIsk
CONTROL

SWAPPING
DISK ©

uP TO 4
SWAPPING

DISKS

CARD
READER

UNE
PRINTER

TAPE
CONTROL

DECTAPE
CONTROL

DATA LINE
SCANNER

1/O BUS

UP TO 8
TAPE DRIVES

TAPE DRIVE TAPE DRIVE

DECTAPE
UNIT

TELETYPE TELETYPE

FIGURE 2. 8-USER SWAPPING SYSTEM

1A special random access magnetic tape designed by Digital Equipment
Corporation.

UP TO 8
DECTAPES

UPTO 8

TELETYPES

Vil

The small swapping system shown in Figure 2 can be
expanded in eight user groups to the large time-sharing

system (Figure 3) which can handle up to 63 users.

The large system includes file storage and swapping stor-

age units, additional memory, and more peripheral

equipment. For very large systems, a file storage disk

may replace or supplement the disk packs. A computer-

based communication system may be substituted for the

data line scanner, and synchronous data phone units can

be used to connect the system to remote batch devices

and other computers. :

ARITHMETIC.
PROCESSOR

FILE STORAGE =
r-l----— SYSTEM

| |

| |

| DISK |

| CONTROL |

| |
| SWAPPING |
5 ra DISK :

2 |
lo}

TAPE DRIVE

> SWAPPING DISK PACK [ore a one
| uP TO 8 CORE | upto auence |
i] SWAPPING SWAPPING ison |
& SYSTEM TAPE DRIVES

[Rigo fea Se eh ay a RR RR A 7 ! ! READER UP TO 63
| DEVICES |
| LINE |

PRINTER

| DATA LINE |
| SCANNER

: |

| PERIPHERAL = [
TELETYPE TELETYPE [_tevervee J [_revervee | Aart

eS eaters 5 es Se ae a aN a =)

FIGURE 3. LARGE SWAPPING SYSTEM

The dual processor system in Figure 4 is one of many

possible multi-processor configurations that the user can

tailor his monitor to meet. Since the system shares both

peripherals and core memory, both processors can access

memory at the same time and can compute in parallel:

Such an arrangement doubles the computing power of a

single processor and more than doubles cost/effective-

ness, since the cost of the additional processor is only a

small fraction of overall system cost.

ARITHMETIC
PROCESSOR

1/O BUS

MEMORY MEMORY MEMORY MEMORY

ARITHMETIC.
PROCESSOR

CARD
READER

LINE
PRINTER

DECTAPE
CONTROL

uP TO 8
DECTAPES -

DECTAPE DECTAPE
‘ UNIT UNIT

UP TO 63
TELETYPES

DATA LINE
SCANNER

REAL-TIME
EQUIPMENT

FIGURE 4. DUAL PROCESSOR SYSTEM

Ix

In other multi-processor systems, the processors may

work independently or communicate through shared

memory. One may serve as the input/output processor

while the other performs most of the calculations. Or the

processors can share all input/output. and processing.

Multi-processor systems can also combine a PDP-10

arithmetic processor with other DIGITAL computers.

In Summary

The PDP-10 exemplifies the versatility required for to-

day’s large computing tasks. With its 366-instruction

repertoire, re-entrant software, multi-programming hard-

ware, and flexible priority interrupt system, it provides

power and excellent response for a multitude of applica-

tions. And with the system’s wide range of hardware and

software, the user can purchase to serve present needs,

yet easily expand to meet future system requirements.

Every PDP-10 is backed by service — software support

for a full range of customer assistance, service through

a worldwide system of over 60 service centers, and for-

mal training through a variety of available training

courses.

At a cost of less than half that of comparable systems,

the PDP-10 provides the best price/performance avail-

able today — another step toward Digital Equipment

Corporation’s goal of providing the most for every com-

puting dollar.

INTRODUCTION

SYSTEM DESCRIPTION

DEC PDP~10 software is divided into eight functional groupings with respect to common programming

activities, as follows:

role. Welly Rome ne)

@o

g-

h.

Source Program Preparation

Conversational Language Translators

Program Loading and Library Facilities

Debugging

Utilities

Calculators

Batch Processing

Monitoring

Groups a through g are programs called CUSPs (commonly used system programs) and are run

under control of the Single-User, Multiprogramming non-disk, Multiprogramming disk or Swapping Monitor.

Source Program Preparation (EDITOR, LINED, TECO)

The DECtape Editor, LINED (Line Editor for Disk), and the Text Editor and Corrector (TECO) programs

can be used to create (and later correct or modify) text files (e.g., Macro-10 and FORTRAN source

language programs) for subsequent assembly or compilation. Editor creates and modifies files on DEC-

tape; LINED creates and modifies files on disk; and TECO performs more complex editing functions on

any standard I/O devices.

Language Translators (MACRO, F40)

The Macro-10 Assembler (MACRO) and the FORTRAN Compiler (F40) translate source programs written

in the Macro-10 and FORTRAN IV languages, respectively, into binary machine language for subse-

‘quent loading and execution.

Program Loading and Library Facilities (LOADER, LIB40, JOBDAT, FUDGE2)

Loading is performed by the Linking Loader, which loads specified relocatable binary programs in core,

links their references to each other, and searches the appropriate subroutine libraries (e.g., LIB40) for

required subroutines. A job data area (JOBDAT) is created by the Loader for each program; this area is

used to store the current status of the job during execution. Library files of binary programs can be up-

dated by use of the File Update Generator (FUDGE2).

Debugging (DDT, CREF, GLOB)

After a program is compiled (or assembled), it can be loaded in conjunction with the Dynamic Debugging

Technique (DDT) program and debugged. DDT allows the user to control program execution and to

modify the program in any of several modes, including symbolic. For purposes of further program anal-

ysis (and for documentation), the user can use the Cross Reference Listing (CREF) program, which pro-

duces a cross-referenced listing of all symbols within his Macro program, and the Global Cross-Reference

Listing (GLOB) program, which produces one to three listings of all global symbols encountered in one

or more programs.

Utilities (PIP, CODE, SRCCOM, BINCOM)

A variety of utility programs are available for general-purpose data handling. Among these programs

are: the Peripheral Interchange Program (PIP), which transfers data between any standard I/O devices;

Code Translator (CODE), which performs translations between standard ASCII codes and code of other

manufacturers; Source Compare (SRCCOM), which compares two versions of an ASCII file; and Binary

Compare (BINCOM), which compares two versions of a binary file.

Conversational Languages (AID, BASIC)

Two problem~solving conversational languages for scientists, engineers, and students are included as

part of the PDP-10 software: the Algebraic Interpretive Dialogue (AID), a program based on the RAND

JOSS “algebraic language; and Advanced BASIC® , a conversational language for scientific, uetoees-

and educational applications that includes among many other features a special set of matrix processing

operations.

™ JOSS is the trademark and service mark of the RAND Corporation for its computer program and
services using that program.

® Registered, Trustees of Dartmouth College.

Xi

Batch Processing (BATCH, STACK)

The Batch Processor (BATCH) monitors the sequential execution of a series of user jobs with a minimum

of operator attention; operates as one of the "users" in a time-sharing environment and runs concurrent-

ly with the Batch-controlled jobs (as well as other jobs on the system); and permits constant communica

tion by the operator. Job Stacker (STACK) prepares input stacks for BATCH and processes output stacks

from BATCH.

Monitors

PDP-10 software includes two major categories of Monitors: the Single-User Monitor (10/30 configura-

tion) and the Time-Sharing Monitors (10/40 and 10/50 configurations). The latter category includes the

Multiprogramming non-disk Monitor (10/40), Multiprogramming disk Monitor (10/40) and the Swapping

Monitor (10/50). The Swapping Monitor was used in the generation of all examples in this manual .

The 10/30 Monitor is a subset of the 10/40 and 10/50 Monitor. They are compatible at the source and

relocatable binary levels. The 10/40 and 10/50 Monitors are compatible at the source, relocatable

binary, and saved core image levels.

SYSTEM OPERATION

The following basic procedures and rules are necessary to communicate with the Monitor and load and

execute DEC commonly used system programs (CUSPs), as well as user programs.

Step Procedure

1. To establish communication with the Monitor, place the Teletype in Monitor Command Mode

by typing t C (i.e., hold down the CTRL key while striking C; Monitor will respond with a

period (.). If you have a 10/30 or a 10/40 system, skip the LOGIN procedure in the next

step. :

Des Type LOGIN followed by carriage return. The system will respond with

JOB n NAME OF SYSTEM

followed by a number sign. Then type your project-programmer number, followed by a car-

riage return. The system will then type

PASSWORD:

Then type your secret password followed by a carriage return. The system will keep it secret

by not printing it on the paper. If the project-programmer number agrees with the password,

you will be logged, and any messages of the day will be typed for you.

Sho Then, direct Monitor to load and start a program from the System Library (.R prog), start a

program already loaded in core (.START), discontinue your job (.KJOB), or perform any of

a variety of other operations. A complete list of Time-Sharing Monitor commands is given

in Table 9-1.

Xi

All CUSPs (except EDITOR and LINED) supplied by DEC are device independent; therefore, the user

must tell the CUSP, via a command string typein, which devices to use. Readiness to receive a com-

mand string is signalled by the CUSP via an asterisk (*) typeout after loading. For ‘examples when the

FORTRAN IV Compiler has been called and it has responded with an asterisk, the user types in a

command string indicating:

a. The device containing the source program to be compiled

b. The device on which the binary output is to be placed and

c. The device on which the compilation listing is to be written

*binary-output-device, listing-device « source-device

‘

Devices are specified by a 3-character device name (a fourth character, a digit, specifies the particu-

lar unit in the case of DECtapes, teletypes, and magnetic tapes), followed by a colon.

Device Device Name

Card reader CDR:

Gard punch GDP:

Line printer LPT:

Paper tape reader PTR:

Paper tape punch PTP:

Teletype TTY: or TTYn:

DECtape DTAn:

Magnetic tape MTAn:

Disk _ DSK:

For file-oriented devices (DECtape and disk), a filename (maximum of six characters) is also required

following the device name to specify either the specific file to be read or the filename to be assigned

to the output. A filename can be further specialized by adding a 3-character extension name to it,

preceded by a period (.). Extension names are generally used to classify a file into a particular cate-

gory, and certain standard extensions are used and recognized throughout the system (Se , eREL for

relocatable binary files, .SAV for saved core image files, .MAC for Macro-10 source files, .F4 for

FORTRAN source files, etc.). The following example shows a sample FORTRAN command string.

Example:

DTA1:BIN.REL, LPT: « DTAO:SOURCE Compile the file designated as SOURCE on DECtape
0; write the binary output on DECtape 1, designa-

ting it BIN.REL; print the listing on the line printer.

XIV

TYPOGRAPHIC CONVENTIONS IN THIS MANUAL

All computer typeouts are underscored (single line) or enclosed in brackets (multiple lines).

All operator typeins are not underscored.

SYMBOLOGY USED IN CONSOLE EXAMPLES

tC Hold down the CTRL key while striking C. Normally echoes as tC.

tx Hold down the CTRL key while striking the "x" key, where "x" is any character.
‘Normally echoes as tx.

Some special control symbols and their respective key designations for Models 33, 35,
and 37 Teletypes are given below.

Symbol in This

Key Designation Manual Models 33 and 35 Model 37

tR Hold down CTRL key while Same as 33/35
striking R.

(not-TAPE) IT Hold down CTRL key while Same as 33/35
striking T.

tG Hold down CTRL key while Same as 33/35
striking G.

(horizontal tab) >| or tl Hold down CTRL key while Strike TAB key
striking I.

tL Hold down CTRL key while Same as 33/35
striking L.

WD (vertical tab) tK Hold down CTRL key while — Same as 33/35

striking K.

tQ (Initialize paper tape reader Same as 33/35
input.) Hold down CTRL key
while striking Q.

tS (Terminate paper tape reader Same as 33/35
input.) Hold down CTRL key
while striking S.

= = Hold down the SHIFT key Strike +key

while striking O.

RETURN 2 Strike the RETURN key. Same as 33/35

Normally echoes back as a
carriage return, line feed.

ALTMODE or PREFIX or ESC $ Strike the ESC key (sometimes Same as 33/35

labeled ALTMODE or PREFIX)

[[Hold down the SHIFT key while Strike [key
striking K.

XV

Key Designation

LINE FEED

RUBOUT

‘

SPACE BAR

Symbol in This
Manual Models 33 and 35

] Hold down the SHIFT key while
striking M.

t When appearing alone (as in
DDT), hold down the SHIFT
key while striking N.

< Hold down the SHIFT key while
striking ",".

> Hold down the SHIFT key while
striking ".".

{ Strike the LINE-FEED key.

RUBOUT Strike the RUBOUT key. Nor-
mally echoes back as a back-
slash (\), XXX, or a repeat
of the character erased.

Ke Hold down the SHIFT key
while striking L.

vem Strike the space bar to space
to indicated position. TAB

_ can also be used in most in-
stances.

NOTE

Due to recent changes in ASCII, some terminals may have
the keytops ", "(caret)and" " (underline); these char-
acters have the same codes as "f" and "+", respectively.
Where possible, DEC will supply all teletypes with the
arrow characters.

Model 37

Strike] key

Strike t key

Strike < key

Strike > key

Strike LINE SPACE key

Strike DELETE key

Strike the \key

Same as 33/35

DEMONSTRATION PROGRAMS

The following demonstration programs illustrate the simplicity and flexibility of a PDP-10 software system:

a. Demonstration #1 is a typical example of the procedure for creating a FORTRAN main pro~

gram source file and a Macro-10 subprogram file. These two files are then translated, loaded,

and executed together. A bug is encountered during execution, and the DDT (Dynamic De-

bugging Technique) program is used to correct the erroneous instruction. The programs are now

executed successfully, their core image is saved for future execution, and the original source

file is altered to reflect the correction made to the binary code.

b. Demonstration #2 is a more complex example. The sequence of operations is similar to

that of Demonstration #1 (source program file creation, translation, loading, execution, de-

bugging, saving the core image, and altering the source code to reflect changes made to the

object code). In addition, such procedures as leaving the current job, logging in and begin-

ning a second job, and then later returning to the original job are included. Figure 1-1 con-

tains the flow diagram for Demonstration #2.

‘XVII

Demonstration #1

tC
*LOGIN
JOB 10 4S5+51G DEC PDP-10 #40
#1063

PASSWORD:
1641 @1-JUL-69 AUN eRe
THE DISK WILL BE REFRESHED AT 1300 HOURS DAILY

tC

“ASSIGN DTA
DTA2 ASSIGNED

:

sMAKE MAINPG

eG FORTRAN PROGRAM FOR TYPING TTY PHYSICAL NAME CALL GETTYN¢R)
TYPE 65R

6 FORMAT" THE NAME OF YOUR TELETYPE IS: 55) END
$$

+EXSS

EXIT
tC

2MAKE SUBRTE-MAC

XITITLE GETTYN MACRO SUBROUTINE
SUBTTL SUBROUTINE TO GET TTY NAME AND CONVERT TO ASCII.
INTERNAL GETTYN

AC4=4

ACS=5

AC 6=6

GETTYN: @ ;

CALL AC4, (SIXBIT/GETLIN/] 3GET TTY NAME.
GETBYT: ILDB AC6sNMPTR1 3GET A SIXBIT CHARACTER.

SKIPN AC6 3 DONE ? g
JRST NAMDON SYES
ADDI AC6;4@ 3NO» CONVERT CHAR TO ASCII.
IDPB AC6sNMPTR2 3SAVE CONVERTED CHARACTER.
JRST GETBYT 3GO GET NEXT CHARACTER.

NAMDON: MOVE AC5,@(16) 3STORE NAME.
JRA 1651¢16) ; 3RETURN TO MAINPG.

NMPTR1: POINT 65AC4-1535
NMPTR2: POINT 72AC5-1534

END
$$
+*EXSS

BZ
a

XVIII

Log into the system by typing LOGIN, followed by the prescribed "login" information for your particu-

lar system. The monitor responds with time, date, and Teletype number.

ASSIGN DTA assigns a DECtape for storage of the completed program.

MAKE MAINPG calls in TECO (Text Editor and Corrector program) to create MAINPG, your

FORTRAN IV source program file. The text of the source program is preceded by TECO insert com-

mand I. To terminate the text, type two ALTMODEs $$. TECO command EX$$ deposits the file in

your disk area and returns you to the monitor.EXIT. t C acknowledges the return to the monitor.

MAKE SUBRTE.MAC creates a MACRO-10 source program file SUBRTE.MAC. This subroutine with the

program name of GETTYN is called from the above FORTRAN program to obtain the Teletype name in

SIX-BIT code and convert it to USASCII code for outputting. The I, $$, and EX$$ commands perform

the functions previously mentioned.

XIX

»EXECUTE SUBRTE/CREF »MAINPG/L

FORTRAN: MAINPG

MACRO: GETTYN

LOADING

| LOADER 5K CORE

THE NAME OF YOUR TELETYPE IS:

EXIT
+C

DIRECT

DIRECTORY 27220 9901 29-JAN-69

@03EDS-TMP “O41 29-JAN-69
MA INPG onl 29-JAN-69
SUBRTE+MAC 01 29-JAN-69
993LOA-.TMP B1 29-JAN-69
@O3MAC -TMP Bl 29-JAN-69
O@3SVC TMP G1 29-JAN-69
Q@3CRE-TMP 01 29-JAN-69
MAINPG-LST B1 29-JAN-69
MA INPG-REL 01 29-JAN-69
SUBRTE+REL D1 29-JAN-69
SUBRTE-LST 03 29-JAN-69
OO3PIP-TMP O1 29-JAN-69

TOTAL BLOCKS 14

EXIT
*C

LIST MAINPG-LST

EXIT.

tC

-CREF

EXIT

tC

sDEBUG SUBRTE»MAINPG

LOAD ING

LOADER 7K CORE

EXECUTE SUBRTE/CREF,MAINPG/L instructs the system to: 1. Assemble SUBRTE.MAC, generating a

cross reference listing file (CREF), and compile MAINPG, creating a normal listing file (L). 2. Load

the two resulting relocatable binary files together. 3. Start execution. System acknowledges each

step as it is being executed and types out the total core requirement for loading.

The program has a bug. It didn't complete the message: THE NAME OF YOUR TELETYPE IS:

To find the bug, it may be helpful to list the directory of your disk area by using the command DIRECT.

Besides the two text files created with TECO, there are many others. The REL files contain the relo~

catable binary output from the assembly and compilation. The LST files contain the listings. The TMP

files are temporary command files created by the COMPIL CUSP. These include O03CRE.TMP, which

contains the names of LST files to be output to the line printer when a CREF command is given.

You can now print the listing files for examination. LIST MAINPG.LST outputs the listing file pro-

duced when the FORTRAN program was compiled. CREF outputs the CREF listing file produced when

the MACRO-10 subroutine was assembled. Examination shows that the MOVE instruction in the

MACRO-=10 subroutine should be a MOVEM.

To debug your program, load the DDT (Dynamic Debugging Technique) program by typing DEBUG

SUBRTE, MAINPG. Note that assembly and compilation are not repeated since the REL files are more

recent than the source files.

XXI

GETTYNS: ‘NAMDON/ MOVE AC5,@0(16) MOVEM AC5,@(16)
$G

THES NAME OF YOURS TEEE TYPE 1S3- TRy13
EXIT

tC

“SAVE DTA2: IMAGE

JOB SAVED
tC

2TECO SUBRTE-MAC

* BJNMOVESIMSOLTSS$
NAMDON: MOVEM AC5>@(16) 3STORE NAME.
xEXS$

EXIT

tC

XXII

GETTYN$: accesses the symbol table for the MACRO subroutine, and NAMDON/ accesses the

location of the erroneous instruction. Type in the correction MOVEM AC5, @ (16) and use $G to

re-execute the program so that you can check the result. The bug is out! The message is completed:

THE NAME OF YOUR TELETYPE IS: TTY13.

The final steps are to store the core image of your program on DECtape and correct the source file.

SAVE DTA2:IMAGE stores the program on DECtape 2, giving it the name IMAGE. TECO SUBRTE.MAC

calls in TECO to correct the source file. And the TECO command string BINMOVESIMS$OLT$$

searches for the word MOVE, inserts an M after it, and types out the corrected line. EX$$ deposits

the corrected source program in your disk area and returns to the monitor. The user can now log off

the system or start some other program.

XXII

wpibD1q Mo|4 Zz WOABO1g UO!4D1ysUCWaq |-| ainBig

z
s
o
o
-
o
8

osiv sor

LVHL

111m

“(9 g0r) SOF Y3H1LO

YNOA

OL

HOVIIV

(¢
g
o
r
)

g
o
r

A
¥
O
1
L
9
3
4
I
0

3
d
V
1
9
3
0

3
0
0
9

3
N
I
H
O
V
W

OL

YNOA
TAINS

N
Y
O
M

4$11°3dv¥1930
SNOILO93uNNOD

1LaG

YNOA
G3HSINIS

¥NOA
NO

3113
1
9
3
7
4
3
4

OL
S
A
W
H

N
O
A

3
9
y
N
O
S

O
Y
D
V
W

3
1
1
4

3
9
4
N
n
o
0
S

Q
3
1
9
3
y
4
u
N
0
9

3
Y
O
L
S

O
¥
Y
D
V
W

1
L
9
3
u
N
N
0
d

3
d
v
i
d
3
0

Y
N
O
A

N
O

3
0
0
9

a
g
3
1
9
3
4
u
0
9

3
0

3
9
V
W
I

3
Y
¥
0
9

3
A
V
S
.

©

W
O

41

1
S
3
1

OL

3
d
v
V
i
9
3
0

W
O
U
N
S

W
v
y
9
0
8
d

N
N
 —

—
>

“
in
di
no

(s
ia

on
)

“L
OB
UY
OO
NI

19
34

40
9

3Y
V

Si
IN
S3
y

LO
ZY
YO
ON
I

(¢

go
r)

go

r
w
v
u
o
0
u
d

(9

go
r)

SO
nu

TO
N

Ss!

LN
di

no

ON
Y

03
1S
31

Wv
yu
d0
ud

40

3S
NV

O
TV

NI
9D

IY
O

NV
YL

YO
S

40

go
r

M3
N

“S
WV

Y9
ON

d
OM
L

YN
OA

woud

nse) © “BV ISNVYL) 31N93x3

GQ3L193u4YNOD HOUNS 1934Y0D ONY OLHOVILY ONILSIT NI9S38 vy Sv NI907

QNIsd O1 9N830

(
3
1
N
9
3
x
3

G
N
V
‘
a
V
O
7

SWVY9Oud OXDVW

0931 VIA 3714 394Nos 39VuOLS

Wvu90¥d

3DuNOS

baer

Ae

i
eps

aNILNONENS

viva

¥3iv4

W31SAS

Ruane

Ob-ONDVN

a3
0a
Lac

aa

eat
ONY

O1-OND

VW
YNOA

YO4

gor

YNOA

OL

OLN

907

YNOA LO3Y8NOD

(
3
1
V
3
4
9
)

N
V
A

3
d
V
L
1
9
3
0

N
O
I
S
S
Y

BLVISNVYL) 9NB30

©

XXV

Demonstration #2

_* LOGIN
JOB 3 4834
#27520
9955 27-JAN-69 TTY13 :
THE DISK WILL BE REFRESHED DAILY AT 4:45 PM UNTIL FURTHER NOTICE-

tC

ASSIGN DTA DT

DTAe ASSIGNED

=MAKE RANDOM

*ITITLE RANDOM NUMEEBER GENERATING SUBROUTINE
SUBTTL CHARLIE PROGRAMMER 27 JAN 1969
3RANDOM NUMBER GENERATING SUBROUTINE
$$

XxI3THE FORTRAN CALLING SEQUENCE IS --
3 CALL RANDOM CARG)
3WHERE ARG SPECIFIES THE LOCATION AT WHICH THE RESULTING
3S INGLE PRECISION FLOATING POINT RANDOM NUMBER WILL BE
3STORED- NUMBERS PRODUCED BY THIS ROUTINE ARE PSEUDO:RANDOM
3NUMBERS BUT ARE UNIFORMLY DISTRIBUTED OVER [@51].
$$

*INTERNAL RANDOM

ACX=5

ACY=6

ACZ=ACY+1 sACCUMULATOR SYMBOLIC DEFINITIONS.
$$

*IRANDOM: @ 3ENTERED BY JSA 16sRANDOM.-

CALL ACXsCSIXBIT/TIMER] $GET TIME IN CLOCK TICKS.
ANDI ACX+3. $USE TIME TO SELECT 1-4 ITERATIONS.

$$

XIRLOOP : MOVE ACYsRNUMBR 3FETCH PREVIOUS PSEUDO-RANDOM NUMBER-
MUL ACY»MAGIC 3MULTIPLICATIVE RANDOM NUMBER GENERATOR.
MOVEM ACZsRNUMBR 3SAVE NEXT PSEUDO-RANDOM NUMBER-
SOJGE ACXsRLOOP sITERATE AGAIN?

$$

I LSH ACZ»s-1tD8 $3CONVERT TO FLOATING POINT FORMAT.
TLO ACZ.290009 3IN THE RANGE [051].

FADRI ACZ 39 $NORMALIZE.

MOVEM ACZ>@(16) $STORE RESULT> AND

JRA 1651616) 3 **RETURN#*.

XXVI

Log into the system by typing LOGIN (may be abbreviated as LOG); Monitor responds with the job

number assigned to your job and the version number of the Monitor. Following the typeout of the #

symbol, type in your project-programmer number. Monitor then waits for a password. Type your pass-

word (echo-typeout is suppressed). If your password matches correctly with your project-programmer

number, Monitor types out the correct time, date, and the physical name of the teletype you are using.

Monitor may type out some informative messages and return you to Monitor level. At this point, any

Monitor command can be typed.

Assign a DECtape unit to the job for later storage of files, and assign it the logical name DT. Monitor

. responds that DECtape unit 2 has been assigned to the job. Mount an available reel on this unit, and

place the WRITE switch in the WRITE-ENABLED position. The reel contains the FORTRAN source pro-

gram for later use. From this point, refer to the DECtape unit as either DTA2: or DT:.

4

Now, create the source program file for the Macro-10 subroutine to be run in conjunction with the

FORTRAN program. TECO (Text Editor and Corrector) can be used to create such a text file. Type

MAKE RANDOM to call in the TECO program and cause TECO to open a file for creation; give it the

filename RANDOM. After TECO has responded with an asterisk, type an Insert command (I) followed

by the first portion of the text of your Macro-10 source program. Note that a typing mistake was made

on the first line - NUME; this can be corrected by pressing the RUBOUT key to echo the previous

character and then typing the correct character. If a typing error occurs several characters back,

press the RUBOUT key repeatedly until you have reached the erroneous character. To avoid overflow-

ing the input command buffer, break the text into several segments, rather than typing it as one con-

tinuous block. This is done by typing two successive ALTMODEs (an ALTMODE echoes as $) after

every six or seven lines of text to cause the contents of the input command buffer to be transferred to

the TECO output buffer and the input command buffer to be cleared. Following the subsequent asterisk

typeout, repeat the Insert command before continuing the text. After typing the program, request a

typeout of the entire text by typing HT$$. Notice that an Insert command was not typed at the begin-

ning of the third segment of the text. Luckily, TECO took the "I" in INTERNAL as the Insert command,

but this tesulted in NTERNAL. Correct this by typing BJ (set the TECO pointer at the beginning of the

text), S (Search) for NTERNAL, 7R (Reverse the pointer seven characters), II (Insert an "I"), and OLT

(Type out the corrected Line). Note that each command step is terminated by an ALTMODE ($). Also,

insert a space following PP in the line ;ACM....... PP83-89) and request that the corrected line be

typed out. Type EX $$ to direct TECO to write out its output buffer onto disk, assign it the filename

previously specified in the MAKE command, and close the file.

XXVII

$$

X*I3THE MULTIPLIER USED IS 5t15 (SEE COMPUTER REVIEWS» VOL 65 #3,
3REVIEW NUMER 7725, AND THE REFERENCED PAPER IN JOURNAL OF
3ACMs JANUARY>s 1965, PP83-89).

MAGIC: S#S*S AS AS ASHES ASKS *SHS*S #545 *S STHE MULTIPLIER-
RNUMBR: 1 3THE NEXT RANDOM NUMBER IS ALWAYS HERE.
3THE ITERATION STARTS FROM A VALUE OF 1.
PATCH: BLOCK 190 3PATCHING SPACE.

END :
$$
HT
$$
TITLE RANDOM NUMBER GENERATING SUBROUTINE
SUBTTL CHARLIE PROGRAMMER 27 JAN 1969
3RANDOM NUMBER GENERATING SUBROUTINE

3THE FORTRAN CALLING SEQUENCE IS --
3 CALL RANDOM CARG)
3WHERE ARG SPECIFIES THE LOCATION AT WHICH THE RESULTING
3SINGLE PRECISION FLOATING POINT RANDOM NUMBER WILL BE
3STORED- NUMBERS PRODUCED BY THIS ROUTINE ARE PSEUDO:RANDOM
s3NUMBERS BUT ARE UNIFORMLY DISTRIBUTED OVER [0511].
NTERNAL RANDOM

ACX=5

ACY=6

ACZ=ACY+1 $ACCUMULATOR SYMBOLIC DEFINITIONS.
RANDOM: @ S3ENTERED BY JSA 16,RANDOM.

CALL ACXs»CSIXBIT/TIMER] +$GET TIME IN CLOCK TICKS.
ANDI ACXs3 s3USE TIME TO SELECT 1-4 ITERATIONS.

RLOOP: MOVE ACY>RNUMBR $FETCH PREVIOUS PSEUDO-RANDOM NUMBER.

MUL ACY»MAGIC s3MULTIPLICATIVE RANDOM NUMBER GENERATOR.
MOVEM ACZsRNUMBR $SAVE NEXT PSEUDO-RANDOM NUMBER.
SOJGE ACXsRLOOP sITERATE AGAIN?

LSH ACZ,s-1tD8 3CONVERT TO FLOATING POINT FORMAT.
TLO ACZ,20000 3IN THE RANGE [951].

FADRI ACZ>9 s3NORMALIZE-

MOVEM ACZ3@(16) sSTORE RESULT» AND
JRA 1651(16) 3 **RETURN**

3THE MULTIPLIER USED IS 5115 (SEE COMPUTER REVIEWS» VOL 65 #3,
3REVIEW NUMBER 7725s AND THE REFERENCED PAPER IN JOURNAL OF
3ACMs JANUARY» 19655 PP83-89).

MAGIC: S¥S*ES*KS*S*S*SKS*S*S*S*S*S*S*S §5THE MULTIPLIER.
RNUMBR : 1 3THE NEXT RANDOM NUMBER IS ALWAYS HERE.
3THE ITERATION STARTS FROM A VALUE OF 1-

PATCH: BLOCK 1@ s3PATCHING SPACE.

END §&

ABJSNTERNALS7RIISOLTSS
INTERNAL RANDOM

*SPP83$-2CI SOLTSS

3ACMs JANUARY» 1965, PP 83-89).
+EXITSS

EXIT
1C

x

XXVIII

Demonstration Program #2 Continues On Next Page

XXIX ©

«DIRECT

DIRECTORY 27320 1019

Q@03EDS -TMP O1

RANDOM 03
Q@3PIP-TMP 1

TOTAL BLOCKS OS

EXIT

1C

27-JAN-69

27-JAN-69

27-JAN-69

27-JAN-69

sRENAME RANDOM-MAC =RANDOM

PIELESER
RANDOM

EXIT tC

ENAMED

=DEBUG RANDOM/CREF sDT :ARRIVE/L
FORTRAN

MACRO:

A

T TIME IN CLOCK TICKS.

?1 ERRO

LOAD ING
?EXECUT

LOADER

EXIT

tC

.TECO R

: ARRIVE.F4

RANDOM

QQ0001 840240

R DETECTED

ION DELETED

8K CORE

ANDOM-MAC

£3_K CO

*BIN/TI

#EXITSS

EXIT

tC

RE J

MERSI/SOLTSS

CALL ACXs{CSIXBIT/TIMERZ]

O00G26' CALL ACXs{CSIXBIT/TIMER] $GE

Gh pela: CLOCK TiGksS.

XXX

Typing DIRECT causes the directory of the disk area to be typed out on the console. In addition to the

RANDOM file, there are two other files, OO3EDS.TMP and OO3PIP.TMP. These files are temporary

command files created by the COMPIL CUSP and contain the commands generated by MAKE and

DIRECT, respectively. Note that the assigned job number forms the first three characters of the file-

names.

Change the name of the text file from RANDOM to RANDOM.MAC by typing

RENAME RANDOM.MAC=RANDOM.

Standard filename extensions should be used (e.g-, .MAC for Macro-10 source program files, .F4 for

FORTRAN source program files, .REL for relocatable binary files, etc.).

Use the DEBUG command as follows:

a. Assemble your Macro-10 source program, RANDOM. Its filename extension of «MAC
identifies it as a Macro program. Request that a CREF (cross-reference) listing file be pro-
duced. Ata later time, this file can be listed on the printer via the CREF command.

b. Compile your FORTRAN source program, ARRIVE, which has a filename extension of .F4,
identifying it as a FORTRAN program. Request a normal listing file (/L). This previously
prepared program file is on the DECtape reel that was mounted on DECtape 2 (symbolic name

DT:).

c. Load the two relocatable binary files produced by the assembly and compilation processes

and also load the Dynamic Debugging Technique (DDT) program to examine and debug the
program coding.

d. If no major errors were encountered during translation and loading, begin execution under

control of DDT.

In this case, however, a source coding error was encountered in the Macro-10 source program (a slash

was not typed following TIMER) and execution of the programs is inhibited.

Type TECO RANDOM.MAC to recall TECO and to open an already existing file, RANDOM.MAC,

for editing. Type the command string shown to insert a slash after TIMER . Set the TECO pointer at

the beginning (BJ) of the text, doa nonstop (N) search for /TIMER, insert a slash (I/) following it, and

type the current line (OLT).

XXXI

*DELETE *-REL>*~-LST

FILES DELETED

ARRIVE REL

RANDOM) REL
ARRIVE LST

RANDOM LST

EXIT

tC

sEXECUTE RANDOM/CREF »DT :ARRIVE/L
FORTRAN: ARRIVE-F4

MACRO: RANDOM /

LOAD ING

LOADER 6K CORE

RANDOM INTERARRIVAL TIME GENERATOR FOR POISSON PROCESSES

TYPE MEAN WAITING TIME PLEASE: 190

TYPE NUMBER OF SAMPLE TIMES DESIRED:190

O-777TS1B67E+94

@-79615811E+04

0-79469139E+04

0-78677823E+04

Q@-78193187E+04

9-777@O0S5S29E+04

Q-77820501E+04

9-777T2547TOE+94

9+79530156E+04

Q0-77917609E +04 445453955555 TON OURS A TM PESS RE oT TTP YT

TYPE MEAN WAITING TIME PLEASE: 1C

DETACH

«LOGIN
JOB 6 4834
#27220
1929 27-JAN-69 RLYIS
THE DISK WILL BE REFRESHED DAILY AT 4:45 PM UNTIL FURTHER NOTICE+

tC

XXXII

To repeat the translation of the programs, delete those files from your disk area that were created by

the DEBUG process. These files are the two relocatable binary files (these were automatically given a

filename extension of .REL) and the two listing files (these were automatically given a filename extension

of .LST). The form *.ext refers to all files, regardless of filename, that have the specified extension.

In this example, DELETE *.REL, *.LST causes all files with an extension of »REL and all fils: with an

extension of .LST to be deleted. To conserve disk space, note that all temporary command files gen-

erated by Monitor commands can be periodically deleted by typing DELETE *.TMP.

An attempt is made to translate, load, and execute without DDT. The EXECUTE command has the same

general format as the DEBUG command. After loading, the program will automatically begin execution.

Translation was successful; the programs are loaded; and execution is begun.

However, there is an error. The output is far from random and conspicuously in the wrong range.

Retum to Monitor level by typing tC. .

The following is an example of how to detach from the current job and begin a second job without

affecting the status of the current job. Detach the Teletype console by typing DETACH. A new job

can now be initiated. The current job (job #3) remains in its present status until you attach to it again.

Type LOGIN (or LOG) to request another job number. Job #6 is assigned. Perform the same procedures

for logging in as in Step 1.

XXxill

sLIST ARRIVE-LST

tC

=CCONT

2k CORE

sATTACH 3 [27320]

2sDEBUG RANDOM>ARRI
LOADING

LOADER 8K CORE

$G

RANDOM INTERARRIVAL TIME GENERATOR FOR POISSON PROCESSES

TYPE MEAN WAITING TIME PLEASE: 100

TYPE NUMBER OF SAMPLE TIMES DESIRED:1Q@-

QO-77751867E+O4

9-79615811E+O04

Q9-79469139E+04

Q0-78677823E+04

@+781903187E+04

Q9-7770O0529E+04

Q-7T1IT2547TOE+O4

Q-80251919E+04

0-78686508E+04

09-7791 7T6Q9E+O4 AAnNntA Ase sA Howe ow Wow on oa oh ott

TYPE MEAN WAITING TIME PLEASE: tC

DDT

XXXIV

LIST the listing file generated by the compilation of the FORTRAN program on the line printer.

Once the listing has begun, interrupt it by typing tC to return to Monitor level.

Type CCONT to continue the listing and maintain the console at Monitor level.

Now, detach from this job and reattach to the original job by typing ATTACH job# [project, programmer] .

(ATTACH can be abbreviated to AT.)

Now, attached to the original job (job #3) other tasks can be performed while the listing is being

completed.

The error that caused the incorrect results (a 0 was omitted in the TLO ACZ, 20000 instruction) is

determined by scanning the teletype sheet. Now, DEBUG the programs to correct this error.

The DEBUG process finds that two relocatable binary files (created during the previous EXECUTE

process) are more recent than their related source files. Therefore, no retranslation is needed, and

the existing .REL files are immediately loaded. Execution is begun under control of DDT, and DDT

awaits a command typein.

A $G (ALTMODE G) transfers control to the programs and begins execution. Again, incorrect answers

result.

To return to the DDT program, type (tC) to return to Monitor level; then, type "DDT."

XXXV

RAND OMS : RLOOP+5S/ TLO ACZ,20000 TLO ACZ+200000
=6613495,5200009 <TLO ACZ,2900900

MAIN-$: 12P+10ST/ RED:' "/RED: /
12P+10$T/ RED: LINEFEED
12P+11/ $) EY LS \/
12P+11$T/ "$)

$G

RANDOM INTERARRIVAL TIME GENERATOR FOR POISSON PROCESSES

TYPE MEAN WAITING TIME PLEASE: 100

TYPE NUMBER OF SAMPLE TIMES DESIRED: 19

9 -13360079E+03

9 -59776286E+02

Q -31949938E+92

Q+43099106E+G2

» O@-12045378E+G2

9 -20455130E+02

9 -21030612E+92

9 +-39184699E+01

9 -392419011E+92

9 -45517379E+02 H4a4n4ggnn45

US UE PE

TYPE MEAN WAITING TIME PLEASE: ne

XXXVI

Open the DDT symbol table for the Macro program by typing RANDOMS: (the program name, taken

from the TITLE statement of your source program, followed by an ALTMODE and a colon). Now, any

of the symbolic tags contained in this program can be used.

Open the location containing the erroneous instruction by typing the address of the location, relative

to a symbolic tag (in this case, RLOOP+5). DDT types out'the contents of this location in symbolic

form. Now, type in the correct contents, also in symbolic form.

Typing an equal (=) sign causes the new contents to be typed out in halfword mode. Typing a left

arrow causes the contents to be typed in symbolic. The proper instruction has been entered correctly.

During ayecution: no spacing was performed following the second request for input. To correct this

condition, open the symbol table for the FORTRAN program (FORTRAN programs are assigned the

program name MAIN. unless otherwise titled by the programmer), and correct that portion of the

literal stored in locations 12P+10$T and 12P+11$T by inserting a space after the colon (DESIRED:).

Examine the two locations to ensure that the correction was made properly (a LINEFEED causes the

next sequential location to be opened). €

Type $G to restart execution.

The results seem to be correct. Return to Monitor level.

XXXVII

SAVE DT:PROGA
JOB _ SAVED
aC

2RUN DT:PROGA

RANDOM INTERARRIVAL TIME GENERATOR FOR POISSON PROCESSES

TYPE MEAN WAITING TIME PLEASE: 100

TYPE NUMBER OF SAMPLE TIMES DESIRED: 5

@-19732386E+92

9-68401470E+02

0-16503109E+@3

Q-36447561E+81

Q@+-97657015E+02

YPE MEAN WAITING TIME PLEASE: SOE+1 a499g44 clio it Oi]

TYPE NUMBER OF SAMPLE TIMES DESIRED: 5

9-543 49454E+03

9 -45728928E+03

0+57991405E+G3

9 -22740226E+03

@-14563251E+03 yanag

TYPE MEAN WAITING TIME PLEASE: ule

2TECO RANDOM-MAC

+BINSACZs20000S5 10SGLTSS

TLO ACZ22090000 sIN THE RANGE [951].
XxEXITSS

EXIT
tC

sR PIP
#DT :RANDOM-MAC “DSK :RANDOM-MAC

#10

«DIRECT DT:

XXXVIII

SAVE the core image of the two programs and DDT on DECtape. Assign this image file the name

PROGA (an extension .SAV is automatically appended by the system). :

As a double check, RUN the program you just saved on DECtape. Note that R is used to call ina

program from the system device (SYS:) and RUN followed by a device name is used to call in a program

from other devices.

Again, the results appear to be correct.

Use TECO to correct the Macro-10 source file to reflect the DDT correction.

Run Peripheral Interchange Program (PIP) to transfer the corrected Macro-10 source file to DECtape.

At the end of every console session, it is suggested that the user transfer any files he might want to

reuse from the disk area to tape or other storage medium. This procedure releases the disk space for

other users and ensures that a refreshing of the disk will not destroy the only copy of a file.

Obtain a DIRECTory listing of the DECtape to ensure that it contains all the files you want to preserve.

(DIRECT can be abbreviated as DIR.)

XXXIX

524+ FREE BLOCKS LEFT

PROGA -.SAV 27-JAN-69

RANDOM. MAC 27-JAN-69

ARRIVE-F4 22-JAN-69

EXIT

tC

«KJOB
Ge 3» ONE OF USER 27220 OFF TTY13 AT 1108 ON 27-JAN-69
FILES DELETED: @» FILES SAVED: ALL » RUNTIME @ MIN> 20 SEC

“AT 6 [27520]

2K
CONFIRM: K
JOB 6, USER 27.20 OFF TTY13 AT 1118 ON 27-JAN-69
FILES DELETED: 11+ FILES SAVED: @» RUNTIME ® MIN» @2 SEC

XL

Kill the job. Monitor responds by printing the job number, project-programmer number; Teletype name;

time, date, number of disk files deleted/saved; and the total run time.

ATTACH (or AT) to the second job (job #6), and kill it also. Following the CONFIRM: message, sev-

eral options are available to determine what is to be done with the disk files. In this particular case,

because all files that are to be preserved have already been stored on DECtape, type K to cause all

disk files to be deleted.

Monitor prints the same information as in Step 13. You are now off the system; the core memory, disk

space, and DECtape unit have been returned to the Monitor pool for others to use.

END OF DEMONSTRATION SESSION

XLI

Book 1

Programming
with the

PDP-10
Instruction Set

PDP-10

System Reference Manual -

Changes are indicated by a triangle (A) in the outside margin

Contents

] INTRODUCTION

led Number System

Floating point arithmetic 1-5

12 Instruction Format

Effective address calculation 1-7

1.3 Memory
Memory allocation 1-9

1.4 Programming Conventions

» CENTRAL PROCESSOR

Dal Half Word Data Transmission

Dee Full Word Data Transmission

Move instructions, 2-10

Pushdown list 2-12

33} Byte Manipulation

2.4 Logic

Shift and rotate 2-24

2:5 Fixed Point Arithmetic

Arithmetic shifting 2-31

2.6 Floating Point Arithmetic

Scaling 2-33

Operations with rounding 2-34

Operations without rounding 2-37 ~-

Bell Arithmetic Testing

2.8 Logical Testing and Modification

Deo) Program Control

2.10 Unimplemented Operations

2:11 Programming Examples
Double precision floating point 2-67

21 Input-Output

. Readin mode 2-72

Console data transfers 2-73

vi

ARMS)

2.14

2.15

2.16

AUGUST 1969

Priority Interrupt

Processor Conditions

Time Sharing

User programming 2-82

Monitor programming 2-83

Operation

Indicators 2-84

Operating keys 2-87

Operating switches 2-89

BASIC IN-OUT EQUIPMENT

Paper Tape Reader

Readin mode 3-4

Paper Tape Punch

Teletype

HARDCOPY EQUIPMENT

Line Printer

Plotter

Card Reader

Card Punch

APPENDICES

Instruction and Device Mnemonics

Numeric listing A3

Alphabetic listing A6

Device mnemonics A10

In-out Codes

Teletype code B2

Card codes B6

Miscellany

Algorithms

Fixed point algorithms D2

Floating point algorithms D7

INDEX

Al

Bl

Cl

D1

I]

1

Introduction
!

The PDP-10 is a general purpose, stored program computer that includes a

central processor, a memory, and a variety of peripheral equipment such as

paper tape reader and punch, teletype, card reader, line printer, DECtape,

magnetic tape, disk file and display. The central processor is the control unit

for the entire system: it governs all peripheral in-out equipment, sequences

the program, and performs all arithmetic, logical and data handling opera-

tions. The processor is connected to one or more memory units by a mem-

ory bus and to the peripheral equipment by an in-out bus. The fastest

devices, such as the disc file, although controlled by the processor over the

in-out bus, have direct access to memory over a second memory bus.

The processor handles words of thirty-six bits, which are stored in a mem-

ory with a maximum capacity of 262,144 words. Storage in memory is

usually in the form of 37-bit words, the extra bit producing odd parity for

the word. The bits of a word are numbered 0-35, left to right, as are the

bits in the registers that handle the words. The processor can also handle

half words, wherein the left half comprises bits 0-17, the right half, bits

18-35. Optional hardware is available for byte manipulation — a byte is any

contiguous set of bits within a word. Registers that hold addresses have

eighteen bits, numbered 18-35 according to the position of the address in a

word. Words are used either as computer instructions in the program, as

addresses, or as operands (data for the program).

Of the internal registers shown in the illustration on the next page, only

PC, the 18 bit program counter, is directly relevant to the programmer. The

processor performs a program by executing instructions retrieved from the

locations addressed by PC. At the beginnine of each instruction PC is incre-

mented by one so that it normally contains an address one greater than the

location of the current instruction. Sequential program flow is altered by

changing the contents of PC, either by incrementing it an extra time in a

skip instruction or by replacing its contents with the value specified by a

jump instruction. Also of importance to the programmer is the 36-bit data

switch register DS on the processor console: through this register the pro-

gram can read data supplied by the operator. The processor also contains

flags that detect various types of errors, including several types of overflow

in arithmetic and pushdown operations, and provide other information of

interest to the programmer.

The processor has other registers but the programmer is not usually con-

cerned with them except when manually stepping through a program to

debug it. By means of the address switch register AS, the operator can

1-1

8

INTRODUCTION

CORE MEMORY
8192 OR 16384 CORE MEMORY CORE MEMORY
37-BIT WORDS |

MEMORY BUS CENTRAL
PROCESSOR

ARITHMETIC

LOGIC

(AR, BR, MQ)

PRIORITY PAPER TAPE PAPER TAPE
INTERRUPT ~ READER PUNCH EGER

PDP-10 SIMPLIFIED

examine the contents of, or deposit information into, any memory location;
stop or interrupt the program whenever a particular location is referenced;
and through AS the operator can supply a starting address for the program.
Through the memory indicators MI the program can display data for the
operator. The instruction register IR contains the left half of the current
instruction word, ie all but the address part. The memory address register
MA supplies the address for every memory access. The heart of the proc-
essor is the arithmetic logic, principally the 36-bit arithmetic register AR.

This register takes part in all arithmetic, logical and data handling operations,

all data transfers to and from memory, peripheral equipment and console are

made via AR. Associated with AR are an extremely fast full adder, a buffer

register BR that holds a second operand in many arithmetic and logical

instructions, a multiplier-quotient register MQ that Serves primarily as an

extension of AR for handling double length operands, and smaller registers

that handle floating point exponents and control shift operations and byte

manipulation.

From the point of view of the programmer however the arithmetic logic

can be regarded as a black box. It performs almost all of the operations

necessary for the execution of a program, but it never retains any informa-

tion from one instruction to the next. Computations performed in the black

box either affect control elements such as PC and the flags, or produce

results that are always sent to memory and must be retrieved by the proc-

essor if they are to be used as operands in other instructions.

An instruction word has only one 18-bit address field for addressing any

location throughout all of memory. But most instructions have two 4-bit

fields for addressing the first sixteen memory locations. Any instruction

that requires a second operand has an accumulator address field, which can

address one of these sixteen locations as an accumulator; in other words as

though it were a result held over in the processor from some previous

instruction (the programmer usually has a choice of whether the result of the

instruction will go to the location addressed as an accumulator or to that

addressed by the 18-bit address field, or to both). Every instruction has a

4-bit index register address field, which.can address fifteen of these locations

for use as index registers in modifying the 18-bit memory address (a zero

index register address specifies no indexing). Although all computations on

both operands and addresses are performed in the single arithmetic register

AR, the computer actually has sixteen accumulators, fifteen of which can

double as index registers. The factor that determines whether one of the

first sixteen locations in memory is an accumulator or an index register is

not the information it contains nor how its contents are used, but rather

how the location is addressed. There need be no difference physically be-

tween these locations and other memory locations, but an optional, fast flip-

flop memory contained in the processor can be substituted for the bottom

sixteen locations in core. This allows much quicker access to these locations

whether they are addressed as accumulators, index registers or ordinary

memory locations. They can even be addressed from the program counter,

gaining faster execution for a short but oft-repeated subroutine.

Besides the registers that enter into the regular execution of the program

and its instructions, the processor has a priority interrupt system and can

contain optional equipment to facilitate time sharing. The interrupt system

facilitates processor control of the peripheral equipment by means of a num-

ber of priority-ordered channels over which external signals may interrupt

the normal program flow. The processor acknowledges an interrupt request

by executing the instruction contained in a particular location assigned to

the channel. Assignment of channels to devices is entirely under program

control. One of the devices to which the program can assign a channel is the

processor itself, allowing internal conditions such as overflow or a parity

1-3

10

INTRODUCTION Saat

error to signal the program.

The time share hardware provides memory protection and relocation.
Without time sharing, all instructions and all memory are available to the
program. Otherwise a number of programs share processor time, with each
program relocated and restricted to a specific area in core, and certain in-
structions are usually illegal. An attempt by any user to execute an illegal
instruction or address a memory location outside of his area results in a
transfer of control back to the time-sharing monitor.

1.1 NUMBER SYSTEM

The program can interpret a data word as a 36-digit, unsigned binary num-
ber, or the left and right halves of a word can be taken as separate 18-bit
numbers. The PDP-—10 repertoire includes instructions that effectively add
or subtract one from both halves of a word, so the right half can be used for
address modification when the word is addressed as an index register, while
the left half is used to keep a control count.

The standard arithmetic instructions in the PDP-10 use twos comple-
ment, fixed point conventions to do binary arithmetic. In a word used asa
number, bit O (the leftmost bit) represents the sign, 0 for positive, 1 for
negative. In a positive number the remaining 35 bits are the magnitude in
ordinary binary notation. The negative of a number is obtained by taking its
twos complement. If x is an n-digit binary number, its twos complement is
2”—x, and its ones complement is (2”— 1) —x, or equivalently (2"—x)— 1.
Subtracting a number from 2”— 1 (ie, from all 1s) is equivalent to perform-
ing the logical complement, ie changing all Os to 1s and all ls to Os. There-
fore, to form the twos complement one takes the logical complement
(usually referred to merely as the complement) of the entire word including
the sign, and adds | to the result. In a negative number the sign bit is 1, and
the remaining bits are the twos complement of the magnitude.

+153;9 = +231g = {000 000 000 000 000 000 000 000 000 010 011 001
0 35

—153;0 = —231, =[i11 IT Ee ee 1101100411
0 35

Zero is represented by a word! containing all Os. Complementing this num-
ber produces all 1s, and adding 1 to that produces all Os again. Hence there
is Only one zero representation and its sign is positive. Since the numbers are
symmetrical in magnitude about a single zero representation, all even num-
bers both positive and negative end in 0, all odd numbers in 1 (a number all
Is represents —1). But since there are the same number of positive and nega-
tive numbers and zero is positive, there is one more negative number than
there are nonzero positive numbers.: This is the most negative number and it
cannot be produced by negating any positive number (its octal representa-

il

§1.1 NUMBER SYSTEM

tion is 400000 000000, and its magnitude is one greater than the largest

positive number). :

If ones complements were used for negatives one could read a negative

number by attaching significance to the Os instead of the Is. In twos com-

plement notation each negative number is one greater than the complement

of the positive number of the same magnitude, so one can read a negative

number by attaching significance to the rightmost 1 and attaching signifi-

cance to the Os at the left of it (the negative number of largest magnitude has

a 1 in only the sign position). In a negative integer, 1s may be discarded at

the left, just as leading Os may be dropped in a positive integer. In a negative

fraction, Os may be discarded at the right. So long as only Os are discarded,

the number remains in twos complement form because it still has a | that

possesses significance; but if a portion including the rightmost 1 is discarded,

the remaining part of the fraction is now a ones complement.

The computer does not keep track of a binary point — the programmer

must adopt a point convention and shift the magnitude of the result to con-

form to the convention used. Two common conventions are to regard a

number as an integer (binary point at the right) or as a proper fraction

(binary point at the left); in these two cases the range of numbers repre-

sented by a single word is —2°5 to 235— 1 or—1 to 1 —2~°°. Since multiplica-

tion and division make use of double length numbers, there are special

instructions for performing these operations with integral operands.

Floating Point Arithmetic. Optional PDP-10 hardware is available for

processing floating point numbers. A floating point instruction interprets

bit 0 of a word as the sign, but interprets the rest of the word as an 8-bit

exponent and a 27-bit fraction. For a positive number the sign is 0; as

before. But the contents of bits 9-35 are now interpreted only as a binary

fraction, and the contents of bits 1—8 are interpreted as an integral exponent

in excess 128 (200g) code. Exponents from —128 to +127 are therefore

represented by the binary equivalents of 0 to 255 (0-377,). Floating point

zero and negatives are represented in exactly the same way as in fixed point:

zero by a word containing all Os, a negative by the twos complement. A

negative number has a | for its sign and the twos complement of the frac-

tion, but since every fraction must ordinarily contain a | unless the entire

number is zero (see below), it has the ones complement of the exponent

code in bits 1-8. Since the exponent is in excess 128 code, an actual

exponent x is represented in a positive number by x + 128, in a negative

number by 127—x. The programmer, however, need not be concerned with

these representations as the hardware compensates automatically. Eg, for

#153; = +2319 = “+4629X2? =

[ofi0 001 000]100 110 010 000 000 000 000 000 000]
ol 89 35

“15356 = slg =. 462,42 =

[io 110 11ifo1 001 110 000 000 000 000 000 000

Om 89 35

1-5

Multiplication produces a
double length product, and
the programmer must remem-
ber that discarding the low
order part of a double length
negative leaves the high order
part in correct twos comple-
ment form only if the low
order part is null.

3 04

INTRODUCTION ‘ §1.2

the instruction that scales the exponent, the hardware interprets the integral
scale factor in standard twos complement form but produces the correct
ones complement result for the exponent.

Except in special cases the floating point instructions assume that all non-
zero operands are normalized, and they normalize a nonzero result. A
floating point number is considered normalized if the magnitude of the frac-
tion is greater than or equal to % and less than 1. These numbers thus have a °
fractional range in magnitude of % to 1—27?7 and an exponent range of
—128 to +127. The hardware may not give the correct result if the program
supplies an operand that is not normalized or that has a zero fraction with a
nonzero exponent.

The precaution about truncation given for fixed point multiplication
applies to all floating point operations as they all produce extra length
results; but here the programmer may request rounding, which automatically
restores the high order part to twos complement form if it is negative. In
division the two words of the result are quotient and remainder, but in the
other operations they form a double length number which is stored in two
accumulators if the instruction is executed in “long” mode. This number
contains a 54-bit fraction, half of which is in bits 9-35 of each word. The
sign and exponent are in bits 0 and 1-8 respectively of the word containing
the more significant half, and the standard twos complement is used to form
the negative of the entire 63-bit string. In the remaining part of the less
significant word, bit 0 is 0, and bits 1-8 contain a number 27 less than the
exponent, but this is expressed in positive form even though bits 9-35 may
be part of a negative fraction. Eg the number 2!8+ 278 has this two-word
representation: ‘

10 010 011/100 000 000 000 000 000 000 000 000]
ol 89 35

: (olo1 111 000|000 000 000 100 000 000 000 000 000
1 89 85: o

whereas its negative is

‘ilo 101 100/011 111 111 111 111 111111111 111]

1 89 35

ojo 111 OOO}111 111 111 100 000 000 000 000 000}
@ i 89 35

o

1.2 INSTRUCTION FORMAT

In all but the input-output instructions, the nine high order bits (0-8) speci-
fy the operation, and bits 9-12 usually address an accumulator but are
sometimes used for special control purposes, such as addressing flags. The

13

§1.2 INSTRUCTION FORMAT

rest of the instruction word usually supplies information for calculating the

effective address, which is the actual address used to fetch the operand or

alter program flow. Bit 13 specifies the type of addressing, bits 14-17 spec-

ify an index register for use in address modification, and the remaining

eighteen bits (18-35) address a memory location. The instruction codes

ADDRESS TYPE

INDEX REGISTER
ADDRESS

ACCUMULATOR
ADDRESS

INSTRUCTION CODE MEMORY ADDRESS

0 89 121314 1718 35

BASIC INSTRUCTION FORMAT

that are not assigned as specific instructions are executed by the processor

as so-called ‘“‘unimplemented operations’, as are the codes for floating point

and byte manipulation in any PDP—10 that does not have the optional hard-

ware for these instructions. When the processor encounters one of these

unimplemented codes in a program, it stores bits 0-12 of the instruction

word and the calculated effective address in a particular memory location

and then executes the instruction contained in a second location.

An input-output instruction is designated by three 1s in bits 0-2. Bits

3-9 address the in-out device to be used in executing the instruction, and

bits 10-12 specify the operation. The rest of the word is the same as in

other instructions.

ADDRESS TYPE

INDEX REGISTER
ADDRESS

INSTRUCTION
CODE

DEVICE CODE MEMORY ADDRESS

0 23: 910 12 1314 1718 35

IN-OUT INSTRUCTION FORMAT

Effective Address Calculation. Bits 13-35 have the same format in every

instruction whether it addresses a memory location or not. Bit 13 is the

ieee Y
1314 1718 35

indirect bit, bits 14-17 are the index register address, and if the instruction

must reference memory, bits 18-35 are the memory address Y. The effec-

tive address E of the instruction depends on the values of J, X and Y. If X is

nonzero, the contents of index register X are added to Y to produce a modi-

fied address. If / is 0, addressing is direct, and the modified address is the

effective address used in the execution of the instruction; if / is 1, addressing

is indirect, and the processor retrieves another address word from the loca-

tion specified by the modified address already determined. This new word is

processed in exactly the same manner: X and Y determine the effective ad-

dress if J is 0, otherwise they are used for yet another level of address

1-7

1-8

14

INTRODUCTION §1.3

retrieval. This process continues until some referenced location is found
with a O in bit 13; the 18-bit number calculated from the Y and Y parts of
this location is the effective address EF.

The calculation outlined above is carried out for every instruction even
if it need not address a memory location. If the indirect bit in the instruc-
tion word is 0 and no memory reference is necessary, then Y is not an ad-
dress. It may be a mask in’some kind of test instruction, conditions to be
sent to an in-out device, or part of it may be the number of places to shift in
a shift or rotate instruction or the scale factor in a floating scale instruction.
Even when modified by an index register, bits 18-35 do not contain an ad-
dress when / is 0. But when / is 1, the number determined from bits 14-35
is an indirect address no matter what type of information the instruction
requires, and the word retrieved in any step of the calculation contains an
indirect address so long as / remains 1. When a location is found in which J
is O, bits 18-35 (perhaps modified by an index register) contain the desired
effective mask, effective conditions, effective shift number, or effective scale
factor. Many of the instructions that usually reference memory for an oper-
and even have an “immediate” mode in which the result of the effective
address calculation is itself used as a half word operand insiead of a word
taken from the memory location it addresses.

The important thing for the programmer to remember is that the same
calculation is carried out for every instruction regardless of the type of infor-
mation that must be specified for its execution, or even if the result is
ignored. In the discussion of any instruction, E refers to the actual quantity
derived from /, X and Y and used in the execution of the instruction, be it
the entire half word as in the case of an address, immediate operand, mask or
conditions, or only part of it as in a shift number or scale factor.

1.3 MEMORY

All timing in the PDP-10 is asynchronous. The internal timing for each in-
out device and each memory is entirely independent of the central processor.
Because core memory readout is destructive, every word read must be writ-
ten back in unless new information is to take its place. The basic read-write
cycle time of the standard core memory is either 1.00 or 1.65 microseconds,
but the processor need never wait the entire cycle time. To read, it waits
only until the information is available and then continues its operations
while the memory performs the write portion of the cycle; to write, it waits
only until the data is accepted, and the memory then performs an entire
cycle to clear and write. To save time in an instruction that fetches an oper-
and and then writes new data into the same location, the memory executes a
read-pause-write cycle in which it performs only the read part initially and
then completes the cycle when the processor supplies the new data.

Access times for the accumulator-index register locations are decreased
considerably by substitution of a fast memory (contained in the processor)
for the first sixteen core locations. Readout is nondestructive, so the fast
memory has no basic cycle: the processor reads a word directly, but to write

18

MEMORY §1.3

it must first clear the location and then load it. Access times in nanoseconds

(including 20 feet of cable delay) for the three memories are as follows.

Read Write

MA10 or MA10A Core Memory (1.00 ps) 580 200

MB10 Core Memory (1.65 ps) 600 (700)* . 200 (300)

KM10 Fast Memory (18-bit address) 210 210

Note: When a fast memory location is addressed as an accumulator or index

register, the access time is usually considerably shorter than that listed here.

From the simple addressing point of view, the entire memory is a set of

contiguous locations whose addresses range from zero to a maximum

dependent upon the capacity of the particular installation. In a system with

the greatest possible capacity, the largest address is octal 777777, decimal

262,143. (Addresses are always in octal notation unless otherwise specified.)

But the whole memory would usually be made up of a number of core mem-

ories each having a capacity of 8192 or 16,384 words. Hence a single 18-bit

address actually selects a particular memory and a specific location within it.

For an 8K memory the high order five address bits select the memory, the

remaining thirteen bits address a single location in it; selecting a 16K

memory takes four bits, leaving fourteen for the location. The times given

above assume the addressed memory is idle when access is requested. To

avoid waiting for a previously requested memory cycle to end, the program

can make consecutive requests to different memories by taking instructions

from one memory and data from another. The hardware also allows pairs

of memories to be interleaved in such a way that consecutive addresses

actually alternate between the two memories in the pair (thus increasing the

probability that consecutive references are to different memories). A‘ppro-

priate switch settings at the memories interchange the least significant

address bits in the memory and location parts, so that in any two memories

numbered n and n+ 1 where n is even, all even addresses are locations in the

first memoty, all odd addresses are locations in the second. Hence memories

0 and 1 can be interleaved as can 6 and 7, but not 3 and 4 or 5 and 7.

Memory Allocation. The use of certain memory locations is defined by

the hardware.

0 Holds a pointer word during a bootstrap readin

=I 7/ Can be addressed as accumulators

1-17 Can be addressed as index registers

40-41 Trap for unimplemented user operations (UUOs)

42-57 Priority interrupt locations :

60-61 Trap for remaining unimplemented operations: these include

the unassigned instruction codes that are reserved for future

use, and also the byte manipulation and floating point instruc-

tions when the hardware for them is not installed

140-161 Allocated to second processor if connected (same use as 40-61

for first processor)

A

1-9

*Numbers in parentheses are
the longer times required in
a multiprocessor system.

All information given in this
manual about memory loca-
tions 40-61 applies instead
to locations 140-161 for pro-
gramming a second central
processor connected to the
same memory.

The initial control word

address for the DF10 Data

Channel must be less than

1000.

AUGUST 1969

The assembler translates

every statement into a 36-bit

word, placing Os in all bits
whose values are unspecified.

16

INTRODUCTION ~ §1.4

) 1.4 PROGRAMMING CONVENTIONS

The computer has five instruction classes: data transmission, logical, arith-
metic, program control and in-out. The instructions in the in-out class con-
trol the peripheral equipment, and also control the priority interrupt and
time sharing, control and read the processor flags, and communicate with the
console. The next chapter describes all instructions mentioned above,
presents a general description of input-output, and describes the effects of
the in-out instructions on the processor, priority interrupt and time share
hardware. Effects of in-out instructions on particular peripheral devices are
discussed with the devices.

The Macro—10 assembly program recognizes a number of mnemonics and
other initial symbols that facilitate constructing complete instruction words
and organizing them into a program. In particular there are mnemonics for
the instruction codes (Appendix A), which are six bits in in-out instructions,
otherwise nine or thirteen bits. Eg the mnemonic

MOVNS

assembles as 213000 000000, and

MOVNS 2570
«4

assembles as 213000 002570. This latter word, when executed as an instruc-
tion, produces the twos complement negative of the word in memory loca-
tion 2570.

NotTE

Throughout this manual all numbers representing instruction words,
register contents, codes and addresses are always octal, and any num-
bers appearing in program examples are octal unless otherwise indi-
cated. On the other hand, the ordinary use of numbers in the text to
count steps in an operation or to specify word or byte lengths, bit
positions, exponents, etc employs standard decimal notation.

The initial symbol @ preceding a memory address places a 1 in bit 13 to
produce indirect addressing. The example given above uses direct addressing,
but ;

\

MOVNS @2570

assembles as 213020 002570, and produces indirect addressing. Placing the
number of an index register (1-17) in parentheses following the memory
address causes modification of the address by the contents of the specified
register. Hence

MOVNS @2570(12)

which. assembles as 213032 002570, produces indexing using index register
12, and the processor then uses the modified address to continue the effec-
tive address calculation.

An accumulator address (0-17) precedes the memory address part (if any)

17

§1.4 PROGRAMMING CONVENTIONS

and is terminated by acomma. Thus

MOVNS 4,@2570(12)

assembles as 213232 002570, which negates the word in location E and

stores the result in both E and in accumulator 4. The same procedure may

be used to place Is in bits 9-12 when these are used for something other

than addressing an accumulator, but mnemonics are available for this pur-

pose.

The device code in an in-out instruction is given in the same manner as an

accumulator address (terminated by a comma and preceding the address

part), but the number given must correspond to the octal digits in the word

(000-774). Mnemonics are however available for all standard device codes.

To control the priority interrupt system whose code is 004, one may give

CONO 4,1302

which assembles as 700600 001302, or equivalently

CONO PI, 1302

The programming examples in this manual use the following addressing

conventions: ;

A colon following a symbol indicates that it isa symbolic location name.

A: ADD 6,5704

indicates that the location that contains ADD 6,5704 may be addressed sym-

bolically as A.

The period represents the current address, eg

ADD Saar

is equivalent to

A: ADD 5,A+2

Square brackets specify the contents 3f a location, leaving the address of

the location implicit but unspecified. Eg

"ADD 12,[7256004]

and

ADD 12,A

A: 7256004

are equivalent. =

Anything written at the right of a semicolon is commentary that explains

the program but is not part of it.

AUGUST 1969

19

2

Central Processor

This chapter describes all PDP-10 instructions but does not discuss the

effects of those in-out instructions that address specific peripheral devices.

In the description of each instruction, the mnemonic and name are at the

top, the format is in a box below them. The mnemonic assembles to the

word in the box, where bits in those parts of the word represented by letters

assemble as Os. The letters indicate portions that must be added to the mne-

monic to produce a complete instruction word.

For many of the non-IO instructions, a description applies not to a unique

instruction with a single code in bits O—8, but rather to an instruction set

defined as a basic instruction that can be executed in a number of modes.

These modes define properties subsidiary to the basic operation; eg in data

_ transmission the mode specifies which of the locations addressed by the in-

struction is the source and which the destination of the data, in test instruc-

tions it specifies the condition that must be satisfied for a jump or skip to

take place. The mnemonic given at the top is for the basic mode; mnemonics

for the other forms of the instruction are produced by appending letters

directly to the basic mnemonic. Following the description is a table giving

the mnemonics and octal codes (bits 0-8) for the various modes.

The processor execution time for each instruction is also given at the top

unless the time differs from one mode to another. The time listed is that

required for direct addressing without indexing (ie with no effective address

calculation), assuming the instruction and location EF are both in the same

1.00 microsecond core memory, and that an accumulator is addressed only

if necessary and is in fast memory. The time that can be saved (if any) by

interleaving or keeping instructions and operands in different memories is

indicated either with the description or with the discussion of the modes

preceding a group of instructions. To determine the exact time required for

an instruction under any circumstances, refer to the timing chart in

Appendix C.

In a description E refers to the effective address, half word operand, mask,

conditions, shift number or scale factor calculated from the /, X and Y parts

of the instruction word. In an instruction that ordinarily references mem-

ory, a reference to E as the source of information means that the instruction

retrieves the word contained in location £; as a destination it means the in-

struction stores a word in location FE. In the immediate mode of these

instructions, the effective half word operand is usually treated as a full word

that contains £ in one half and zero in the other, and is represented either as

0, E or E,0 depending upon whether E£ is in the right or left half.

2-1

Letters representing modes
are suffixes, which produce
new mnemonics that are rec-
ognized as distinct symbols
by the assembler.

The times listed should be re-

garded as good approxima-
tions. For more exact times

with the conditions given here
(ie 1.00 microsecond core,
etc) add 60 nanoseconds to
the listed time, plus an addi-

tional 30 nanoseconds for
each core memory access for
retrieval of an operand and
another 30 nanoseconds if

the instruction does not write

a result in core.

AUGUST 1969

20

CENTRAL PROCESSOR §2.1

Most of the non-IO instructions can address an accumulator, and in the

box showing the format this address is represented by A; in the description,

“AC” refers to the accumulator addressed by A. “AC left” and “AC right”

refer to the two halves of AC. If an instruction uses two accumulators, these

have addresses .A and A+], where the second address is 0 if A is 17. In some

cases an instruction uses an accumulator only if A is nonzero: a:zero address

in bits 9-12 specifies no accumulator.

It is assumed throughout that time sharing is not in effect, and the pro-

gram is unrestricted. For completeness, however, the effects of restrictions

on particular instructions are noted; and execution times are given both for

unrestricted operation and including relocation in a user program (the latter

time is given in parentheses). §2.15 lists all restrictions on user programs

and explains the special effects produced by certain instructions when exe-

cuted under control of the monitor while the processor is in user mode.

Some simple examples are included with the instruction descriptions, but

more complex examples using a variety of instructions are given in § 2.11.

2.1 HALF WORD DATA TRANSMISSION

These instructions move a half word and may modify the contents of the

other half of the destination location. There are sixteen instructions deter-

mined by which half of the source word is moved to which half of the des-

tination, and by which of four possible operations is performed on the other

half of the destination. The basic mnemonics are three letters that indicate

the transfer

HLL Left half of source to left half of destination

HRL Right half of source to left half of destination

HRR Right half ofsource to right half of destination

HLR Left half of source to right half of destination

plus a fourth, if necessary, to indicate the operation.

Operation Suffix Effect on Other Half of Destination

Do nothing None

Zeros ZL; Places Os in all bits of the other half

Ones O Places 1s in all bits of the other half

E Extend Places the sign (the leftmost bit) of

the half word moved in all bits of the
other half. This action extends a right

half word number into a full word

number but is valid arithmetically
only for positive left half word num-

. bers — the right extension of a number

requires Os regardless of sign (hence
the Zeros operation should be used to
extend a left half word number).

21

§2.1 HALF WORD DATA TRANSMISSION

An additional letter may be appended to indicate the mode, which deter-

mines the source and destination of the half word moved.

Mode Suffix Source Destination

Basic E AC

Immediate al The word 0,£ AE

Memory M AC E

Self S E E, but also AC
if A is nonzero

Note that selecting the left half of the source in immediate mode merely

clears the selected half of the destination.

HLL Half Word Left to Left

500
0 67 .89 121314 1718 35

Move the left half of the source word specified by M to the left half of the

specified destination. The source and the destination right half are un-

affected; the original contents of the destination are lost.

HLL Half Left to Left 500 2.35 (2.57) us

HLLI Half Left to Left Immediate 501 1.50 (1.61) us

HLLM Half Left to Left Memory 502 2.90 (3.01) us

HLLS Half Left to Left Self 503 2.76 (2.87) us

HLLZ Half Word Left to Left, Zeros

9 0 Ones) 1213 14 1718 35

Move the left half of the source word specified by M to the left half of the

specified destination, and clear the destination right half. The source is un-

affected, the original contents of the destination are lost.

HLLZ Half Left to Left, Zeros 510

; 2.21 (2.43) us

HLLZI Half Left to Left, Zeros, Immediate SLI

1.36 (1.47) us

HLLZM Half Left to Left, Zeros, Memory 512

2.47 (2.58) us

HLLZS Half Left to Left, Zeros, Self Syl}
2.76 (2.87) us

2-3

Keeping instructions and op-
erands in different memories
saves .20 (.09) us in self
mode; in memory mode the

same saving results if no ac-
tion is taken on the other
half, otherwise .47 (.36) us

is saved.
When £ addresses a fast

memory location, a half word
transfer takes .34 ws less in

basic mode, either: .46 (.35)
or .54 (.43) us less in memory
mode depending respectively
on whether or not any action
is taken on the other half,

and .54 (.43) us less in self
mode.

HLLI merely clears AC left.
If A is zero, HLLS is a no-op,

otherwise it is equivalent to
HLL.

HLLZI merely clears AC. If A
is zero, HLLZS merely clears

the right half of location 2.

HLLOI sets AC to all Os in

the left half, all ls in the

right.

HLLEI is equivalent to
HLLZI (it merely clears AC).

22

CENTRAL PROCESSOR §2.1

HLLO Half Word Left to Left, Ones

Os20 ol Mie 4- uls x ees |
67 0 89 121314 1718 35

Move the left half of the source word specified by M to the left half of the

specified destination, and set the destination right half to all 1s. The source

is unaffected, the original contents of the destination are lost.

HLLO Half Left to Left, Ones 520

2.21 (2.43) us

HLLOI Half Left to Left, Ones, Immediate SA

1.36 (1.47) us

HLLOM Half Left to Left, Ones; Memory 522

2.47 (2.58) us

HLLOS ‘Half Left to Left, Ones, Self 523

2.76 (2.87) us

HLLE Half Word Left to Left, Extend-

pe [a] Aes oa Y eed
89 121314 1718 351%

Move the left half of the source word specified by M to the left half of the

specified destination, and make all bits in the destination right half equal to

bit O of the source. The source is unaffected, the original contents of the
destination are lost.

HLLE Half Left to Left, Extend 3 530

2.21 (2.43) us

HLLEI Half Left to Left, Extend, Immediate 531
1.36 (1.47) us

HLLEM Half Left to Left, Extend, Memory Dee
: j 2.47 (2.58) ps

HLLES Half Left to Left, Extend, Self 533
2.76 (2.87) qs

HRL Half Word Right to Left

pues | a al Sex y
0 67 ~89 12 13 14 1718 35

Move the right half of the source word specified by / to the left half of the

specified destination. The source and the destination right half are unaf-

fected; the original contents of the destination left half are lost.

HRL Half Right to Left 504 2.70 (2.92) ps

HRLI Half Right to Left Immediate 505 1.85 (1.96) us

23

§2.1 HALF WORD DATA TRANSMISSION

HRLM Half Right to Left Memory 506 2.90 (3.01) us

HRLS Half Right to Left Self 507 2.76 (2.87) us

HBEZe Half Word Right to Left, Zeros

514 |m| A ie Y
0 67 89 121314 1718 © 35

Move the right half of the source word specified by M to the left half of the

specified destination, and clear the destination right half. The source is un-

affected, the original contents of the destination are lost.

HRLZ Half Right to Left, Zeros 514

2.21 (2.43) us

HRLZI Half Right to Left, Zeros, Immediate 515

1.36 (1.47) us

HRLZM Half Right to Left, Zeros, Memory 516

2.47 (2.58) us

HRLZS Half Right to Left, Zeros, Self 517

2.76 (2.87) us

HRLO Half Word Right to Left, Ones

or eae ae Y
0 C789 1213 14 1718 35

Move the right half of the source word specified by M to the left half of the

specified destination, and set the destination right half to all 1s. The source

is unaffected, the original contents of the destination are lost.

HRLO Half Right to Left, Ones 524
2.21 (2.43) us

HRLOI Half Right to Left, Ones, Immediate 525
1.36 (1.47) ps

HRLOM Half Right to Left, Ones, Memory ° 526
2.47 (2.58) us

HRLOS Half Right to Left, Ones, Self Sait

2.76 (2.87) ms

HRLE Half Word Right to Left, Extend

534
0 rg sen) 121314 1718 35

Move the right half of the source word specified by M to the left half of the

y

2-5

HRLZI loads the word £,0

into AC.

2-6

If A is zero, HRRS is a no-op;
otherwise it is equivalent to
HRR.

HRRZI loads the word 0,£

into AC. If A is zero, HRRZS

merely clears the left half of
location E.

24

CENTRAL PROCESSOR §2.1

specified destination, and make all bits in the destination right half equal to

bit 18 of the source. The source is unaffected, the original contents of the

destination are lost.

HRLE Half Right to Left, Extend : 534
2.21 (2.43) us

HRLEI Half Right to Left, Extend, Immediate 535
1.36 (1.47) us

HRLEM Half Right to Left, Extend, Memory 536
2.47 (2.58) us

HRLES Half Right to Left, Extend, Self 537
2.76 (2.87) us

HRR Half Word Right to Right

540 M A iE X ¥;

0 67 89 121314 1718 é 35

Move the right half of the source word specified by M to the right half of the

specified destination. The source and the destination left half are unaffected,

the original contents of the destination right half are lost.

HRR Half Right to Right 540 DBS ou its

HRRI Half Right to Right Immediate 541 1.50 (1.61) us

HRRM Half Right to Right Memory 542 2.90 (3.01) us

HRRS Half Right to Right Self 543 2.76 (2.87) ps

HRRZ Half Word Right to Right, Zeros

550° ees dl Y
0 67 89 121314 1718 hy.

Move the right half of the source word specified by M to the right half of the

specified destination, and clear the destination left half. The source is unaf-

fected, the original contents of the destination are lost.

HRRZ Half Right to Right, Zeros 550
2.21 (2.43) us

HRRZI Half Right to Right, Zeros, Immediate Soil

1.36 (1.47) us

HRRZM Half Right to Right, Zeros, Memory 55)
‘ 2.47 (2.58) ps

HRRZS Half Right to Right, Zeros, Self 553
2.76 (2.87) ps

25

§2.1 HALF WORD DATA TRANSMISSION

HRRO Half Word Right to Right, Ones

560 |mM|_A x
0 67 89 121314 1718 35

Move the right half of the source word specified by M to the right half of the

specified destination, and set the destination left half to all 1s. The source is

unaffected, the original contents of the destination are lost.

HRRO Half Right to Right, Ones 560

2.21 (2.43) us

HRROI Half Right to Right, Ones, Immediate 561

1.36 (1.47) us

HRROM Half Right to Right, Ones, Memory 562

2.47 (2.58) ps

HRROS Half Right to Right, Ones, Self 563

2.76 (2.87) ps

HRRE Half Word Right to Right, Extend

570
0 67 89 121314 1718 35

Move the right half of the source word specified by M to the right half of the

specified destination, and make all bits in the destination left half equal to

bit 18 of the source. The source is unaffected, the original contents of the

destination are lost.

HRRE Half Right to Right, Extend 570
2.21 (2.43) us

HRREI Half Right to Right, Extend, Immediate 574
1.36 (1.47) ps

HRREM Half Right to Right, Extend, Memory SP)

2.47 (2.58) ps

HRRES Half Right to Right, Extend, Self 573

2.76 (2.87) us

HLR Half Word Left to Right

544 Mele AS ilies rane
0 67 89 121314 1718 35

Move the left half of the source word specified by M to the right half of the

specified destination. The source and the destination left half are unaffected;

the original contents of the destination right half are lost.

HLR Half Left to Right 544 2.70 (2.92) ps

HLRI Half Left to Right Immediate 545 1.85 (1.96) ws

2-7

HLRI merely clears AC right.

2-8

HLRZI merely clears AC and
is thus equivalent to HLLZI.

HLROI sets AC to all Is in

the left half, all Os in the

right.

26

CENTRAL PROCESSOR. Sa erl

HLRM Half Left to Right Memory 546 2.90 (3.01) us

HLRS Half Left to Right Self 547 : 2.76 (2.87) us

HLRZ ~‘ Half Word Left to Right, Zeros

(os 0 oe
0 (seq fe Fok) 121314 1718 35

Move the left half of the source word specified by / to the right half of the

specified destination, and clear the destination left half. The source is un-

affected, the original contents of the destination are lost.

HLRZ Half Left to Right, Zeros 554
2.21 (2.43) ps

HLRZI Half Left to Right, Zeros, Immediate 350
1.36 (1.47) us

HLRZM Half Left to Right, Zeros, Memory 556
2:47 (2.58) us

HLRZS Half Left to Right, Zeros, Self 557
2.76 (2.87) us

HLRO Half Word Left to Right, Ones

564 |M| A |i | 4
0 67 89 12 13 14 1718 35

Move the left half of the source word specified by M to the right half of the

specified destination, and set the destination left half to all 1s. The source is

unaffected, the original contents of the destination are lost.

HLRO Half Left to Right, Ones 564
: 2.21 (2.43) us

HLROI Half Left to Right, Ones, Immediate 565

1.36 (1.47) us

HLROM Half Left to Right, Ones, Memory 566

F 2.47 (2.58) us

HLROS Half Left to Right, Ones, Self 567

2.76 (2.87) us

HLRE Half Word Left to Right, Extend

574 | M| iA x Y
0) (gf tssbe) 1213 14 1718 35

Move the left half of the source word specified by M to the right half of the

specified destination, and make all bits in the destination left half equal to

27

§2.2 FULL WORD DATA TRANSMISSION

bit O of the source. The source is unaffected, the original contents of the

destination are lost.

HLRE Half Left to Right, Extend ; 574

2.21 (2.43) us

HLREI Half Left to Right, Extend, Immediate 575

: 1.36 (1.47) us

HLREM Half Left to Right, Extend, Memory 576

2.47 (2.58) pus

HLRES Half Left to Right, Extend, Self Si

2.76 (2.87) us = ’

Examp_es. The half word transmission instructions are very useful for

handling addresses, and they provide a convenient means of setting up an

accumulator whose right half is to be used for indexing while a control count

is kept in the left half. Eg this pair of instructions loads the 18-bit numbers

M and N into the left and right halves respectively of an accumulator that is

addressed symbolically as XR.

HRLZI XR,M
HRRI XR,N

Of course the source program must somewhere define the value of the

symbol XR as an octal number between 1 and 17.

Suppose that at some point we wish to use the two halves of XR inde-

pendently as operands (taken as 18-bit positive numbers) for computations.

We can begin by moving XR left to the right half of another accumulator

AC and leaving the contents of XR right alone in XR.

HLRZM XR,AC

HLLI XR, ;Clear XR left

2.2 EULL WORD DATA TRANSMISSION

These are the instructions whose basic purpose is to move one or more full

words of data from one place to another, usually from an accumulator to a

memory location or vice versa. In a few cases instructions may perform

minor arithmetic operations, such as forming the negative or the magnitude

of the word being processed.

EXCH Exchange

ica
89

Move the contents of location E to AC and move AC to location E.

2.90 (3.01) us

Pee aes Y |
1213 14 1718 35

5
HLREI is equivalent te
HLRZI (it merely clears AC).

It is not necessary to clear the

other half of XR when load-
ing the first half word. But
any instruction that modifies
the other half is faster than
the corresponding instruction
that does not, as the latter

must fetch the destination
word in order to save half of
it. (The difference does not
apply to self mode, for here
the source and destination are

the same.)

Keeping instructions and op-

erands in different memories
saves .20 (.09) us.

{

2-10

The time depends on the
- number and type of trans-

fers. Assuming at least one
word is moved a BLT takes
.97 (1.08) ps plus 2.26 (2.48)
ws per transfer from fast

memory to core and 2.61
- (2.83) gs per transfer from
core to fast memory or from
one core location to another.

28

CENTRAL PROCESSOR §2.2

BLT Block Transfer

0) 89 1213 14 1718 35

Beginning at the location addressed by AC left, move words to another area

of memory beginning at the location addressed by AC right. Continue until

a word is moved to location E. The total number of words in the block is

thus E-ACp + 1.

CAUTION

Priority interrupts are allowed during the execution of this instruction,

following the processing of each word. If an interrupt occurs, the BLT

stores the source and destination addresses for the next word in AC, so

when the processor restarts upon the return to the interrupted program,

it actually resumes at the correct point within the BLT. Therefore,

unless the interrupt system is inactive, A and X must not address the

same register as this would produce a different effective address calcula-

tion upon resumption should an interrupt occur; and the program must

not attempt to load an accumulator addressed either by A or X unless it

is the final location being loaded. Furthermore, the program cannot

assume that AC is the same after the BLT as it was before.

Examp.es. This pair of instructions loads the accumulators from memory

locations 2000-2017.

HRLZI 17,2000 ;Put 2000 000000 in AC 17
BLT Ley sale?

But to transfer the block in the opposite direction requires that one accumu-

lator first be made available to the BLT:

MOVEM 17,2017 ;Move AC 17 to 2017 in memory

MOVEI 17,2000 ;Move the number 2000 to AC 17

BLT 17,2016

If at the time the accumulators were loaded the program had placed in loca-

tion 2017 the control word necessary for storing them back in the same

block (2000), the three instructions above could be replaced by

EXCH 17,2017
BLT 17,2016

Move Instructions

Each of these instructions moves a single word, which may be changed in the

process (eg its two halves may be swapped). There are four instructions,

29

§2.2 FULL WORD DATA TRANSMISSION

each with four modes that determine the source and destination of the word

moved.

Mode Suffix Source Destination

Basic E AC

Immediate I The word 0,£ AC

Memory M AC E

Self S E E, but also AC
if A is nonzero

MOVE Move

(Ee eee Se
(Qik Ase) 121314 1718 35

Move one word from the source to the destination specified by M. The

source is unaffected, the original contents of the destination are lost.

MOVE Move 200 2.21 (2.43) us

MOVEI Move Immediate 201 1.36 (1.47) us

MOVEM Move to Memory 202 2.47 (2.58) pus

MOVES Move to Self 203 2.76 (2.87) us

MOVS Move Swapped

Loe 08 lau A Y
67 12 13 14 1718 35

Interchange the left and right halves of the word from the source specified

by M and move it to the specified destination. The source is unaffected, the

original contents of the destination are lost.

MOVS Move Swapped 204 2.21 (2.43) us

MOVSI Move Swapped Immediate 205 1.36 (1.47) us

MOVSM Move Swapped to Memory 206 2.47 (2.58) us

MOVSS Move Swapped to Self 207 2.76 (2.87) us

MOVN Move Negative

A

A

PTO Se eae ee
1213 14 1718 35

Negate the word from the source specified by M and move it to the specified

destination. If the source word is fixed point —2*° (400000 000000) set the
®

2-11

Keeping instructions and op-
erands in different memories

saves .47 (.36) us in memory
mode, .20 (.09) us in self

mode.
When £ addresses a fast

memory location, a move in-

struction takes .34 us less in

basic mode, .46 (.35) us less
in memory mode, .54 (.43) us
less in self mode.

MOVEI loads the word 0,£
into AC and is thus equiva-
lent to HRRZI. If A is zero,

MOVES is a no-op; otherwise

it is equivalent to MOVE.

Swapping halves in immediate
mode loads the word £,0 into
AC. MOVSI is thus equivalent
to HRLZI.

MAY 1968

2-12

MOVNI loads AC with the
negative of the word0,Hand 4

can set no flags.

The word 0,£ is equivalent

to its magnitude, so MOVMI
is equivalent to MOVEI.

MAY 1968

A

30

CENTRAL PROCESSOR §2.2

Overflow and Carry 1 flags. (Negating the equivalent floating point —1 X 2127

sets the flags, but this is not a normalized number.) If the source word is

zero, set Carry 0 and Carry |. The source is unaffected, the original contents

of the destination are lost.

MOVN Move Negative 210 2.39 (2.61) us

MOVNI Move Negative Immediate 211 1.54 (1.65) us

MOVNM ~* Move Negative to Memory 212 2.65 (2.76). us

MOVNS Move Negative to Self 213 2.94 (3.05) us

MOVM Move Magnitude

0 67 89 121314 1718 35

Take the magnitude of the word contained in the source specified by M and

move it to the specified destination. If the source word is fixed point ~2%
(400000 000000) set the Overflow and Carry | flags. (Negating the equiva-

lent floating pomt —1 X 2!%7 sets the flags, but this is not a normalized num-
ber.) The source is unaffected, the original contents of the destination are

lost.

MOVM Move Magnitude 214 2.39 (2.61) us

MOVMI Move Magnitude Immediate 215 1.54 (1.65) us

MOVMM Move Magnitude to Memory 216 2.65 (2.76) Ms

MOVMS Move Magnitude to Self 217 2.94 (3.05) us

An example at the end of the preceding section demonstrates the use of a

pair of immediate-mode half word transfers to load an address and a control

count into an accumulator. The same result can be attained by a single move

instruction. This saves time but still requires two locations. Eg if the num-

ber 200 001400 is stored in location M, the instruction

MOVE AC,M

loads 200 into AC left and 1400 into AC right. If the same word, or its nega-

tive, or with its halves swapped, must be loaded on several occasions, then

both time and space can be saved as each transfer requires only a single move

instruction that references M.

Pushdown List

These two instructions insert and remove full words in a pushdown list. The

address of the top item in the list is kept in the right half of a pointer in AC,

and the program can keep a control count in the left half. There are also

31

§2.2 FULL WORD DATA TRANSMISSION

two subroutine-calling instructions that utilize a pushdown list of jump ad-

dresses [§ 2.9].

PUSH Push Down 3.85 (4.07) us

261 ve aiee as Y =|
0 89 121314 1718 35

Add 1000001, to AC to increment both halves by one, then move the con-

tents of location E to the location now addressed by AC right. If the addi-

tion causes the count in AC left to reach zero, set the Pushdown Overflow
flag. The contents of E are unaffected, the original contents of the location

added to the list are lost.

POP Pop Up 3.93 (4.15) us

ees Pais shed) y
0 89 121314 1718 35

Move the contents of the location addressed by AC right to location £, then

subtract 1 000001, from AC to decrement both halves by one. If the sub-

traction causes the count in AC left to reach —1, set the Pushdown Overflow

flag. The original contents of E are lost.

Because of the order in which the operands are stored, the instruction

POP AC,AC would load the contents of the location addressed by AC right

into AC on top of the pushdown count, destroying it.

The incrementing and decrementing of both halves of AC simultaneously

is effected by adding and subtracting 1 000001,. Hence a count of —2 in AC

left is increased to zero if 2! — 1 is incremented in AC right, and conversely,

_ Lin AC left is decreased to —1 if zero is decremented in AC right.

A pushdown list is simply a set of consecutive memory locations from

which words are read in the order opposite that in which they are written.

In more general terms, it is any list in which the only item that can be re-

moved at any given time is the last item in the list. This is usually referred

to as “‘first in, last out” or “‘last in, first out”. Suppose locations a, 5, c, ...

are set aside for a pushdown list. We can deposit data in a, b, c, d, then read

d, then write in d and e, then read e, d, c, etc.

Note that by using the Pushdown Overflow flag and a control count in AC

left, the programmer can set a limit to the size of the list by starting the

count negative, or he can prevent the program from extracting more words

than there are in the list by starting the count at zero, but he cannot do both

at once.

2-13

Keeping instructions and the
pushdown list in different
memories saves .47 (.36) us.

When the word added to
the list is from fast memory,

PUSH takes .34 us less than

the time given.

When the word taken from
the list is placed in fast mem-
ory, POP takes .46 (.35) ps
less than the time given.

2-14

32

CENTRAL PROCESSOR §2.2

Pushdown storage is very convenient for a program that can use data

stored in this manner as the pointer is initialized only once and only one

accumulator is required for the most complex pushdown operations. To ini-

tialize a pointer P for a list to be kept in a block of memory beginning at

BLIST and to contain at most N items, the following suffices.

MOVSI P,-N

HRRI PSBLIST=1

Of course the programmer must define BLIST elsewhere and set aside loca-

tions BLIST to BLIST+ N-1. Using Macro to full advantage one could
instead give :

MOVE P,[IOWD N,BLIST]

where the pseudoinstruction

IOWD J,K

is replaced by a word containing —J in the left half and K — 1 in the right.

Elsewhere there would appear

BLIST: BLOCK WN

which defines BLIST as the current contents of the location counter and sets

aside the N locations beginning at that point.

In the PDP-10 the pushdown list is kept in a random access core mem-

ory, so the restrictions on order of entry and removal of items actually apply

only to the standard addressing by the pointer in pushdown instructions —

other addressing methods can reference any item at any time. The most

convenient way to do this is to use the right half of the pointer as an index

register. To move the last entry to accumulator AC we need simply give

MOVE AC,(P)

Of course this does not shorten the list — the word moved remains the last

item in it.

One usually regards an index register as supplying an additive factor for a

basic address contained in an instruction word, but the index register can

supply the basic address and the instruction the additive factor. Thus we can

retrieve the next to last item by giving

MOVE AC,~-1(P)

and so forth. Similarly

PUSH Pe=3(P)

adds the third to last item to the end of the list;

POP Pea)

removes the last item and inserts it in place of the next to last item in the

shortened list.

33

§2.3 BYTE MANIPULATION.

2.3 BYTE MANIPULATION

This set of five instructions allows the programmer to pack or unpack bytes

of any length anywhere within a word. Movement of a byte is always

between AC and a memory location: a deposit instruction takes a byte from

the right end of AC and inserts it at any desired position in the memory

location; a load instruction takes a byte from any position in the memory

location and places it right-justified in AC.

The byte manipulation instructions have the standard memory reference

format, but the effective address EF is used to retrieve a pointer, which is used

in turn to locate the byte or the place that will receive it. The pointer has

the format

0 56 111213 14 1718 35

where S is the size of the byte as a number of bits, and P is its position as the

number of bits remaining at the right of the byte in the word (eg if P is 3 the

rightmost bit of the byte is bit 32 of the word). The rest of the pointer is

interpreted in the same way as in an instruction: /, X and Y are used to cal-

culate the address of the location that is the source or destination of the

byte. Thus the pointer aims at a word whose format is

aS eee 7/7) oe
0 35-P-S+1 BIA aka 35

where the shaded area is the byte.

To facilitate processing a series of bytes, several of the byte instructions

increment the pointer, ie modify it so that it points to the next byte position

in a set of memory locations. Bytes are processed from left to right in a

word, so incrementing merely replaces the current value of P by P —S, unless

there is insufficient space in the present location for another byte of the

specified size (P—.S <0). In this case Y is increased by one to point to the

next consecutive location, and P is set to 36 —S to point to the first byte at

the left in the new location.

CAUTION

Do not allow Y to reach maximum value. The whole pointer is incre-

mented, so if Y is 2'8—1 it becomes zero and X is also incremented.

The address calculation for the pointer uses the original X, but if a pri-

ority interrupt should occur before the calculation is complete, the in-

cremented X is used when the instruction is repeated.

Among these five instructions one simply increments the pointer, the

others load or deposit a byte with or without incrementing. Brackets

enclose the additional time required when incrementing overflows the word

boundary.

2-15

2-16

Keeping the pointer in fast
memory saves .34 ys. Taking
bytes from a fast memory
location saves another .34 us.

Keeping the pointer in fast
memory saves .34 us. Keeping
instructions and the packing
area in different memories
saves .20 (.09) ws. Packing
bytes in fast memory saves
54 (.43) us.

Keeping the pointer in fast
memory saves .54 (.43) us;
keeping it in a different mem-
ory from the instruction saves
.20 (.09) ps

The A portion of this instruc-
tion is ignored.

Keeping the pointer in fast
memory saves .34 us. Taking
bytes from a fast memory
location saves another .34 us.

Keeping the pointer in fast
memory saves .34 us. Keeping
instructions and the packing
area in different memories

saves .20 (.09) ys. Packing
bytes in fast memory saves
54 (.43) us.

34

CENTRAL PROCESSOR §2.3

LDB Load Byte 4.02 (4.35) + .15(P +S) [+.26] us -

135 A ok Y
89 121314 1718 35

Retrieve a byte of S bits from the location and position specified by the

pointer contained in location £, load it into the right end of AC, and clear

the remaining AC bits. The location containing the byte is unaffected, the

original contents of AC are lost.

4.87 (5.20) + .15(P + S) [+.26] us DPB : Deposit Byte

y
0 89 121314 1718 35

Deposit the right S bits of AC into the location and position specified by the

pointer contained in location E. The original contents of the bits that receive

the byte are lost, AC and the remaining bits of the deposit location are

unaffected.

BP Increment Byte Pointer 2.87 (2.98) [+.26] us

89 1213 14 1718 3 o nn 1

Increment the byte pointer in location E as explained above.

ILDB Increment Pointer and Load Byte

4.24 (4.57) + .15(P + S) [+.26] us

89 121314 1718 35 °

Increment the byte pointer in location E as explained above. Then retrieve a

byte of S bits from the location and position specified by the newly incre-

mented pointer, load it into the right end of AC, and clear the remaining AC

bits. The location containing the byte is unaffected, the original contents of

AC are lost.

IDPB Increment Pointer and Deposit Byte

552. 9;(eo lh) CPS) let 2s

136 boar | Y
89 121314 1718 ; Do)

i
o

Increment the byte pointer in location E as explained above. Then deposit

35

§2.4 LOGIC

the right S bits of AC into the location and position specified by the newly

incremented pointer. The original contents of the bits that receive the byte
are lost, AC and the remaining bits of the deposit location are unaffected.

Note that in the pair of instructions that both increment the pointer and

process a byte, it is the modified pointer that determines the byte location

and position. Hence to unpack bytes from a block of memory, the program

should set up the pointer to point to a byte just before the first desired, and

then load them with a loop containing an ILDB. If the first byte is at the

left end of a word, this is most easily done by initializing the pointer with a

P of 36 (44;). Incrementing then replaces the 36 with 36 —S to point to the

first byte. At any time that the program might inspect the pointer during

execution of a series of ILDBs or IDPBs, it points to the last byte processed

(this may not be true when the pointer is tested from an interrupt routine

[§2.13]).

Special Considerations. If S is greater than P and also greater than 36,

incrementing produces a new P equal to 100—S rather than 86 —S. For

S > 36 the byte is at most the entire word; for P= 36 no byte is processed

(loading merely clears AC). If both P and S are less than 36 butiP +S > 36,

a byte of size 36 — P is loaded from position P, or the right 36 — P bits of the

byte are deposited in position P.

2.4 LOGIC

For logical operations the PDP—10 has instructions for shifting and rotating

as well as for performing the complete set of sixteen Boolean functions of

two variables (including those in which the result depends on only one or

neither variable). The Boolean functions operate bitwise on full words, so

each instruction actually performs thirty-six logical operations simultane-

ously. Thus in the anp function of two words, each bit of the result is the

AND of the corresponding bits of the operands. The table on page 2-23 lists

the bit configurations that result from the various operand configurations for

all instructions.

Each Boolean instruction has four modes that determine the source of the

non-AC operand, if any, and the destination of the result.

Source of non- Destination

Mode Suffix AC operand of result

Basic E AC

Immediate I The word 0,E AC

Memory M E E

Both B E AC and E

2-17

Keeping instructions and op-
erands in different memories
saves .47 (.36) us in memory

and both modes in the first
four of these instructions
(those that have no operand
or only an AC operand), .20
(.09) ps in memory and both
modes in the remaining
twelve (those that have a
memory or immediate op-
erand).°

2-18

A Boolean instruction in
which £ addresses a fast
memory location takes .46
(.35) ws less in memory or
both mode if it has no oper-
and or only an AC operand. ©
If it has a memory operand,
it takes .34 ys less in basic

mode, .54 (.43) us less in
memory or both mode.

A

SETZ and SETZI are equiva-
lent (both merely clear AC).
MAcRo also recognizes
CLEAR, CLEARI, CLEARM
and CLEARB as equivalent to
the set-to-zeros mnemonics.

SETO and SETOI are equiva-
lent.

SETA and SETAI are no-ops.
SETAM and SETAB are both
equivalent to MOVEM (all
move AC to location £),

36

CENTRAL PROCESSOR . §2.4

For an instruction without an operand (one: that merely clears a location or

sets it to all 1s) the modes differ only in the destination of the result, so

basic and immediate modes are equivalent. The same is true also of an

instruction that uses only an AC operand. When specified by the mode, the

result goes to the accumulator addressed by A, even when there is no AC
operand.

SETZ Set to Zeros

ete: TANS EES Y
67 121314 1718 35

Change the contents of the destination specified by M to all Os.

SETZ Set to Zeros 400 1.36 (1.47) us

SETZI Set to Zeros Immediate 401 1.36 (1.47) us

SETZM Set to Zeros Memory | 402 2.33 (2.44) us

SETZB Set to Zeros Both 403 2.33 (2.44) us

SETO Set to Ones

474 M AIRE Aap Y

0 67 89 121314 1718 35

Change the contents of the destination specified by M to all ls.

SETO Set to Ones 474 1.36 (1.47) us

SETOI Set to Ones Immediate 475: 1.36 (1.47) us

SETOM Set to Ones Memory 476 2.33 (2.44) us

SETOB Set to Ones Both 477 2.33 (2.44) us

SETA Set to AC

Aye oe ee
12 13 14 1718 35

Make the contents of the destination specified by M equal to AC.

Set to AC 424 SETA 1.50 (1.61) us

SETAI Set to AC Immediate 425 1.50 (1.61) us

SETAM Set to AC Memory 426 2.47 (2.58) us

SETAB Set to AC Both 427 2.47 (2.58) us

§2.4 LOGIC

SETCA Set to Complement of AC

rw e e |
67 121314 1718 35

Change the contents of the destination specified by M to the complement of

AC.

SETCA Set to Complement of AC 450
1.50 (1.61) ps

SETCAI Set to Complement of AC Immediate 451
1.50 (1.61) us

SETCAM Set to Complement of AC Memory 452
2.47 (2.58) us

SETCAB Set to Complement of AC Both 453
2.47 (2.58) us

SETM Set to Memory

ee ea ee ee
121314 1718 35

Make the contents of the destination specified by M equal to the specified

operand. :

SETM Set to Memory 414 2.21 (2.43) us

SETMI Set to Memory Immediate 415 1.36 (1.47) us

SETMM Set to Memory Memory 416 2.76 (2.87) us

SETMB Set to Memory Both 417 2.76 (2.87) us

SETCM Set to Complement of Memory

Eee ee es
121314 1718 35

Change the contents of the destination specified by M to the complement of

the specified operand.

SETCM Set to Complement of Memory 460
2.21 (2.43) us

SETCMI Set to Complement of Memory Immediate 461
1.36 (1.47) us

SETCMM Set to Complement of Memory Memory 462
2.76 (2.87) ps

SETCMB Set to Complement of Memory Both 463
2.76 (2.87) ps

SETCA and SETCAI are
equivalent (both complement
AC).

SETM and SETMB are equiv-
alent to MOVE. SETMI
moves the word 0,£ to AC

and is thus equivalent to
MOVEI. SETMM is a no-op
that references memory.

SETCMI moves the comple-
ment of the word 0,£ to AC.

SETCMM complements loca-
tion EF.

2-20

38

CENTRAL PROCESSOR §2.4

AND And with AC

eee y |
0 ‘ 121314 1718 35

Change the contents of the destination specified by M to the ann function of
the specified operand and AC.

AND And 404 2.35 (2.57) us

ANDI And Immediate 405 1.50 (1.61) us

ANDM And to Memory 406 2.90 (3.01) us

ANDB And to Both 407 2.90 (3.01) us

ANDCA And with Complement of AC

AO A ee
67 121314 1718 35

Change the contents of the destination specified by M to the ann function of

the specified operand and the complement of AC.

ANDCA And with Complement of AC 410

2.70 (2.92) ps

ANDCAI And with Complement of AC Immediate 411

1.85 (1.96) us

ANDCAM And with Complement of AC to Memory 412
3.52 (3.63) ys

ANDCAB And with Complement of AC to Both 413
3.52 (3.63) us

ANDCM And Complement of Memory with AC

er aie ae ie
121314 1718 35

Change the contents of the destination specified by M to the ann function of
the complement of the specified operand and AC.

ANDCM And Complement of Memory 420
2.35 (2.57) us

ANDCMI And Complement of Memory Immediate 421

1.50 (1.61) ps

ANDCMM And Complement of Memory to Memory 422

2.90 (3.01) us

ANDCMB And Complement of Memory to Both 423

2.90 (3.01) pus

§2.4 LOGIC

ANDCB And Complements of Both

ow ae (ee
0 OT 28.9) 121314 1718 35

Change the contents of the destination specified by M to the anp function of

the complements of both the specified operand and AC. The result is the

nor function of the operands.

ANDCB And Complements of Both ~ 440

2.70 (2.92) us

ANDCBI And Complements of Both Immediate 44]

1.85 (1.96) us

ANDCBM And Complements of Both to Memory 442

3.52 (3.63) us

ANDCBB And Complements of Both to Both 443

3.52 (3.63) us

10R Inclusive Or with AC

ae JED a Sess
67 121314 1718 35

Change the contents of the destination specified by M to the inclusive OR

function of the specified operand and AC.
\
IOR Inclusive Or 434 2.35 (2.57) us

IORI Inclusive Or Immediate 435 1.50 (1.61) us

IORM Inclusive Or to Memory 436 2.90 (3.01) us

1ORB Inclusive Or to Both 437 2.90 (3.01) us

ORCA Inclusive Or with Complement of AC

67 121314 1718 35

Change the contents of the destination specified by M to the inclusive oR

function of the specified operand and the complement of AG:

ORCA Or with Complement of AC 454

2.70 (2.92) us

ORCAI Or with Complement of AC Immediate 455
1.85 (1.96) us

ORCAM Or with Complement of AC to Memory 456
3.52 (3.63) us

ORCAB Or with Complement of AC to Both 457

: 3.52 (3.63) us

2-21

Macro also recognizes OR,

ORI, ORM and ORB as equiv-

alent to the inclusive OR mne-

monics.

40

CENTRAL PROCESSOR §2.4

ORCM Inclusive Or Complement of Memory with AC

ane wal aE x | y |
121314 1718 35

Change the contents of the destination specified by M to the inclusive or
function of the complement of the specified operand and AC.

ORCM Or Complement of Memory 464
2.35 (2.57) us

ORCMI Or Complement of Memory Immediate 465
1.50 (1.61) us

ORCMM Or Complement of Memory to Memory 466
2.90 (3.01) us

ORCMB Or Complement of Memory to Both 467
2.90 (3.01) ps

ORCB Inclusive Or Complements of Both

ee eae ee
1213 14 1718 35

Change the contents of the destination specified by M to the inclusive or °
function of the complements of both the specified operand and AC. The
result is the NAND function of the operands.

ORCB . OrComplements of Both 470
2.70 (2.92) us

ORCBI Or Complements of Both Immediate 471
1.85 (1.96) us

ORCBM Or Complements of Both to Memory 472
3.52 (3.63) us

ORCBB Or Complements of Both to Both 473
3.52 (3.63) us

XOR Exclusive Or with AC

eee eee ee
121314 1718 35

Change the contents of the destination specified by M to the exclusive or
function of the specified operand and AC.

XOR Exclusive Or 430 2.35 (2.57) us
XORI Exclusive Or Immediate 431 1.50 (1.61) us
XORM Exclusive Or to Memory 432 2.90 (3.01) us
XORB Exclusive Or to Both 433 2.90 (3.01) us

The original contents of the destination can be recovered except in XORB,
where both operands are replaced by the result. In the other three modes
the replaced operand is restored by repeating the instruction in the same
mode, ie by taking the exclusive or of the remaining operand and the result.

41

§2.4 LOGIC

EQv Equivalence with AC

eee Ue a
0 67, 8&9 121314 1718 35

Change the contents of the destination specified by M to the complement of

the exclusive or function of the specified operand and AC (the result has Is

wherever the corresponding bits of the operands are the same).

. EQV Equivalence 444 DB ot(2-D 1) HES

EQvl Equivalence Immediate 445 1.50 (1.61) us

EQVM Equivalence to Memory 446 2.90 (3.01) ws

EQVB Equivalence to Both 447 2.90 (3.01) us

The original contents of the destination can be recovered except in EQVB,

where both operands are replaced by the result. In the other three modes

the replaced operand is restored by repeating the instruction in the same

mode, ie by taking the equivalence function of the remaining operand and

the result. ;

For the four possible bit configurations of the two operands, the above

sixteen instructions produce the following results. In each case the result as

listed is equal to bits 3-6 of the instruction word.

AC Ole lee O tal

Mode Specified Operand 0 One| 1

SETZ OO OC

AND Op sO SO

ANDCA On =- Osea

SETM @ = -@) al 1

ANDCM (Detee|l): TatOhecs (0)

SETA Oseelee Opal

XOR Ot ies

IOR OR seel 1 1

ANDCB eo = Oe SOs (0)

EQV Cr Oa

SETCA TOS thes 0)

ORCA ORO 1

SETCM 1 Oe ©

ORCM 1 PSOE pall

ORCB 1 1 > (0)

SETO 1 1 1 1

2-23

LSH

LSHC

ROT

ROTC

ASH

ASHC

42

CENTRAL PROCESSOR §2.4

Shift and Rotate

The remaining logical instructions shift or rotate right or left the contents of
AC or the contents of two accumulators, A and A+1 (mod 20), concat-
enated into a 72-bit register with A on the left. The illustration below
shows the movement of information these instructions produce in the accu-

oO Ww a

[i.e en = ipeares o
0 35 0 35

A as. A+1
0 35 0 35

35

ACCUMULATOR BIT FLOW IN SHIFT AND ROTATE INSTRUCTIONS

43

§2.4 LOGIC

mulators. In a (logical) shift the contents of a register are moved bit-to-bit

with Os brought in at the end being vacated; information shifted out at the

other end is lost. [For a discussion of arithmetic shifting see §2.5.] In

rotation the contents are moved cyclically such that information rotated out

at one end is put in at the other. :

The number of places moved is specified by the result of the effective

address calculation taken as a signed number (in twos complement notation)

modulo 28 in magnitude. In other words the effective shift E is the number

composed of bit 18 (which is the sign) and bits 28-35 of the calculation

result. Hence the programmer may specify the shift directly in the instruc-

tion (perhaps indexed) or give an indirect address to be used in calculating

the shift. A positive E produces motion to the left, a negative E to the right;

maximum movement is 255 places.

LSH Logical Shift Left: 1.62 (1.73) + .15|E| us

Right: 1.46 (1.57) + .15|E| us

89 0 121314 1718 35

Shift AC the number of places specified by E. If E is positive, shift left

bringing Os into bit 35; data shifted out of bit 0 is lost. If Z is negative, shift

right bringing Os into bit 0; data shifted out of bit 35 is lost.

LSHC Logical Shift Combined Left: 2.00 (2.11) + .15|E| us

Right: 1.84 (1.95) + .15|E| us

°89 0 121314 1718 35

Concatenate accumulators A and A+1 with A on the left, and shift the

72-bit combination the number of places specified by E. If E is positive,

shift left bringing 0s into bit 71 (bit 35 of AC A+1); bit 36 is shifted into bit

35: data shifted out of bit 0 is lost. If E is negative, shift right bringing Os

into bit 0; bit 35 is shifted into bit 36; data shifted out of bit 71 is lost.

ROT Rotate Left: 1.62 (1.73) + .15|E| us
Right: 1.46 (1.57) + .15|E| us

| 241 aie: Sey |
(0) 89 121314 1718 35

Rotate AC the number of places specified by E. If £ is positive, rotate left;

bit 0 is rotated into bit 35. If E is negative, rotate right; bit 35 is rotated

‘into bit 0.

2-25

2-26

Overflow is determined di-
rectly from the carries, not
from the carry flags, as their
states may reflect events in
previous instructions.

44

CENTRAL PROCESSOR §2.5

ROTC Rotate Combined Left: 2.00 (2.11) + .15|E| us

Right: 1.84 (1.95) + .15|E| us

89 0 121314 1718 35

Concatenate accumulators A and A+] with A on the left, and rotate the

72-bit combination the number of places specified by EF. If E is positive,

rotate left; bit 0 is rotated into bit 71 (bit 35 of AC A+1) and bit 36 into bit

35. If E is negative, rotate right; bit 35 is rotated into bit 36 and bit 71 into

bit 0.

2.5 FIXED POINT ARITHMETIC

For fixed point arithmetic the PDP-10 has instructions for arithmetic shift-

ing (which is essentially multiplication by a power of 2) as well as for per-

forming addition, subtraction, multiplication and division of numbers in

fixed point format [§1.1]. In such numbers the position of the binary point

is arbitrary (the programmer may adopt any point convention). The add and

subtract instructions involve only single length numbers, whereas multiply

supplies a double length product, and divide uses a double length dividend.

The high and low order words respectively of a double length fixed point

number are in accumulators A and A+1 (mod 20,), where the magnitude is

the 70-bit string in bits 1-35 of the two words and the signs of the two are
identical. There are also integer multiply and divide instructions that involve
only single length numbers and are especially suited for handling smaller
integers, particularly those of eighteen bits or less such as addresses (of
course they can be used for small fractions as well provided the programmer
keeps track of the binary point). For convenience in the following, all oper-
ands are assumed to be integers (binary point at the right).

The processor has four flags, Overflow, Carry 0, Carry 1 and No Divide,
that indicate when the magnitude of a number is or would be larger than can
be accommodated. Carry 0 and Carry 1 actually detect carries out of bits 0
and | in certain instructions that employ fixed point arithmetic operations:
the add and subtract instructions treated here, the move instructions that
produce the negative or magnitude of the word moved [§2.2], and the
arithmetic test instructions that increment or decrement the test word

[§2.7]. In these instructions an incorrect result is indicated — and the Over-

flow flag set — if the carries are different, ie if there is a carry into the sign

but not out of it, or vice versa. The Overflow flag is also set by No Divide

being set, which means the processor has failed to perform a division because

the magnitude of the dividend is greater than or equal to that of the divisor,

or in integer divide, simply that the divisor is zero. In other overflow cases

only Overflow itself is set: these include too large a product in multiplica-

tion, and loss of significant bits in left arithmetic shifting.

These flags can be read and controlled by certain program control instruc-

tions [§2.9], and Overflow is available as a processor condition (via in-out

45

§2.5 FIXED POINT ARITHMETIC

instructions [§2.14]) that can request a priority interrupt if enabled. The

conditions detected can only set the flags and the hardware does not clear

them, so the program must clear them before an instruction if they are to

give meaningful information about the instruction afterward. However, the

program can check the flags following a series of instructions to determine

whether the entire series was free of the types of error detected.

All but the shift instructions have four modes that determine the source

of the non-AC operand and the destination of the result.

Source of non- Destination

Mode Suffix AC operand of result

Basic E AC

Immediate I The word 0,E AC

Memory M E E

Both B E AC and E

ADD Add

i
0 ' 67 89 1213 14 1718 35

Add the operand specified by M to AC and place the result in the specified .

destination. If the sum is > 2°° set Overflow and Carry 1; the result stored
has a minus sign but a magnitude in positive form equal to the sum less OBEY

If the sum is < —2* set Overflow and Carry 0; the result stored has a plus

sign but a magnitude in negative form equal to the sum plus 235. Set both

carry flags if both summands are negative, or their signs differ and their mag-

nitudes are equal or the positive one is the greater in magnitude.

ADD » Add 270 253A) eS

ADDI Add Immediate 271 1.68 (1.79) us

ADDM Add to Memory 272 3.08 (3.19) us

ADDB Add to Both- 273 3.08 (3.19) ps

SUB ‘Subtract

Batre ea ee i aLerasl
0) 67 89 121314 1718 35

Subtract the operand specified by M from AC and place the result in the

specified destination. If the difference is > 2** set Overflow and Carry 1;
the result stored has a minus sign but a magnitude in positive form equal to

the difference less 235. If the difference is << —2%° set Overflow and Carry 0;

the result stored has a plus sign but a magnitude in negative form equal to

the difference plus 2°°. Set both carry flags if the signs of the operands are

the same and AC is the greater or the two are equal, or the signs of the

operands differ and AC is negative.

2-27

Besides indicating error types,
the carry flags facilitate per-
forming multiple precision
arithmetic.

Keeping instructions and op-
erands in different memories
saves .20 (.09) us in ADDM
and ADDB. ;

When E addresses a fast

memory location, ADD takes
34 us less than the time

given, ADDM and ADDB take

.54 (.43) us less.

MAY 1968

pheay 2) 2-38

Keeping instructions and op-
erands in different memories
saves .20 (.09) us in SUBM
and SUBB.

When £ addresses a fast
memory location. SUB takes
34 us less than the time

given. SUBM and SUBB take
154 (43) us less.

Keeping instructions and op-
erands in different memories

saves 47 (.36) us in MULM.
31 (20) us in MULB.

When E addresses a fast

memory location. MUL takes
3+ us less than the time

given. MULM takes .80 (.69)
us less. and MULB takes .64

(.53) us less.

46

CENTRAL PROCESSOR §2.5

SUB Subtract 274 BMS IS)) (ES
SUBI Subtract Immediate 215) 1.68 (1.79) us
SUBM Subtract to Memory 276 3.08 (3.19) us
SUBB Subtract to Both 27 3.08 (3.19) us

MUL Multiply

121314 1718 35

Multiply AC by the operand specified by J/. and place the high order word
of the double length result in the specified destination. If A/ specifies AC as
a destination. place the low order word in accumulator A4+1. If both oper-
ands are —2°° set Overflow: the double length result stored is —27°,

MUL Multiply 224 10.60 (10.82) us

MULI Multiply Immediate 225 8.58 (8.69) us

MULM Multiply to Memory 2216 11.41 (11.63) us ©

MULB Multiply to Both a2, 11.41 (11.63) us

Timing. The times given above are average. The algorithm modifies the
running sum of partial products at each 1-0 or 0-1 transition scanning from
one bit to the next in the multiplier, which is the operand specified by the
mode: in other words the number of operations equals the number of pairs
of adjacent bits that differ in the multiplier including the sign bit and taking
the bit at the right of the LSB as 0 (an LSB of 1 is regarded asa transition).
Minimum times with a zero multiplier are

MUL 8.26 (8.48) us

MULI 7.41 (7.52) us

MULM 9.07 (9.29) us

MULB 9.07 (9.29) us

These must be increased by .13 us for each transition. The programmer can
minimize the time by using as the multiplier the operand with fewer transi-
tions.

2:2:0 AM oot) SAA ene Y
121314 1718 35

Multiply AC by the operand specified by J/, and place the sign and the 35
low order magnitude bits of the product. in the specified destination. Set
Overtlow if the product is > 2° or < —2%5 (ie if the high order word of the
double length product is not null); the high order word is lost.

47

§2.5 : FIXED. POINT ARITHMETIC

IMUL Integer Multiply 220 9.59 (9.81) us
IMULI Integer Multiply Immediate 221 8.09 (8.20) us

IMULM Integer Multiply to Memory 222 10.56 (10.78) us

IMULB Integer Multiply to Both 223 10.56 (10.78) us

Timing. The times given above are average. Refer to the description of

MUL for the timing effects of the multiplication algorithm. Minimum times

with a zero multiplier are

IMUL 8.42 (8.64) us

IMULI 7.57 (7.68) us

IMULM 9.39 (9.61) us

IMULB 9.39 (9.61) us

These must be increased by .13 us for each transition. The programmer can

minimize the time by using as the multiplier the operand with fewer transi- _

tions.

DIV Divide

234
0 67 89 121314 1718 35

If the magnitude of the number in AC is greater than or equal to that of the

operand specified by M, set Overflow and No Divide, and go immediately to

the next instruction without affecting the original AC or memory operand in
any way. Otherwise divide the double length number contained in accumula-

tors A and A+1 by the specified operand, calculating a quotient of 35

magnitude bits including leading zeros. Place the unrounded quotient in the

specified destination. If M specifies AC as a destination, place the remainder,

with the same sign as the dividend, in accumulator A+1.

DIV Divide 234 16.2 (16.4) us

DIVI Divide Immediate 235 15.4 (15.5) us

DIVM Divide to Memory 236 17.1 (17.3) ps

DIVB Divide to Both 237 17.1 (17.3) ps

IDIV Integer Divide

0 Clipe S19) 121314 1718 35

If the ‘operand specified by M is zero, set Overflow and No Divide, and go

immediately to the next instruction without affecting the original AC or

memory operand in any way. Otherwise divide AC by the specified operand,

calculating a quotient of 35 magnitude bits including leading zeros. Place

2-29

Keeping instructions and op-
erands in different memories
saves .47 (.36) us in IMULM
and IMULB.

When £ addresses a fast
memory location, IMUL
takes .34 us less than the time

given, IMULM and IMULB
take .80 (.69) ys less.

Keeping instructions and op-
erands in different memories
saves .5 (.4) us in DIVM, .3
(.2) ps in DIVB.

When EF addresses a fast

memory location, DIV takes

.3 ps less than the time given,

DIVM takes .8 (.7) us less,
and DIVB takes .6 (.5) us
less.

If the division is not per-
formed, only 2.5-3 ps are

required.

2-30

Keeping instructions and op-
erands in different memories

saves .5 (.4) us in IDIVM, .3
(.2) us in IDIVB.

When £ addresses a fast
memory location, IDIV takes

.3 ws less than the time given,

IDIVM takes .8 (.7) us less,
and IDIVB takes .6 (.5) us
less.

If the division is not per-
formed, only 3-3.5 ys are

required.

48

CENTRAL PROCESSOR §2.5

the unrounded quotient in the specified destination. If M specifies AC as the

destination, place the remainder, with the same sign as the dividend, in

accumulator A+1. ad

IDIV - Integer Divide 230 16.5 (16.7) us

IDIVI Integer Divide Immediate 231 15.7 (15.8) ps

IDIVM Integer Divide to Memory 232 17.4 (17.6) us

IDIVB Integer Divide to Both 253 17.4 (17.6) us

ExampLe. The integer multiply and divide instructions are very useful for

computations on addresses or character codes, or performing any integral

operations in which the result is small enough to be accommodated in a

single register.

As an example suppose we wish to determine the parity of the 8-bit char-

acter abcdefgh, where the letters represent the bits of the character. Assum-

ing the character is right-justified in AC, we first duplicate it twice to the left

producing

abc def gha bcd efg hab cde fgh

where the bits (in positions 12—35) are grouped corresponding to the octal

digits in the word. Anding this with

001 001 001 001 001 001 001 001

retains only the least significant bit in each 3-bit set, so we can represent the

result by

cfadgbeh

where each letter represents an octal digit having the same value (0 or 1) as

the bit originally represented by the same letter. Multiplying this by

’ 11111111, generates the following partial products:

€- fad 2 bse h

C “feadades. bvewnh
Cop Gudigep eh
Ceca a2 baer

cfadgbeh
cfadgbeh

Gof a dvs-cbne kh
cfadgbeh

Since any digit is at most 1, there can be no carry out of any column with

fewer than eight digits unless there is a carry into it. Hence the octal digit

produced by summing the center column (the one containing all the bits of

the character) is even or odd as the sum of the bits is even or odd. Thus its

least significant bit (bit 14 of the low order word in the product) is the par-

ity of the character, 0 if even, 1 if odd.

The above may seem a very complicated procedure to do something

trivial, but it is effected by this quite simple sequence (with the character

49

§2.5 FIXED POINT ARITHMETIC

right-justified in AC):

IMULI AC,200401
AND AC,ONES
IMUL AC,ONES

ONES: 11111111

where the parity is indicated by AC bit 14. Of course, following the IMUL

would be a test instruction to check the value of the bit.

Arithmetic Shifting

These two instructions produce an arithmetic shift right or left of the num-

ber in AC or the double length number in accumulators A and A+1. Shifting

is the movement of the contents of a register bit-to-bit. The operation dis-

cussed here is similar to logical shifting [see §2.4 and the illustration on

page 2-24], but in an arithmetic shift only the magnitude part is shifted —

the sign is unaffected. In a double length number the 70-bit string made up

of the magnitude parts of the two words is shifted, but the sign of the low

order word is made equal to the sign of the high order word.

Null bits are brought in at the end being vacated: a left shift brings in Os at

the right, whereas a right shift brings in the equivalent of the sign bit at the

left. In either case, information shifted out at the other end is lost. A single

shift left is equivalent to multiplying the number by 2 (provided no bit of

significance is shifted out); a shift right divides the number by 2.

The number of places shifted is specified by the result of the effective

address calculation taken as a signed number (in twos complement notation)

modulo 2° in magnitude. In other words the effective shift E is the number

composed of bit 18 (which is the sign) and bits 28-35 of the calculation

result. Hence the programmer may specify the shift directly in the instruc-

tion (perhaps indexed) or give an indirect address to be used in calculating

the shift. A positive E produces motion to the left, a negative E to the right;

E is thus the power of 2 by which the number is multiplied. Maximum

movement is 255 places.

ASH Arithmetic Shift Left: 1.62 (1.73) + .15|E| ps
Right: 1.46 (1.57) + .15|E| us

89 () 121314 1718 35

Shift AC arithmetically the number of places specified by E. Do not shift

bit 0. If £ is positive, shift left bringing Os into bit 35; data shifted out of bit

1 is lost; set Overflow if any bit of significance is lost (a 1 in a positive num-

ber, a 0 in a negative one). If £ is negative, shift right bringing Os into bit 1

if AC is positive, 1s if negative; data shifted out of bit 35 is lost.

2-31

2-32

A subtraction involving two

like-signed numbers whose
exponents are equal and
whose fractions differ only in
the LSB gives a result con-
taining only one bit of signi-
ficance.

50

CENTRAL PROCESSOR §2.6

ASHC Arithmetic Shift Combined Left: 2.00 (2.11) + .15|E| us
: Right: 1.84 (1.95) + .15|E| us

89 10) ~ 121314 1718 35

Concatenate the magnitude portions of accumulators A and A+1 with A on

the left, and shift the 70-bit combination in bits 1-35 and 37-71 the num-

ber of places specified by E. Do not shift AC bit 0, but make bit 0 of AC
A+1 equal to it if at least one shift occurs (ie if E is nonzero). If E is posi-

tive, shift left bringing Os into bit 71 (bit 35 of AC A+1); bit 37 (bit 1 of AC

A+1) is shifted into bit 35; data shifted out of bit 1 is lost; set Overflow if

any bit of significance is lost (a 1 in a positive number, a O in a negative one).

If E is negative, shift right bringing Os into bit | if AC is positive, 1s if nega-

tive; bit 35 is shifted into bit 37; data shifted out of bit 71 is lost.

2.6 FLOATING POINT ARITHMETIC

For floating point arithmetic the PDP-10 has instructions for scaling the

exponent (which is multiplication of the entire number by a power of 2)

and negating double length numbers as well as for performing addition, sub-

traction, multiplication and division of numbers in floating point format.

All instructions treated here interpret all operands as floating point numbers

in the format given in §1.1, and generate results in that format. The reader

is strongly advised to reread §1.1 if he does not remember the format in

detail.

For the four standard arithmetic operations the program can select wheth-

er or not the result shall be rounded. Rounding produces the greatest con-

sistent precision using only single length operands. Instructions without

rounding have a “long” mode, which supplies a two-word result for greater

precision; the other modes save time in one-word operations where rounding

is of no significance.

Actually the result is formed in a double length register in addition, sub-

traction and multiplication, wherein any bits of significance in the low order

part supply information for normalization, and then for rounding if re-

quested. Consider addition as an example. Before adding, the processor

right shifts the fractional part of the operand with the smaller exponent until

its bits correctly match the bits of the other operand in order of magnitude.

Thus the smaller operand could disappear entirely, having no effect on the

result (“result”’ shall always be taken to mean the information (one word or

two) stored by the instruction, regardless of the number of significant bits it

contains or even whether it is the correct answer). Long mode is likely to

retain information that would otherwise be lost, but in any given mode the

significance of the result depends on the relative values of the operands.

Even when both operands contain twenty-seven significant bits, a long addi-

tion may store two words that together contain only one significant bit. In

division the processor always calculates a one-word quotient that requires no

51

§2.6 FLOATING POINT ARITHMETIC

normalization if the original operands are normalized. An extra quotient bit

is calculated for rounding when requested; long mode retains the remainder.

The processor has four flags, Overflow, Floating Overflow, Floating

Underflow and No Divide, that indicate when the exponent is too large or

too small to be accommodated or a division cannot be performed because of

the relative values of dividend and divisor. Any of these circumstances sets

Overflow and Floating Overflow. If only these two are set, the exponent of

the answer is too large; if Floating Underflow is also set, the exponent is too

small. No Divide being set means the processor failed to perform a division,

an event that can be produced only by a zero divisor if all nonzero operands

are normalized. These flags can be read and controlled by certain program

control instructions [§ 2.9], and Overflow and Floating Overflow are avail-

able as processor conditions (via in-out instructions [§2.14]) that can

request a priority interrupt if enabled. The conditions detected can only set

the flags and the hardware does not clear them, so the program must clear

them before a floating point instruction if they are to give meaningful infor-

mation about the instruction afterward. However, the program can check

the flags following a series of instructions to determine whether the’entire

series was free of the types of error detected.

The floating point hardware functions at its best if given operands that

are either normalized or zero, and except in special situations the hardware

normalizes a nonzero result. An operand with a zero fraction and a nonzero

exponent can give wild answers in additive operations because of extreme

loss of significance; eg adding % X 2? and 0 X 2® gives a zero result, as the
first operand (having a smaller exponent) looks smaller to the processor and

is shifted to oblivion. A number with a | in bit 0 and Os in bits 9-35 is not

simply an incorrect representation of zero, but rather an unnormalized

“fraction” with value —1. This unnormalized number can produce an incor-

rect answer in any operation. Use of other unnormalized operands simply

causes loss of significant bits, except in division where they can prevent its

execution because they can satisfy a no-divide condition that is impossible

for normalized numbers.

Scaling

One floating point instruction is in a category by itself: it changes the

exponent of a number without changing the significance of the fraction. In

other words it multiplies the number by a power of 2, and is thus analogous

to arithmetic shifting of fixed point numbers except that no information is

lost, although the exponent can overflow or underflow. The amount added

to the exponent is specified by the result of the effective address calculation

taken as a signed number (in twos complement notation) modulo 2° in mag-

nitude. In other words the effective scale factor E is the number composed

of bit 18 (which is the sign) and bits 28-35 of the calculation result. Hence

the programmer may specify the factor directly in the instruction (perhaps

indexed) or give an indirect address to be used in calculating it. A positive E

increases the exponent, a negative E decreases it; E is thus the power of 2 by

which the number is multiplied. The scale factor lies in the range —256 to

aoe

2-33

\The processor normalizes the
result by shifting the fraction
and adjusting the exponent to
compensate for the change in
value. Each shift and accom-
panying exponent adjustment

thus multiply the number
both by 2 and by % simulta-
neously, leaving its value un-

changed.

2-34

N is the number of left shifts

needed to normalize the

result.

This instruction can be used

to float a fixed number with

27 or fewer significant bits.
To float an integer contained
within AC bits 9-35,

FSC AC,233

inserts the correct exponent
to move the binary point
from the right end to the left
of bit 9 and then normalizes
(2333 = 1554 = 128 + 27).

In the hardware the rounding
operation is actually some-
what more complex than
stated here. If the result is
negative, the hardware com-

bines rounding with placing
the high order word in twos
complement form by decreas-
ing its magnitude if the low
order part is < “LSB. More-
over an extra single-step re-
normalization occurs if the
rounded word is no longer
normalized.

Keeping instructions and op-
erands in different memories

‘saves .47 (.36) us in memory
and both modes.

When £ addresses a fast
memory location, a floating

point instruction with round-
ing takes .34 us less than the
time listed in basic mode, .80
(.69) us less in memory or
both mode.

§2

CENTRAL PROCESSOR §2.6

FSC Floating Scale 2.75 (2.86) + .25N us:

89 0 121314 1718 5 35

If the fractional part of AC is zero, ‘clear AC. Otherwise add the scale factor

given by E to the exponent part of AC (thus multiplying AC by 2*), normal-

ize the resulting word bringing Os into bit positions vacated at the right, and

place the result back in AC.

Note

A negative £ is represented in standard twos com-

plement notation, but the hardware compensates

for this when scaling the exponent.

If the exponent after normalization is > 127, set Overflow and Floating

Overflow; the result stored has an exponent 256 less than the correct one.

If < —128, set Overflow, Floating Overflow and Floating Underflow; the

result stored has an exponent 256 greater than the correct one.

Operations with Rounding

There are four instructions that use only one-word operands and store a

single-length rounded result. Rounding is away from zero: if the part of the

normalized answer being dropped (the low order part of the fraction) is

greater than or equal in magnitude to one half the LSB of the part being

retained, the magnitude of the latter part is increased by one LSB.

The rounding instructions have four modes that determine the source of

the non-AC operand and the destination of the result. These modes are like

those of logic and fixed point arithmetic, including an immediate mode that

allows the instruction to carry an operand with it.

Source of non- Destination
Mode Suffix AC operand of result

Basic E AC

4 Immediate I The word £,0 AC

Memory M E E

‘Both B E AC and E

Note however that floating point immediate uses £,0 as an operand, not

0,£. In other words the half word £ is interpreted as a sign, an 8-bit expo-

nent, and a 9-bit fraction.

The time required is a function of the number N of left shifts needed for

normalization. Brackets enclose the additional time required when rounding

actually changes the high order word.

In each of these instructions, the exponent that results from normaliza-

53

§2.6 FLOATING POINT ARITHMETIC 2-35

tion and rounding is tested for overflow or underflow. If the exponent is

> 127, set Overflow and Floating Overflow; the result stored has an expo-

nent 256 less than the correct one. If <—128, set Overflow, Floating Over-

flow and Floating Underflow; the result stored has an exponent 256 greater

than the correct one.

FADR Floating Add and Round

0 67 89 121314 1718 35

Floating add the operand specified by M to AC. If the double length fraction

in the sum is zero, clear the specified destination. Otherwise normalize the

double length sum bringing Os into bit positions vacated at the right, round

the high order part, test for exponent overflow ar underflow as described

above, and place the result in the specified destination.

FADR Floating Add and Round 144
4.46 (4.68) + .1SD + .25N [+.96] us D is the difference between

FADRI Floating Add and Round Immediate 145 ihe ee es ae
3:10(3,81). HleDit 22506 ta06) us) ee ee

FADRM Floating Add and Round to Memory 146
5.43 (5.65) + .15D + .25N [+.96] us

FADRB Floating Add and Round to Both 147

5.43 (5.65) + .15D + .25N [+.96] us

FSBR Floating Subtract and Round

0 67 89 1213 14 1718 ahs)

Floating subtract the operand specified by M from AC. If the double length

fraction in the difference is zero, clear the specified destination. Otherwise

normalize the double length difference bringing Os into bit positions vacated

at the right, round the high order part, test for exponent overflow or under-

flow as described above, and place the result in the specified destination.

FSBR Floating Subtract and Round 154.
4.64 (4.86) + .15D + .15N [+.96] ps D is the difference between

FSBRI Floating Subtract and Round Immediate 155 ae vey peste se
3.88 (3.99) + .1SD + .15N [+.96] us DikewkeD=0. ;

FSBRM Floating Subtract and Round to Memory 156
5.61 (5.83) + .15D + .15N [+.96] us

FSBRB Floating Subtract and Round to Both sid

5.61 (5.83) + .1SD + .15N [+.96] us

2-36

Use of normalized operands
requires at most one normali- ’

zation step for the result. If
unnormalized operands are
used, all times must be in-
creased by .25/N.

Division fails if the divisor is

zero, but the no-divide condi-
tion can otherwise be satisfied

only if at least one operand is
unnormalized.

54

CENTRAL PROCESSOR §2.6

FMPR Floating Multiply and Round

0 67 89 121314 1718 35

Floating Multiply AC by the operand specified by M. If the double length

fraction in the product is zero, clear the specified destination. Otherwise

normalize the double length product bringing Os into bit positions vacated at

the right, round the high order part, test for exponent overflow or underflow

as described above, and place the result in the specified destination.

FMPR Floating Multiply and Round 164
; 10.29 (10.51) [+.96] us

FMPRI Floating Multiply and Round Immediate 165
8.36 (8.47) [+.96] us

FMPRM Floating Multiply and Round to Memory 166

11.26 (11.48) [+.96] us

FMPRB Floating Multiply and Round to Both 167
11.26 (11.48) [+.96] us

Timing. The times given above are average for normalized operands.

Refer to the description of MUL [§2.5] for the timing effects of the multi-

plication algorithm. Minimum times with a zero multiplier are

FMPR 8.47 (8.69) [+.96] us

FMPRI 7.71 (7.82) [+.96] us

FMPRM 9.44 (9.66) [+.96] us

FMPRB 9.44 (9.66) [+.96] mus

These must be increased by .13 ys for each transition. The programmer can

minimize the time by using as the multiplier the operand with fewer transi-

tions.

FDVR Floating Divide and Round

0 67 89 1213 14 1718 35

If the, magnitude of the fraction in AC is greater than or equal to twice that

of the fraction in the operand specified by M, set Overflow, Floating Over-

flow and No Divide, and go immediately to the next instruction without

affecting the original AC or memory operand in any way.

If the division can be performed, floating divide AC by the operand spec-

ified by M, calculating a quotient fraction of 28 bits (this includes an extra

bit for rounding). If the fraction is zero, clear the specified destination.

Otherwise round the fraction using the extra bit calculated.

If the original operands were normalized, the single length

quotient will already be normalized; if it is not, normalize

it bringing Os into bit positions vacated at the right. Test for

55

§2.6 FLOATING POINT ARITHMETIC

exponent overflow or underflow as described above, and place the result in

the specified destination.

Floating Divide and Round 174 FDVR
14.1 (14.3) ps

FDVRI Floating Divide and Round Immediate 175

13.3 (13.4) us

FDVRM Floating Divide and Round to Memory 176
15.1 (15.3) us

FDVRB Floating Divide and Round to Both 177

i521 Gi523) us

Operations without Rounding

Instructions that do not round are faster for processing floating point num-

bers with fractions containing fewer than 27 significant bits. On the other

hand the long mode provides double precision or allows the programmer to

use his own method of rounding. Besides the four usual arithmetic opera-

tions with normalization, there are two nonnormalizing instructions that

facilitate double precision arithmetic [§2.11 gives examples of double preci-

sion floating point routines]. These two instructions have no modes.

DFN Double Floating Negate 3.43 (3.54) us

eer i le y |
89 0 121314 1718 35

Negate the double length floating point number composed of the contents of

AC and location E with AC on the left. Do this by taking the twos comple- |

ment of the number whose sign is AC bit 0, whose exponent is in AC bits

1—8, and whose fraction is the 54-bit string in bits 9-35 of AC and location

E. Place the high order word of the result in AC; place the low order part of

the fraction in bits 9-35 of location E without altering the original contents

of bits O—8 of that location.

UFA Unnormalized Floating Add 4.62 (4.84) + .15D us

89 0 121314 1718 35

Floating add the contents of location E to AC. If the double length fraction

in the sum is zero, clear accumulator 4d+1. Otherwise normalize the sum

only if the magnitude of its fractional part is > 1, and place the high order

part of the result in AC A+1. The original contents of AC and £ are

unaffected.

2-37

If unnormalized operands are
used, all times must be in-

creased by .25N. If the divi-
sion is not performed, only
3.5—4 ps are required.

Usually the double length
number is in two adjacent
accumulators, and & equals
A+1. In this case DFN takes
only 2.89 (3.11) us.

D is the difference between

the operand exponents pro-
vided that difference is <63.

Otherwise D = 0.

When £ addresses a fast

memory location, UFA takes

34 ws less than the time
given.

2-38

The exponent of the sum is
equal to that of the larger
summand unless addition of
the fractions overflows, in
which case it is greater by 1.
Exponent overflow can occur
only in the latter case.

Keeping instructions and op-
erands in different memories
saves .47 (.36) us in memory
and both modes.

When £ addresses a fast
memory location, a floating
point instruction without
rounding takes .34 us less
than the time listed in basic
or long mode, .80 (.69) us
less in memory or both mode.

56

CENTRAL PROCESSOR §2.6

Note

The result is placed in accumulator A+/. This is

the only arithmetic instruction that stores the

result in a second accumulator, leaving the original

operands intact.

If the exponent of the sum following the one-step normalization is > 127,

set Overflow and Floating Overflow; the result stored has an exponent 256

less than the correct one.

The remaining floating point instructions perform the four standard arith-

metic operations with normalization but without rounding. All use AC and

the contents ‘of location E as operands and have four modes.

Mode Suffix Effect

Basic High order word of result stored in AC.

Long L In addition, subtraction and multiplica-

tion, the two-word result (in the double

length format described in §1.1).,is
stored in accumulators A and A+1. In

division the dividend is the double length

word in A and A+]; the single length

quotient is stored in AC, the remainder
in AC A+].

Memory M High order word of result stored in E.

Both B High order word of result stored in AC
and £.

In each of these instructions, the exponent that results from normaliza-

tion is tested for overflow or underflow. If the exponent is > 127, set Over-

flow and Floating Overflow; the result stored has an exponent 256 less than

the correct one. If < —128, set Overflow, Floating Overflow and Floating

Underflow; the result stored has an exponent 256 greater than the correct

one.

The time required is a function of the number N of left shifts needed for

normalization.

FAD Floating Add

i) CA aS9 12 13 14 1718 35

Floating add the contents of location E.to AC. If the double length fraction

in the sum is zero, clear the destination specified by M, clearing both accu-

57

§2.6 FLOATING POINT ARITHMETIC

mulators in long mode. Otherwise normalize the double length sum bringing

Os into bit positions vacated at the right, test for exponent overflow or

underflow as described above, and place the high order word of the result in
the specified destination. :

In long mode if the exponent of the sum is > 154 (127+ 27) or<-—101

(—128+ 27) or the low order half of the fraction is zero, clear AC A+1.

Otherwise place a low order word for a double length result in A+1 by

putting a O in bit 0, an exponent in positive form 27 less than the exponent

of the sum in bits 1—8, and the low order part of the fraction in bits 9-35.

FAD Floating Add 140

4.46 (4.68) + .15D + .25N us

FADL Floating Add Long 14]
DSil(205) lee 2oN AS

FADM Floating Add to Memory 142
5.43 (5.65) + .1SD + .25N us

FADB Floating Add to Both 143
5.43 (5.65) + .1SD + .25N us

FSB Floating Subtract

0 67. 89 121314 1718 35

Floating subtract the contents of location E from AC. If the double length

fraction in the difference is zero, clear the destination specified by M, clear-

ing both accumulators in long mode. Otherwise normalize the double length

difference bringing Os into bit positions vacated at the right, test for expo-

nent overflow or underflow as described above, and place the high order

word of the result in the specified destination.

In long mode if the exponent of the difference is > 154 (127+ 27) or

<-101 (—128+ 27) or the low order half of the fraction is zero, clear AC

A+1. Otherwise place a low order word for a double length result in A+1 by

putting a 0 in bit 0, an exponent in positive form 27 iess than the exponent

of the difference in bits 1-8, and the low order part of the fraction in bits

QS si5\4

FSB Floating Subtract 150

: 4.64 (4.86) + .15D + .25N ps

FSBL Floating Subtract Long 151
5.49 (5.71) + .1SD + .25N ps

FSBM Floating Subtract to Memory 152
5.61 (5.83) + .15D + .25N ps

FSBB Floating Subtract to Both 153
5.61 (5.83) + .15D + .25N us

D is the difference between

the operand exponents pro-
vided that difference is < 63.

Otherwise D = 0.

D is the difference between

the operand exponents pro-

vided that difference is < 63.

Otherwise D = 0.

2-40

Use of normalized operands
requires at most one normali-
zation step for the result. If
unnormalized operands are
used, all times must be in-

creased by .25/.

Division fails if the divisor is

zero, but the no-divide condi-

tion can otherwise be satisfied

only if at least one operand is
unnormalized.

58

CENTRAL PROCESSOR § 2.6

FMP Floating Multiply

[eee | Bo a
67 89 121314 1718 35

Floating multiply AC by the contents of location E. If the double length

fraction in the product is zero, clear the destination specified by ™, clearing

both accumulators in long mode. Otherwise normalize the double length

product bringing Os into bit positions vacated at the right, test for exponent

overflow or underflow as described above, and place the high order word of

the result in the specified destination.

In long mode if the exponent of the product is > 154 (127+ 27) or

<-101 (128+ 27) or the low order half of the fraction is zero, clear AC

A+1. Otherwise place a low order word for a double length result in A+1

by putting a O in bit 0, an exponent in positive form 27 less than the

exponent of the product in bits 1-8, and the low Order part of the fraction

in bits 9-35. :

FMP Floating Multiply 160 10.29 (10.51) us

FMPL Floating Multiply Long 161 11.14 (11.36) us

FMPM Floating Multiply to Memory 162 11.26 (11.48) us

FMPB Floating Multiply to Both 163 11.26 (11.48) us

Timing. The times given above are average for normalized operands.

Refer to the description of MUL [§2.5] for the timing effects of the multi-

plication algorithm. Minimum times with a zero multiplier are

FMP 8.47 (8.69) us

FMPL 9.32 (9.54) us

FMPM 9.44 (9.66) us

FMPB 9.44 (9.66) us

These must be increased by .13 us for each transition. The programmer can

minimize the time by using as the multiplier the operand with fewer transi-

tions.

FDV Floating Divide

pio. (mae ee x Y
0 671-89 tn 1244 1718 35

If the magnitude of the fraction in AC is greater than or equal to twice that

of the fraction in location E, set Overflow, Floating Overflow and No Divide,

and go immediately to the next instruction without affecting the original AC

or memory operand in any way.

If division can be performed, floating divide the AC Be by the

contents of location E. In long mode the AC operand (the dividend) is the

double length number in accumulators A and A+1; in other modes it is the

single word in AC. Calculate a quotient fraction of 27 bits. If the fraction

59

§2.7 ARITHMETIC TESTING

is zero, clear the destination specified by M, clearing both accumulators in

long mode if the double length dividend was zero. A quotient with a non-

zero fraction will already be normalized if the original operands were nor-

malized; if it is not, normalize it bringing Os into bit positions vacated at the

right. Test for exponent overflow or underflow as described above, and

place the single length quotient part of the result in the specified destination.

In long mode calculate the exponent for the fractional remainder from the
division according to the relative magnitudes of the fractions in dividend and

divisor: if the dividend was greater than or equal to the divisor, the exponent

of the remainder is 26 less than that of the dividend, otherwise it is 27 less.

If the remainder exponent is > 127 or < —128 or the fraction is zero, clear

AC A+1. Otherwise place the floating point remainder (exponent and frac-

tion) with the sign of the dividend in AC A+1.

FDV Floating Divide 170 14.1 (14.3) us

FDVL Floating Divide Long 171 15.6 (15.8) us

FDVM Floating Divide to Memory 172 15.1 (15.3) us

FDVB Floating Divide to Both 173 15.1 (15.3) us

2.7. ARITHMETIC TESTING

These instructions may jump or skip depending on the result of an arithmetic

test and may first perform an arithmetic operation on the test word. Two of

the instructions have no modes.

AOBJP Add One to Both Halves of AC and Jump if Positive 1.68 (1.79) us

y
10) 89 1213 14 1718 35

Add 1000001, to AC and place the result back in AC. If the result is greater

than or equal to zero (ie if bit 0 is 0, and hence a negative count in the left

half has reached zero or a positive count has not yet reached 2!”), take the —
next instruction from location E and continue sequential operation from

there.

AOBJN Add One to Both Halves of AC and Jump if Negative 1.68 (1.79) us

25,3 Aviat ee ve

0 3 89 121314 1718 35

Add 1000001, to AC and place the result back in AC. If the result is less

than zero (ie if bit 0 is 1, and hence a negative count in the left half has not

yet reached zero or-a positive count has reached 21”), take the next instruc-

tion from location £ and continue sequential operation from there.

2-41

In long mode a nonzero un-
normalized dividend whose
entire high order fraction is
zero produces a zero quo-
tient. In this case the second
AC receives rubbish.

If unnormalized operands are
used, all times must be in-

creased by .25N. If the divi-
sion is not performed, only
4—4.5 us are required.

2-42

60

CENTRAL PROCESSOR §2.7

The incrementing of both halves of AC simultaneously is effected by adding
1000001,. A count of —2 in AC left is therefore increased to zero if 218 —]
is incremented in AC right.

Thése two instructions allow the program to keep a control count in the

left half of an index register and require only one data transfer to initialize.

Problem: Add 3 to each location in a table of N entries starting at TAB.

Only four instructions are required.

MOVSI XR,—N ;Put —N in XR left (clear XR right)

MOVEI AC,3 ;Put 3 in AC

ADDM AC,TAB(XR) ;Add 3 to entry

AOBJN XR,.-1 ;Update XR and go back unless all

;entries accounted for

The eight remaining instructions jump or skip if the operand or operands

satisfy a test condition specified by the mode.

Mode Suffix

Never

Less L

Equal E

Less or Equal mE

Always A

Greater or Equal GE

Not Equal N

Greater G

Instructions with one operand compare AC or the contents of location £
with zero, those with two compare AC with E or the contents of location E.

The processor always makes the comparison even though the result is used in

only six of the modes. If the mnemonic has no suffix there is never any

program control function, and the instruction may be a no-op; an A suffix

produces an unconditional jump or skip — the action is always taken regard-

less of how the two quantities compare.

CAI Compare AC Immediate and Skip if Condition 1.68 (1.79) us
Satisfied

ed a ae
0 $6 89 121314 1718 35

Compare AC with £ (ie with the word 0, £) and skip the next instruction in

sequence if the condition specified by M is satisfied.

61

§2.7 ARITHMETIC TESTING

CAI Compare AC Immediate but Do Not Skip 300

CAIL Compare AC Immediate and Skip if AC Less than E - 301

CAIE Compare AC Immediate and Skip if Equal 302

CAILE Compare AC Immediate and Skip if AC Less than 303

or Equal to E

CAIA Compare AC Immediate but Always Skip 304

CAIGE Compare AC Immediate and Skip if AC Greater than 305

or Equal to £

CAIN Compare AC Immediate and Skip if Not Equal 306

CAIG Compare AC Immediate and Skip if AC Greater than E 307

CAM Compare AC with Memory and Skip if Condition 2.53 (2.75) us

Satisfied

7
0 56 89 1213 14 1718 35

Compare AC with the contents of location £ and skip the next instruction in

sequence if the condition specified by M is satisfied. The pair of numbers

compared may be either both fixed or both normalized floating point.

CAM Compare AC with Memory but Do Not Skip 310

CAML Compare AC with Memory and Skip if AC Less ; 311

CAME Compare AC with Memory and Skip if Equal 312

CAMLE Compare AC with Memory and Skip if AC Less 313

or Equal

CAMA Compare AC with Memory but Always Skip 314

CAMGE Compare AC with Memory and Skip if AC Greater 315

or Equal

CAMN Compare AC with Memory and Skip if Not Equal 316

CAMG Compare AC with Memory and Skip if AC Greater 317

JUMP Jump if AC Condition Satisfied 1.68 (1.79) pus

32
0 56 89 12 13 14 1718 35

Compare AC (fixed or floating) with zero, and if the condition specified by

M is satisfied, take the next instruction from location E and continue

sequential operation from there.

JUMP Do Not Jump gre’ 55- 390

JUMPL Jump if AC Less than Zero 321

JUMPE Jump if AC Equal to Zero 322

2-43

CAT is a no-op.

When £ addresses a fast mem-
ory location, this instruction
takes .34 us less than the time

given.

CAM is a no-op that refer-
ences memory.

JUMP is a no-op (instruction
code 320 has this mnemonic
for symmetry).

2-44

When £ addresses a fast mem-

ory location, this instruction

takes .34 us less than the time
given.

If A is zero, SKIP is a no-op;

otherwise it is equivalent to
MOVE. (Instruction code330
has mnemonic SKIP for sym-
metry.)

SKIPA is a convenient way to
load an accumulator and skip
over an instruction upon en-
tering a loop.

62

CENTRAL PROCESSOR : §2.7

JUMPLE Jump if AC Less than or Equal to Zero 323

JUMPA Jump Always 324

JUMPGE Jump if AC Greater than or Equal to Zero 325

JUMPN Jump if AC Not Equal to Zero 326

JUMPG Jump if AC Greater than Zero SS

SKIP Skip if Memory Condition Satisfied 2.39 (2.61) us

Sen eho) be
1213 14 1718 35

Compare the contents (fixed or floating) of location E with zero, and skip

the next instruction in sequence if the condition specified by ™ is satisfied.

If A is nonzero also place the contents of location E in AC.

SKIP Do Not Skip 330

SKIPL Skip if Memory Less than Zero 331

SKIPE Skip if Memory Equal to Zero Sap

SKIPLE Skip if Memory Less than or Equal to Zero 333

SKIPA Skip Always 334

SKIPGE Skip if Memory Greater than or Equal to Zero 335

SKIPN Skip if Memory Not Equal to Zero 336
SKIPG Skip if Memory Greater than Zero S37)

AOJ Add One to AC and Jump if Condition Satisfied 1.68 (1.79) ps

121314 1718 35

Increment AC by one and place the result back in AC. Compare the result

with zero, and if the condition specified by &™ is satisfied, take the next in-
struction from location E and continue sequential operation from there. If
AC originally contained 2*°— 1, set the Overflow and Carry 1 flags; if ae
set Carry O and Carry 1.

AQJ Add One to AC but Do Not Jump 340

AQJL Add One to AC and Jump if Less than Zero 341

AOJE Add One to AC and Jump if Equal to Zero 342

AQJLE Add One to AC and Jump if Less than or Equal to Zero 343

AOJA Add One to AC and Jump Always 344

AOJGE Add One to AC and Jump if Greater than or Equal 345
to Zero

AOJN Add One to AC and Jump if Not Equal to Zero 346

AQJG Add One to AC and Jump if Greater than Zero 347

63

§2.7 ARITHMETIC TESTING

AOS . Add One to Memory and Skip if Condition Satisfied 2.94 (3.05) us

3
0 56 89 1213 14 1718 35

Increment the contents of location E by one and place the result back in £.

Compare the result with zero, and skip the next instruction in sequence if

the condition specified by M is satisfied. If location E originally contained

235 — 1, set the Overflow and Carry 1 flags; if ~1, set Carry 0 and Carry 1.

If A is nonzero also place the result in AC.

AOS Add One to Memory but Do Not Skip 350

AOSL Add One to Memory and Skip if Less than Zero 351

AOSE Add One to Memory and Skip if Equal to Zero 352

AOSLE Add One to Memory and Skip if Less than or Equal 353

to Zero

AOSA Add One to Memory and Skip Always 354

AOSGE Add One to Memory and Skip if Greater than or 355

Equal to Zero

AOSN Add One to Memory and Skip if Not Equal to Zero 356

AOSG Add One to Memory and Skip if Greater than Zero 357

SoJ Subtract One from AC and Jump if Condition 1.68 (1.79) us

Satisfied

ao Mel Aol, ee i ee
0 56 89 121314 1718 35

Decrement AC by one and place the result back in AC. Compare the result

with zero, and if the condition specified by M is satisfied, take the next in-

struction from location E and continue sequential operation from there. If

AC originally contained —2%°, set the Overflow and Carry 0 flags; if any other

nonzero number, set Carry 0 and Carry 1.

soJ Subtract One from AC but Do Not Jump 360

SOJL Subtract One from AC and Jump if Less than Zero 361

SOJE - Subtract One from AC and Jump if Equal to Zero . 362

SOJLE Subtract One from AC and Jump if Less than or ' 363

Equal to Zero

SOJA Subtract One from AC and Jump Always 364

SOJGE Subtract One from AC and Jump if Greater than or 365

Equal to Zero

SOJN Subtract One from AC and Jump if Not Equal to Zero 366

SOJG Subtract One from AC and Jump if Greater than Zero 367

2-45

Keeping the count in fast
memory saves .54 (.43) us;
keeping it in a different mem-
ory from the instruction saves
.20 (.09) ys.

2-46

Keeping the count in fast
memory saves .54 (.43) us;
keeping it in a different mem-
ory from the instruction saves
.20 (.09) us.

This procedure is invalid if
the programmer is making use
of the drum split feature
(which is not used by any
DEC equipment).

64

CENTRAL PROCESSOR : §2.7

sos Subtract One from Memory and Skip if Condition 2.94 (3.05) ps
Satisfied

7
0 56 89 121314 17,18 35

Decrement the contents of location EF by one and place the result back in E.

Compare the result with zero, and skip the next instruction in sequence if

the condition specified by M is satisfied. If location E originally contained

—2°5, set the Overflow and Carry 0 flags; if any other nonzero number, set

Carry 0 and Carry 1. If A is nonzero also place the result in AC.

SOS Subtract One from Memory but Do Not Skip 370

SOSL Subtract One from Memory and Skip if Less than Zero 371

SOSE Subtract One from Memory and Skip if Equal to Zero 372

SOSLE Subtract One from Memory and Skip if Less than or Se)
Equal to Zero

SOSA Subtract One from Memory and Skip Always 374

SOSGE Subtract One from Memory and Skip if Greater 375
than or Equal to Zero

SOSN Subtract One from Memory and Skip if Not Equal 376
to Zero

SOSG Subtract One from Memory and Skip if Greater 377
than Zero

Some of these instructions are useful for determining the relative values of

fixed and floating point numbers; others are convenient for controlling

iterative processes by counting. AOSE is especially useful in an interlock

procedure in a multiprocessor system. Suppose memory contains a routine

that must be available to two processors but cannot be used by both at once.

When one processor finishes the routine it sets location LOCK to —-1. Either

processor can then test the interlock and make it busy with no possibility of

letting the other one in, as AOSE cannot be interrupted once it starts to

modify the addressed location.

AOSE LOCK ;Skip to interlocked code only if

URIS EE = il ; ;LOCK is zero after addition

;Interlocked code starts here

SETOM LOCK ;Unlock

Since it takes several days to count to 2*, it is alright to keep testing the
lock. ;

65

§2.8 LOGICAL TESTING AND MODIFICATION

2.8 LOGICAL TESTING AND MODIFICATION

These eight instructions use a mask to modify and/or test selected bits in

AC. The bits are those that correspond to Is in the mask and they are

referred to as the “masked bits”. The programmer chooses the mask, the

way in which the masked bits are to be modified, and the condition the

masked bits must satisfy to produce a skip.

The basic mnemonics are three letters beginning with T. The second letter

selects the mask and the manner in which it is used.

Mask Letter Effect

Right R AC right is masked by E (AC is masked

by the word 0,.£)

Left Ib, AC left is masked by E (AC is masked by

the word E,0)

Direct D AC is masked by the contents of loca-

tion E

Swapped S AC is masked by the contents of loca-

tion E with left and right halves inter-

changed

The third letter determines the way in which those bits selected by the mask

are modified.

Modification Letter Effect on AC

No N None

Zeros Z Places Os in all masked bit positions

Complement C Complements all masked bits

Ones O Places 1s in all masked bit positions

An additional letter may be appended to indicate the mode, which spec-

ifies the condition the masked bits must satisfy to produce a skip.

Mode Suffix Effect

Never Never skip

Equal E Skip if <1] masked bits equal 0

Always Salk Always skip

Not Equal N Skip if not all masked bits equal 0

(at least one bit is 1)

If the mnemonic has no suffix there is never any skip, and the instruction is

a no-op if there is also no modification; an A suffix produces an uncondi-

tional skip — the skip always occurs regardless of the state of the masked

bits. Note that the skip condition must be satisfied by the state of the

masked bits prior to any modification called for by the instruction.

2-47

If a direct or swapped mask is ~
taken from a fast memory

location, a test instruction

takes .34 ys less than the

time listed.

These mode names are con-
sistent with those for arith-
metic testing and derive from
the test method, which ands

AC with the mask and tests
whether the result is equal to
zero or is not equal to zero.
The programmer may find it
convenient to think of the
modes as Every and Not
Every: every masked bit is 0
or not every masked bit is 0.

2-48

TRN is a no-op. —

66

CENTRAL PROCESSOR §2.8

TRN Test Right, No Modification, and Skip if Condition 1.85 (1.96) us
Satisfied

eo | aes Cee
ro) 56 789 12 13.14 1718 35

If the bits in‘AC right corresponding to Is in E satisfy the condition specified
by M, skip the next instruction in sequence. AC is unaffected.

TRN Test Right, No Modification, but Do Not Skip 600
TRNE Test Right, No Modification, and Skip if All 602

Masked Bits Equal 0

TRNA Test Right, No Modification, but Always Skip 604

TRNN Test Right, No Modification, and Skip if Not 606
All Masked Bits Equal 0

TRZ Test Right, Zeros, and Skip if Condition Satisfied 1.85 (1.96) ps

pee ey A eft Y
HOlen ease. 121314 1718 35

If the bits in AC right corresponding to 1s in E satisfy the condition specified
by M, skip the next instruction in sequence. Change the masked AC bits to
Os; the rest of AC is unaffected.

TRZ Test Right, Zeros, but Do Not Skip 620
TRZE Test Right, Zeros, and Skip if All Masked Bits 622

Equaled 0

TRZA Test Right, Zeros, but Always Skip 624
TRZN Test Right, Zeros, and Skip if Not All Masked 626

Bits Equaled 0

>

TRC Test Right, Complement, and Skip if Condition 1.85 (1.96) us
Satisfied

Dal A || y
0 7189 12 13 14 1718 35

If the bits in AC right corresponding to 1s in E satisfy the condition specified
by M, skip the next instruction in sequence. Complement the masked AC
bits; the rest of AC is unaffected.

TRC Test Right, Complement, but Do Not Skip 640

TRCE Test Right, Complement, and Skip if All Masked 642
Bits Equaled 0

TRCA Test Right, Complement, an Always Skip 644
TRCN Test Right, Complement, and Skip if Not All 646

Masked Bits Equaled 0

67

§2.8 LOGICAL TESTING AND MODIFICATION

TRO Test Right, Ones, and Skip if Condition Satisfied 1.85 (1.96) us

poe a aia Ae | Y |
0 189 121314 1718 35

If the bits in AC right corresponding to Is in E satisfy the condition specified

by M, skip the next instruction in sequence. Change the masked AC bits to

1s; the rest of AC is unaffected.

TRO Test Right, Ones, but Do Not Skip 660

TROE Test Right, Ones, and Skip if All Masked Bits 662

Equaled 0

TROA Test Right, Ones, but Always Skip 664

TRON Test Right, Ones, and Skip if Not All Masked 666

Bits Equaled 0

TLN Test Left, No Modification, and Skip if Condition 1.85 (1.96) Us

Satisfied

a A LZ xX | Va

189 121314 1718 35

If the bits in AC left corresponding to 1s in E satisfy the condition specified

by M, skip the next instruction in sequence. AC is unaffected.

TLN Test Left, No Modification, but Do Not Skip 601

TLNE Test Left, No Modification, and Skip if All 603

Masked Bits Equal 0

TLNA Test Left, No Modification, but Always Skip 605

TLNN Test Left, No Modification, and Skip if Not 607

All Masked Bits Equal 0

TLZ Test Left, Zeros, and Skip if Condition Satisfied 1.85 (1.96) us

Eo Heese Pak |
121314 1718 35

If the bits in AC left corresponding to 1s in E satisfy the condition specified

by M, skip the next instruction in sequence. Change the masked AC bits to

Os; the rest of AC is unaffected.

TLZ Test Left, Zeros, but Do Not Skip 621

TLZE Test Left, Zeros, and Skip if All Masked Bits 623

Equaled 0

TLZA Test Left, Zeros, but Always Skip 625

TLZN Test Left, Zeros, and Skip if Not All Masked 627

Bits Equaled 0

TLN is a no-op.

2-49

TDN is a no-op that refer-
ences memory.

68

CENTRAL PROCESSOR §2.8

TLC Test Left, Complement, and Skip if Condition 1.85 (1.96) us
Satisfied

oe ea y ie
S'On ei aSn9) 121314 1718 35

If the bits in AC left corresponding to 1s in E satisfy the condition specified
by M, skip the next instruction in sequence. Complement the masked AC
bits; the rest of AC is unaffected.

TLC Test Left, Complement, but Do Not Skip 641
TLCE Test Left, Complement, and Skip if All Masked 643

Bits Equaled 0

TLCA Test Left, Complement, but Always Skip 645
TLCN Test Left, Complement, and Skip if Not All 647

Masked Bits Equaled 0

TLO Test Left, Ones, and Skip if Condition Satisfied 1.85 (1.96) us

Se I ee Y a
12 13 14 1718 35

If the bits in AC left corresponding to 1s in E satisfy the condition specified
* by M, skip the next instruction in sequence. Change the masked AC bits to

ls; the rest of AC is unaffected.

TLO Test Left, Ones, but Do Not Skip 661
TLOE Test Left, Ones, and Skip if All Masked Bits 663

Equaled 0

TLOA Test Left, Ones, but Always Skip 665
TLON Test Left, Ones, and Skip if Not All Masked 667

Bits Equaled 0

TON Test Direct, No Modification, and Skip if Condition 2.70 (2.92) ps
Satisfied

Pets = oe we x : |
0 56 789 121314 1718. 35

If the bits in AC corresponding to Is in the contents of location E satisfy the
condition specified by M, skip the next instruction in sequence. AC is un-
affected.

TON Test Direct, No Modification, but Do Not Skip 610
TDNE Test Direct, No Modification, and Skip if All 612

Masked Bits Equal 0

TDNA Test Direct, No Modification, but Always Skip 614
TDNN - Test Direct, No Modification, and Skip if Not 616

All Masked Bits Equal 0

69

§2.8 LOGICAL TESTING AND MODIFICATION

TOZ Test Direct, Zeros, and Skip if Condition Satisfied 2.70 (2.92) us

See ele oe
789 121314 1718 35

If the bits in AC corresponding to 1s in the contents of location E satisfy the

condition specified by M, skip the next instruction in sequence. Change the

masked AC bits to Os; the rest of AC is unaffected.

TDz Test Direct, Zeros, but Do Not Skip 630
TDZE Test Direct, Zeros, and Skip if All Masked Bits 632

Equaled 0

TDZA Test Direct, Zeros, but Always Skip 634

TDZN Test Direct, Zeros, and Skip if Not All Masked 636

Bits Equaled 0

ToC Test Direct, Complement, and Skip if Condition 2.70 (2.92) ps

Satisfied

[6 ea ee a
SG 72889. 121314 1718 BS

If the bits in AC corresponding to 1s in the contents of location E satisfy the

condition specified by M, skip the next instruction in sequence. Complement

the masked AC bits; the rest of AC is unaffected.

TDC Test Direct, Complement, but Do Not Skip 650

TDCE Test Direct, Complement, and Skip if All Masked 652

Bits Equaled 0

TDCA Test Direct, Complement, but Always Skip 654

TDCN Test Direct, Complement, and Skip if Not All 656

Masked Bits Equaled 0

TDO Test Direct, Ones, and Skip if Condition Satisfied 2.70 (2.92) us

aie es
56 789 121314 1718 35

If the bits in AC coresnondine to 1s in the contents of location £ satisfy the

condition specified by M, skip the next instruction in sequence. Change the

masked AC bits to 1s; the rest of AC is unaffected.

TDO Test Direct, Ones, but Do Not Skip . 670

TDOE Test Direct, Ones, and Skip if All Masked Bits 672

Equaled 0

TDOA Test Direct, Ones, but Always Skip 674

TDON Test Direct, Ones, and Skip if Not All Masked 676

Bits Equaled 0

2-51

2-52

TSN is a no-op that refer-
ences memory.

70

CENTRAL PROCESSOR §2.8

TSN Test Swapped, No Modification, and Skip if 2.70 (2.92) ps
Condition Satisfied

eee ey ee ie
7189 121314 1718 35

If the bits in AC corresponding to 1s in the contents of location E with its
left and right halves swapped satisfy the condition specified by M, skip the
next mstruction in sequence. AC is unaffected.

TSN Test Swapped, No Modification, but Do Not Skip 611
TSNE Test Swapped, No Modification, and Skip if All 613

Masked Bits Equal 0

TSNA Test Swapped, No Modification, but Always Skip 615
TSNN Test Swapped, No Modification, and Skip if Not 617

: All Masked Bits Equal 0

TSZ Test Swapped, Zeros, and Skip if Condition Satisfied 2.70 (2.92) ms

ee i ee
56 789 121314 1718 35

If the bits in AC corresponding to 1s in the contents of location E with its
left and right halves swapped satisfy the condition specified by M, skip the
next instruction in sequence. Change the masked AC bits to Os; the rest of
AC is unaffected.

TSZ Test Swapped, Zeros, but Do Not Skip 631
TSZE Test Swapped, Zeros, and Skip if All Masked Bits 633

Equaled 0

TSZA Test Swapped, Zeros, but Always Skip 635
TSZN Test Swapped, Zeros, and Skip if Not All Masked 637

Bits Equaled 0

TSC Test Swapped, Complement, and Skip if Condition 2.70 (2.92) ps
Satisfied

aa ye
789 121314 1718 35

If the bits in AC corresponding to 1s in the contents of location E with its
left and right halves swapped satisfy the condition specified by M, skip the
next instruction in sequence. Complement the masked AC bits; the rest of
AC is unaffected.

TSC Test Swapped, Complement, but Do Not Skip 651
TSCE Test Swapped, Complement, and Skip if a : 653

Masked Bits Equaled 0

71

§2.8 LOGICAL TESTING AND MODIFICATION
'

TSCA Test Swapped, Complement, but Always Skip 655

TSCN Test Swapped, Complement, and Skip if Not 657

All Masked Bits Equaled 0

TSO Test Swapped, Ones, and Skip if Condition Satisfied 2.70 (2.92) us

Me Ue eee ee
0 Has As eHC) 121314 1718 35

If the bits in AC corresponding to Is in the contents of location E with its

left and right halves swapped satisfy the condition specified by M, skip the

next instruction in sequence. Change the masked AC bits to 1s; the rest of

AC is unaffected.

TSO Test Swapped, Ones, but Do Not Skip 671

TSOE Test Swapped, Ones, and Skip if All Masked Bits 673

Equaled 0

TSOA Test Swapped, Ones, but Always Skip 675

TSON Test Swapped, Ones, and Skip if Not All Masked 677

Bits Equaled 0

With these instructions any bit throughout all of memory can be used as a

program flag, although an ordinary memory location containing flags must

be moved to an accumulator for testing or modification. The usual pro-

cedure, since locations 1-17 are addressable as index registers, is to use AC 0

as a register of flags (often addressed symbolically as F).

Unless one frequently tests flags in both halves of F simultaneously, it is

generally most convenient to select bits by Is right in the address part of the

instruction word. A given bit selected by a half word mask M is then set by

one of these:

TRO F,M TLO F,M

and tested and cleared by one of these:

TRZE F,M TRZN F,M TLZE F,M TLZN F,M

Suppose we wish to skip if both bits 34 and 35 are 1 inlocation L. The

following suffices.

SETCM F,L
TRNE © E73

We can refer to a flag in a given bit position within a word as flag X, where X

is a binary number containing a single 1 in the same bit position as the flag.

This sequence determines whether flags X and Y in the right half of accumu-

lator F are both on:

2-54

As no-ops, code 247 takes
1.50 (1.61) us, 257 takes
1.36 (1.47) us.

Note that nothing is stored in
bits 13-17, so when the PC

word is addressed indirectly it

can produce neither indexing
nor further indirect address-
ing.

72

CENTRAL PROCESSOR §2.9

TRC BAe ays ;Complement flags X and Y
TRCE BexXery: ;Test both and restore original states
aie ;Do this if not both on

;Skip to here if both on

2.9 PROGRAM CONTROL

The program control class of instructions includes the unimplemented user
operations [discussed in the next section] and the arithmetic and logical test
instructions. Some instructions in this class are no-ops, as are a few of the
instructions for performing logical operations. The most commonly used
no-op is JFCL, which is discussed below. No-ops among the instructions
previously discussed are SETA, SETAI, SETMM, CAI, CAM, JUMP, TRN,
TLN, TDN, TSN. Of these, SETA, SETAI, CAI, JUMP, TRN and TLN do
not use the calculated effective address to reference memory. Hence in these
instructions one can store any information in bits 18-35 without fear of
attempting to address a location outside a user block or in a memory that
does not exist. The unassigned instruction codes 247 and 257 are used for
instructions installed specially for a particular system. They execute as
no-ops when run on a computer that contains no special hardware for them,
but for program compatibility it is advised that they not be used regularly as
no-ops.

The present section treats all program control instructions ‘other than
those mentioned above and in-out instructions that test input conditions
[$2.12]. All but one of these are jumps, although the exception causes the
processor to execute an instruction at an arbitrary location and may there- _
fore be regarded as a jump with an immediate and automatic return. Also,
all but two of the jumps are unconditional; one exception tests various flags,
the other tests an accumulator.

Several of the jump instructions save the current contents of the program
counter PC in the right half of an accumulator or memory location and save
the states of various flags in the left half. The left bit positions that receive
information are listed below; all other left bit positions are cleared. An X in
a mnemonic indicates any letter (or none) that may appear in the given
position to specify the mode, eg ADDY comprises ADD, ADDI, ADDM,
ADDB.

Bit Meaning of a 1 in the Bit

0 Overflow — any of the following has occurred:

A single instruction has set one of the carry flags (bits 1 and 2)
without setting the other.

An ASH or ASHC has left shifted a1 out of bit 1 in a positive
number or a 0 out in a negative number.

An MULX has multiplied —2%° by itself (product 27).
An IMULX has multiplied two numbers with product > 2%5 or
ee

§2.9

73

PROGRAM CONTROL

Floating Overflow has been set (bit 3).

No Divide has been set (bit 12).

Carry 0 — if set without Carry | (bit 2) being set, causes Overflow to

be set and indicates that one of the following has occurred:

An ADDX has added two negative numbers with sum <—2*°.

An SUBX has subtracted a positive number from a negative num-

ber with difference <—2°.

An SOJX or SOSX has decremented —2°°.

But if set with Carry 1, indicates that one of these nonoverflow

events has occurred:

In an ADDX both summands were negative, or their signs differed

and their magnitudes were equal or the positive one was the

greater in magnitude.

In an SUBX the signs of the operands were the same and AC was

the greater or the two were equal, or the signs of the operands

differed and AC was negative.

An AOJX or AOSX has incremented —1.

An SOJX or SOSX has decremented a nonzero number other than

735.

An MOVNX has negated zero.

Carry 1 — if set without Carry 0 (bit 1) being set, causes Overflow to

be set and indicates that one of the following has occurred:

An ADDX has added two positive numbers with sum > IE

An SUBX has subtracted a negative number from a positive num-

ber with difference > 2°.

An AOJX or AOSX has incremented 27° — 1.

An MOVNX or MOVMX has negated —2*°.

But if set with Carry 0, indicates that one of the nonoverflow events

listed under Carry 0 has occurred.

Floating Overflow — any of the following has set Overflow:

In a floating point instruction other than DFN, the exponent of

the result was > 127.

Floating Underflow (bit 11) has been set.

No Divide (bit 12) has been set in an FDVX or FDVRX.

Byte Interrupt — the processor is in a priority interrupt that inter-

rupted a byte instruction after the processing of the pointer but

before the processing of the byte. Hence if an ILDB or IDPB was

interrupted, the pointer now points not to the last byte, but rather

to the byte that should be handled upon the return to the inter-

rupted program [§2.13].

User — the processor is in user mode [§2.15].

Remember [§2.5], overflow
is determined directly from
the carries, not from the
flags. The carry flags give
meaningful information only
if no more than one instruc-
tion that can set them occurs
between clearing and reading

them.

74

2-56 - CENTRAL PROCESSOR ‘ §2.9

46 User In-out — even if the processor is in user mode, no instructions
are illegal (but protection and relocation still apply) [$2.15].

11 Floating Underflow — in a floating point instruction other than
DFN, the exponent of the result was < —128 and Overflow and
Floating Overflow have been set.

12 No Divide — any of the following has set Overflow:

In a DIVX the dividend was greater than or equal to the divisor.

In an IDIVX the divisor was zero.

If normalized operands are In an FDVX or FDVRX the divisor was zero, or the dividend
used, only a zero divisor can fraction was greater than or equal to twice the divisor fraction in
cause floating division to fail. magnitude; in either case Floating Overflow has been set.

FLOATING BYTE FLOATING
OVERFLOW OVERFLOW INTERRUPT UNDERFLOW

CARRY | CARRY

0 1

1 2

FLAG FORMAT, LEFT HALF OF PC WORD

The total time required is XCT Execute 1.36 (1.47) us
that listed plus the time for
the instruction executed. If £ | Be ey oe Y | addresses a fast memory loca- ante ane ae
tion, the instruction executed

takes .34 us less than the time
listed for it.

Execute the contents of location £ as an instruction. Any instruction may
be executed, including another XCT. If an XCT executes a skip instruction,
the skip is relative to the location of the XCT (the first XCT if there are

The A portion of this instruc- several in a chain). If an XCT executes a jump, program flow is altered as
tion is ignored. specified by the jump (no matter how many XCTs precede a jump instruc-

tion, when PC is saved it contains an address one greater than the location of
the first XCT in the chain).

N is the number of leading Os. JFFO Jump if Find First One 2.19 (2.30) + .20 (N mod 18) ps

ee ee ee
0 1213 14 1718 35

If AC contains zero, clear AC A+1 and go on to’ the next instruction in
sequence.

If AC is not zero, count the number of leading Os in it (Os to the left of
the leftmost 1), and place the count in AC A+1. Take the next instruction

75

§2.9 PROGRAM CONTROL

from location E and continue sequential operation from there.

In either case AC is unaffected, the original contents of AC A+1 are lost.

JFCL Jump on Flag and Clear

ES)

0

‘If any flag specified by F is set, clear it and take the next instruction from

location E, continuing sequential operation from there. Bits 9-12 are pro-

grammed as follows.

1.36 (1.47) us

nA ok j 7
89 121314 1718 35

Bit Flag Selected by al

9 Overflow

10 Carry 0

11 Carry |

12 Floating Overflow

To select one or a combination of these flags (which are among those des-

cribed above) the programmer can specify the equivalent of an AC address

that places 1s in the appropriate bits, but Macro recognizes mnemonics for

“some of the 13-bit instruction codes (bits 0-12).

JFCL TECE<30; No-op 25500

JOV JFCL 10, Jump on Overflow 25540

JCRYO JFCL 4, Jump on Carry 0 25520

JCRY 1 JP CI: 2; Jump on Carry | 25510

JCRY JREGIE 6; Jump on Carry 0 or | 25530

JFOV HCE Sas Jump on Floating Overflow 25504

JSR Jump to Subroutine 2.68 (2.79) us a

pupmeeiy [AT lex Y
Omen 89 121314 1718 35

Place the currént contents of the flags (as described above) in the left half of

location E and the contents of PC in the right half (at this time PC contains

an address one greater than the location of the JSR instruction). Take the

next instruction from location E + 1 and continue sequential operation from

there. The flags are unaffected except Byte Interrupt, which is cleared.

While the processor is in user mode, if this instruction is executed as an in- 4

terrupt instruction or in unrelocated 41 or 61, bit 5 of the PC word stored is

1 and the processor leaves user mode.

2-57

Note that when AC is nega-
tive, the second accumulator

is cleared, just as it would be

if AC were zero.

This instruction can be used
simply to clear the selected
flags by having the jump ad-
dress point to the next con-
secutive location, as in

VEC sleet

which clears all four flags
without disrupting the nor-
mal program sequence. A
JFCL that selects no flag is
the fastest no-op as it neither
fetches nor stores an operand,

and bits 18-35 of the instruc-
tion word can be used to
store information.

Interleaving memories saves

47 (.36) us.

The A portion of this instruc-
tion is ignored.

2-58

This is identical to UUO trap-
ping [§2.10].

MA actually displays the
address of the location that
would have been executed
next had the JRST been re-

placed by a no-op. So except
for a JRST in a _ priority
interrupt, MA points to the

location one beyond that
containing the instruction
that caused the halt. This
instruction is ordinarily the
JRST or perhaps an XCT, but
could even be a UUO.

76

CENTRAL PROCESSOR §2.9

JSP Jump and Save PC 1.36 (1.47) us

265 As | Ui| Xe Y:
0 89 1213 14 1718 35

Place the current contents of the flags (as described above) in AC left and
the contents of PC in AC right (at this time.PC contains an address one
greater than the location of the JSP instruction). Take the next instruction
from location E and continue sequential operation from there. The flags
are unaffected except Byte Interrupt, which is cleared.

While the processor is in user mode, if this instruction is executed as an in-
terrupt instruction or in unrelocated 41 or 61, bit 5 of the PC word stored is
1 and the processor leaves user mode.

_ SRST Jump and Restore 1.36 (1.47) ps

254 F x Y |
0 89 1213 14 17 18 35

Perform the functions specified by F, then take the next instruction from
location & and continue sequential operation from there. Bits 9-12 are
programmed as follows. —

Bit Function Produced by a 1

9 Restore the channel on which the highest priority interrupt is cur-
rently being held [§ 2.13].

Unless the User In-out flag is set, this function cannot be executed
in a user program. Instead of restoring the channel, it stores its own
instruction code, F and effective address E in bits 0-8, 9-12 and
18-35 respectively of unrelocated location 40 (clearing bits 13-17),
and then executes the instruction contained in location 41, which is
under control of the monitor [§2.15].

10 Halt the processor. When it stops, the MA lights on the console dis-
play an address one greater than that of the location containing the
instruction that caused the halt, and PC displays the jump address
(the location from which the next instruction will be taken if the
operator causes the processor to resume operation without changing
PC).

Unless the User In-out flag is set, this function cannot be executed
in a user program. Instead of halting the processor, it stores its
own instruction code, F and effective address E in Bits 0-8, 9-12
and 18-35 respectively of unrelocated location 40 (clearing bits
13-17), and then executes the instruction contained in location 41,
which is under control of the monitor [§ 2.15].

11 Restore the flags listed above from the left half of the word in the
‘last location referenced in the effective address calculation. Hence
to restore flags requires that the JRST instruction use indexing or

77

§2.9 PROGRAM CONTROL

indirect addressing.

Restoration of all but the user flags is directly according to the

contents of the corresponding bits as given above: a flag is set by a |

in the bit, cleared by a0. A 1 in bit 5 sets User but a O has no effect,

so the Monitor can restart a user program by restoring flags but the

user cannot leave user mode by this method. A 0 in bit 6 clears User

In-out, but-a 1 sets it only if the JRST is being executed by the

Monitor, ie if User is clear.

12 Enter user mode. The user program starts at relocated location E.

To produce one or a combination of these functions the programmer can

specify the equivalent of an AC address that places Is in the appropriate bits,

but Macro recognizes mnemonics for the most important 13-bit instruction

codes (bits 0-12).

JRST JRST 0, Jump 25400

JRST 10, Jump and Restore 25440
Interrupt Channel

HALT JRST 4, Halt 25420

JRSTF TRS iee2: Jump and Restore Flags 25410

IRSE s1, Jump to User Program 25404 ,

JEN JRSL 12; Jump and Enable 25450

In a JRSTF or JEN the flags are restored from bits 0-12 of the final word

retrieved in the effective address calculation; hence any JRST with a | in bit

11 must use indirect addressing or indexing, which takes extra time. If the

PC word was stored in AC (as in a JSP), a common procedure is to use AC to

index a zero address (eg, JRSTF (AC)), so its right half becomes the effec-

tive (jump) address. If the PC word was stored in core (as in a JSR), one

must address it indirectly (remember, bits 13-17 of the PC word are clear,

so again its right half is the effective address). A JRSTF (AC) takes 1.64

(1.75) us, a JRSTF @PCWORD takes 2.34 (2.56) us.

CAUTION

Giving a JRSTF or JEN without indexing or
indirect addressing restores the flags from the

instruction code itself.

While the processor is in user mode, if this instruction is executed as an in-

terrupt instruction or in unrelocated 41 or 61, bit 5 of the PC word stored is

1 and the processor leaves user mode.

JFCL is the only jump that can test any of the flags directly. In fact it is

the only basic program control instruction that can do so — several of the

flags can be tested as processor conditions by in-out instructions, but these

are ordinarily illegal in user programs anyway. But JFCL can test only four

2250”

By manipulating the contents
of the left half word used to
restore the flags, the program-
mer can set them up in any
desired way except that a
user program cannot clear
User or set User In-out. Set-
ting Byte Interrupt prevents

incrementing in the next
ILDB or IDPB provided there
is no intervening JSR, JSP or

PUSH.

JEN completes an interrupt
by restoring the channel and
restoring the flags for the
interrupted program.

2-60

The fastest skip is CAIA.

78

CENTRAL PROCESSOR §2.9

of the flags, and it saves no information for a subsequent return from a sub-
routine. Hence it serves as a branch point for entry into either one of two
main paths, which may or may not have a later point in common. Eg, it may
test the carry flags simply to take appropriate action in a double precision
fixed point routine.

JSR and JSP are regularly used to call subroutines. They are uncondi-
tional, but the execution of such an instruction can be the result of a
decision made by any conditional skip or jump. In the case of the flags, a
basic overflow test and subroutine call can be made as follows.

JOV a2

JRST pated, ;Faster than skipping
JSR OVRFLO ;Jump over this if Overflow clear

If we wish to go to the DIVERR routine when No Divide is set, we must first
read the flags into a test accumulator T and then use a test instruction.

JSP Tease ;Store flags but continue in sequence
TLNE T,40 340 left selects bit 12

JSR DIVERR ;Skip this if No Divide clear

A subroutine called by a JSR must have its entry point reserved for the PC
word. Hence it is nonreentrant: the JSR modifies memory so the subroutine
cannot be shared with other programs. The JSP requires an accumulator,
but it is faster and is convenient for argument passing. To return from a
JSR-called subroutine one usually addresses the PC word indirectly, return-
ing to the location following the JSR. But there are two ways to get back
from a JSP. We can address the PC word indirectly with a JRST @AC (or
JRSTF @AC if the flags must be restored), but we can also get it by
addressing AC as an index register: JRST (AC). By using the second return
method we can place N words of data for the subroutine immediately after
the call, and return to the location following the data by giving a
JRST MAC).

Suppose we wish to call a print subroutine and supply the words from
which the characters are to be taken. Our main program would contain the
following:

JSP T,PRINT . ;Put PC word in accumulator T
3 ;Text inserted here by ASCIZ pseudo-

;instruction, which automatically

;places a zero (null) character at the

send

;Next instruction here

The subroutine can use T as a byte pointer which already addresses the first
word of data. For the print routine, characters are loaded into another
accumulator CH. e

79

82:9 PROGRAM CONTROL

PRINT: HRLI T,440700 ;Initialize left half of pointer

ILDB GEET ;Increment pointer and load byte

JUMPE CH,1(T) ;Upon reaching zero character return

;to one beyond last data word

;Print routine

JRST PRINT+1 ;Get next character

JSA Jump and Save AC 2.82 (2.93) ps

Y
0 89 1213 14 1718 35

Place AC in location E, the effective address E in AC left, and the contents

of PC in AC right (at this time PC contains an address one greater than the

location of the JSA instruction). Take the next instruction from location

E+1 and continue sequential operation from there. The original contents

of E are lost.

While the processor is in user mode, if this instruction is executed as an in-

terrupt instruction or in unrelocated 41 or 61, bit 5 of the PC word stored is

1 and the processor leaves user mode.

JRA Jump and Restore AC 2.92 (3.14) us

y
0 89 121314 1718 35

Place the contents of the location addressed by AC left into AC. Take the

next instruction from location E and continue sequential operation from

there.

A JSA combines advantages of the JSR and JSP. JSA does modify

memory, but it saves PC in an accumulator without losing its previous

contents (at a cost of not saving the flags). It is thus convenient for multiple-

entry subroutines. In a subroutine called by a JSR, the returning JRST must

refer to the (single) entry point. Since a JRA can retrieve the original PC by

addressing AC as an index register, it is independent of any entry point

without tying up an accumulator to the extent a JSP would.

The accumulator contents saved by a JSA are restored by a JRA paired

with. it despite intervening JSA-JRA pairs. Hence these instructions are

especially useful for nesting subroutines, as shown by this example.

2-61

Interleaving memories saves

47 (.36) us.

In Fortran IV, a CALL

statement uses JSA with AC

16.

2-62

Keeping instructions and the
pushdown list in different
memories saves .47 (.36) us.

80

CENTRAL PROCESSOR §2.9

;Main program

ISA 17,81 ;Call to first subroutine (A)

Sis 0 ;First subroutine starts here

ISA 17,S2 :Call to second Baprottine (B)

Tes WG wp) ;Return to A + 1 in main program

Spx 0 ; ;Second subroutine starts here

ISA Le7sS3, ;Call to third subroutine (C)

fea 17,17) -Return to 8 + 1 in first subroutine

$3 ; 0 ;Third subroutine starts here

JRA : 17,(17) ;Return to C+ | in second subroutine

To call the next deeper subroutine at any level, a JSA places E and PC in the

left and right of AC 17, saves the previous contents of AC 17 in E (the first

subroutine location), and jumps to £+1. To return to the next higher level,

a JRA restores the previous contents of AC 17 from the location addressed

by AC 17 left (the first subroutine location) and jumps to the location

addressed by AC 17 right (the location following the JSA in the higher sub-

routine). If N lines of data for the next subroutine follow a JSA, the return

to the location following the data is made by givinga JRA 17,N(17).

PUSHJ Push Down and Jump 3.00 (3.11) us

260 v7 Neel ee @ Y
0 89 121314 1718 35

Add 1000001, to AC to increment both halves by one and place the result

back in AC. If the addition causes the count in AC left to reach zero, set the

Pushdown Overflow flag. Then place the current contents of the flags (as

described above) in the left half of the location now addressed by AC right
and the contents of PC in the right half of that location (at this time PC

contains an address one greater than the location of the PUSHJ instruction).

Take the next instruction from location E and continue sequential operation

from there.

The flags are unaffected except Byte Interrupt, which is cleared. The

original contents of the location added to the list are lost.

While the processor is in user mode, if this instruction is executed as an in-

terrupt instruction or in unrelocated 41 or 61, bit 5 of the PC word stored is

1 and the processor leaves user mode.

81

§2.9 PROGRAM CONTROL

POPJ Pop Up and Jump 2.96 (3.18) us

263 ACSF TG Xe Y

0 89 121314 1718 35

Subtract 1000001, from AC to decrement both halves by one and place the

result back in AC. If the subtraction causes the count in AC left to reach —1,

set the Pushdown Overflow flag. Take the next instruction from the location

addressed by the right half of the location that was addressed by AC right

prior to the decrementing, and continue sequential operation from there.

The address of the top item in the pushdown list is kept in the right half

of the pointer in AC, and the program can keep a control count in the left

half. The incrementing and decrementing of both halves of AC simulta-

neously is effected by adding and subtracting 1000001,. Hence a count of

—2 in AC left is increased to zero if 2!*— 1 is incremented in AC right, and

conversely, 1 in AC left is decreased to —1 if zero is decremented in AC

right.
Since the pushdown list is independent of the subroutine called, PUSHJ-

POPJ can be used like JSA-JRA for multiple entries. Moreover, ordering by

level is inherent in the structure of a pushdown list [§2.2], so paired

PUSHJ-POPJ instructions are excellent for nesting subroutines: there can be

any number of subroutines at any level, each with more subroutines nested

within it. Recursive subroutines are also possible.
Unlike JSA-JRA, the pushdown instructions tie up an accumulator, but

the usual procedure is to keep both data and jump addresses in a single list so

only one AC is required for the most complex pushdown operations. The

programmer must keep track of whether a given entry in the list is data or

a PC word; in other words, every item inserted by a PUSH should be

removed by a POP, and every PUSHJ should be matched by a POPJ. If flag

restoration is desired, the returning

x POPJ I,

can be replaced by

POP P,AC
JRSTF (AC)

which requires another accumulator. If the flags are not important, data

may be stored in the left halves of the PC words in the stack, reducing the

required pushdown depth.
By using the Pushdown Overflow flag and a control count in AC left, the

programmer can set a limit to the size of the list by starting the count

negative, or he can prevent the program from extracting more items than

there are in the list by starting the count at zero, but he cannot do both at

once. If only jump addresses are kept in the list, the first procedure limits

the depth of nesting. A technique to catch extra POPJs is to put a PC word

addressing an error routine at the bottom of the list.

2-63

The effective address E is

ignored.

An unimplemented user oper-
ation is usually referred -to as
a UUO, but this mnemonic
means nothing to the assem-
bler. UUOs are also some-
times called “programmed
operators”.

The total time required is
that listed plus the time for
the instruction in location 41.
Interleaving memories 0 and
1 saves .47 (.36) us.

“Execute” here means in the

sense of the instruction XCT.

82

§2.10 CENTRAL PROCESSOR

2.10 UNIMPLEMENTED OPERATIONS

Many of the codes not assigned as specific instructions are executed as

unimplemented user operations, wherein the word given as an instruction is

trapped and must be interpreted by a routine included for this purpose by

the programmer. In time sharing, however, half of the codes are set aside for .

user communication with the Monitor and are interpreted by it. Instructions

that are illegal in user mode also trap in this manner.

Unimplemented User Operation 2.33 (2.44) us

9 0 8 121314 1718 35

Store the instruction code, A and the effective address E in bits 0-8, 9-12

and 18-35 respectively of location 40; clear bits 13-17. Execute the

instruction contained in location 41. The original contents of location 40

are lost.

All of these codes are equivalent when they occur in the Monitor or when

time sharing is not in effect. But when a UUO appears in a user program, a

code in the range 001-037 uses relocated locations 40 and 41 (ie 40 and 41

in the user’s block) and is thus entirely a part of and under control of the

user program. A code in the range 040-077 on the other hand uses

unrelocated 40 and 41, and the instruction in the ‘latter location is under

control of the Monitor; these codes are thus specifically for user communica-

tion with the Monitor, which interprets them (refer to the Monitor manual

for the meanings of the various codes). The code 000 executes in the same

way as 040-077 but is not a standard communication code: it is included so

_ that control returns to the Monitor should a user program wipe itself out.

For a second processor connected to the same memory, the UUO trap is

locations 140-141 instead of 40-41.

The unimplemented operations also include the reserved (unassigned)

instruction codes 100-127, which execute like the Monitor-calling UUOs

but use unrelocated 60-61 (160-161 for a second processor); thus the

Monitor steps in when a user gives an incorrect code. The codes 130-177,

which are the floating point and byte manipulation instructions, are equiva-

lent to the unassigned codes if unimplemented, ie if the optional hardware

for them is not included. In this case all codes 100-177 trap to unrelocated

60-61. In general it is assumed that if software is available for floating point

and byte manipulation, the Monitor is responsible for calling the appropriate

routines.

83

Sil PROGRAMMING EXAMPLES

2.11 PROGRAMMING EXAMPLES

Before continuing to input-output and related subjects, let us consider som

simple programs that demonstrate the use of a variety of the instruction

described thus far.

Suppose we wish to count the number of ls in a word. We could of

course check every bit in the word. But there is a quicker way if we remem-

ber that in any word and its twos complement the rightmost | is in the same

position, both words are all Os to the right of this 1, and no corresponding

bits are the same to the left (the parts of both words at the left of the right-

most | are complements). Hence using the negative of a word as a mask for

the word in a test instruction selects only the rightmost | for modification.

_ The example uses three accumulators: the word being tested (which is lost)

is in T, the count is kept in CNT, and the mask created in each step is stored

in TEMP.

MOVEI CNT,0O ;Clear CNT

MOVN~ TEMP,T ;Make mask to select rightmost |

TDZE T, TEMP ;Clear rightmost | in T

AOJA GNIE-=2 ;Increase count and jump back

;Skip to here if no Is left in T

CNT is increased by one every time a 1 is deleted from T. After all Is have

been removed, the TDZE skips.

In the standard algorithm for converting a number WN to its equivalent in

base b, one performs the series of divisions

N/b = q,+r,/b ry<b

q,/b = qd2.+1r,/b ry <b

q2/b = q3+173/b 365

Gn-1/b ar Oca iaeie In <b

The number in base’ b is then r,...73r2r,. Eg the octal equivalent of 61

decimal is 75: |

61/8 = 7+5/8

7/8 = 0O+7/8

The following decimal print routine converts a 36-bit positive integer in

accumulator T to decimal and types it out. The contents of T and T + | are

destroyed. The routine is called by a PUSHJ P, DECPNT where P is the

pushdown pointer.

DECPNT: IDIVI lise 512, = 10;

PUSH peplicteal ;Save remainder

SKIREZasTe es ;All digits formed?

PUSHJ P,DECPNT ;No, compute next one

2-66

MACRO interprets a number
following tD as decimal.

84

CENTRAL PROCESSOR §2.11

DECPN1: POP Bel ;Yes, take out in opposite order

ADDI T,60 ;Convert to ASCII (60 is code for 0)

IRS. JoekbyYOUL ;Type out

This routine repeats the division until it produces a zero quotient. Hence it

suppresses leading zeros, but since it is executed at least once it outputs one

“0” if the number is zero. The TTYOUT routine returns with a POPJ P, to

DECPN1 until all digits are typed, then to the calling program.

Space can be saved in the pushdown stack by storing the computed digits

in the left halves of the locations that contain the jump addresses. This is

accomplished in the decimal print routine by making the following substi-

tutions.

PUSH P,T+1 > HRLM T+1,(P)

POR SSP SS soa HERZ 40. (2)

The routine can handle a 36-bit unsigned integer if the IDIVI T,12 is

replaced by

SHG res beDBS ;Shift right 35 bits into T+1

LSH Tarlo ;Vacate the T+1 sign bit :

DIVI eal 2 ;Divide double length integer by 10

Many data processing situations involve searching for information in tables

and lists of all kinds. Suppose we wish to find a particular item in a table

beginning at location TAB and containing N items. Accumulator T contains

the item. The right half of A is used to index through the table, while the

left half keeps a control count to signal when a search is unsuccessful.

MOVSI A,—N ;Put -N, Oin A
CAMN~ T,TAB(A) _ - ;Skip if current item not the one

JRST FOUND ;Item found

AOBJN A,.-2 ;Try next item until left count = 0

Tesh ;Item not in list

The location of the item (if found) is indicated by the number in the right

half of A (its address is that quantity plus TAB). A slightly different pro-

cedure would be :

HRLZI A,-—N

CAME T,TAB(A)

AOBJN A,.-1

JUMPL A,FOUND ;Jump if left count < 0

See ;Item not found

;Skip if current item is the one
\

Locations used for a list can be scattered throughout memory if data is

kept in the left half of each location and the right half addresses the next

location in the list. The final location is indicated by a zero right half. The

following routine finds the last half word item in the list. It is entered at

FIND with the first location in the list addressed by the right half of

accumulator T. At the end the final item is in T right.

85

§2.11 PROGRAMMING EXAMPLES 2-67
+

MOVE 1T,(T) ;Move next item to T

FIND: RRNES SLs 7 77 Skip if AC right = 0

JRST 2)

HLRZS T ;Move final item to right

Thé following counts the length of the list in accumulator CNT.

MOVEI CNT,0O ;Clear CNT

JUMPE T,OUT ;Jump out if T contains 0

HRRZ =. EG) ;Get next address

AOJA GNie—9) ;Count and go back

Double Precision Floating Point. The following are straightforward rou-
tines for handling double precision floating point arithmetic [§ 2.6 describes

the floating point instructions] .

DFAD: UFA At+1,M+1 ;Sum of low parts to A+2

FADL A,M ;Sum of high parts to A, A+1

UFA A+1,A+2 ;Add low part of high sum to A+2

FADL A,A+2 ;Add low sum to high sum

POPJ Be:

DFSB: DFN A,At+1 ;Negate double length operand

PUSHJ P,DFAD ;Call double floating add

DFN A,A+1 3-(M — AC) = AC-M

POPJ pi

DFMP: MOVEM A,A+2 ;Copy high AC operand in A+2

FMPR A+2,M+1 ;One cross product to A+2

FMPR =~ A+1,M ;Other to A+1

UFA A+1,A+2 ;Add cross products into A+2

FMPL A,M ;High product to A, A+]

UFA A+1,A+2 ;Add low part to cross sum in A+2

FADL A,A+2 ;Add low sum to high part of product

POPJ 1.

A double precision division is of the form

A 2 OOK

B Died Kat

Using the relationship

A/bis=— 1g rx 24/D

where q and r are the quotient and remainder produced by FDVL, the

following routine computes a double length quotient by the algorithm

in =27 A ye qd) X2

B b
IR

"which gives a result correct to the next-to-last bit in the low order half. .

2-68

4 Times are given for IO in-
structions when they occur
alone. When two IO instruc-
tions are given consecutively,
the second often takes longer
(refer to the timing chart in
Appendix C for details).

This is identical to UUO trap-
ping [$2.10].

E will always be regarded as
being bits 18-35, even though
it is actually placed on both
halves of the bus and many
devices receive the informa-
tion from the left half.

86

CENTRAL PROCESSOR §2.12

DFDV: FDVL A,M ;Get high part of quotient

MOVN A+2,A ;Copy negative of quotient in A+2

FMPR A+2,M+1 ;Multiply by low part of divisor

UFA At+1,A+2 ;Add remainder

FDVR A+2,M ;Divide sum by high part of divisor

FADL A,A+2 ;Add result to original quotient

POPJ Ps

2.12 INPUT-OUTPUT

‘The input-output instructions govern all transfers of data to and from the

peripheral equipment, and also perform many operations within the proc-

essor. An instruction in the in-out class is designated by 111 in bits 0-2, ie

its left octal digit is 7. Bits 3—9 address the device that is to respond to the

instruction. The format thus allows for 128 codes, two of which, 000 and

004 respectively, address the processor and priority interrupt, and are used

for the console and time share hardware as well. A chart ‘n Appendix A
lists all devices for which codes have been assigned, and gives their

mnemonics and DEC option numbers.

Bits 13-35 are the same as in all other instructions: they are the J, X, and

Y parts, which are used to calculate an effective address, set of conditions,

or mask to be used in the execution of the instruction. The remaining bits,

10-12, select one of the following eight IO instructions.

Note

All instructions described in the remainder of this manual are in-out

instructions, which cannot be executed in user programs unless the

User In-out flag is set. If an in-out instruction appears in a user pro-

gram while User In-out is clear, it does not perform the functions given

for it in the instruction description. Instead it stores its own instruc-

tion and device codes in bits 0-12 and its effective address E in bits

18-35 of unrelocated location 40 (clearing bits 13-17), and then

executes the instruction contained in location 41. The latter location

is under control of the Monitor [§2.15].

This user restriction will not be mentioned in the instruction descrip-

tions, as it applies to all instructions from this point on.

CONO Conditions Out 3.90 (4.01) us

D 20 ne. Y
i) 23 910 121314 1718 35

Set up device D with the effective initial conditions E. The number of con-

dition bits in £ that are actually used depends on the device.

87

§2.12 INPUT-OUTPUT

CONI Conditions In 4.87 (4.98) us

D DANE SEX Y
0 23 910 121314 1718 3 35

Read the input conditions from device D and store them in location E. The

number of condition bits stored depends on the device; the remaining bits

in location E are cleared.

DATAO Data Out 4.75 (4.97) us

(Gia pe ae) Y
0 Ris. 910 121314 1718 35

Send the contents of location E£ to the data buffer in device D, and perform

whatever control operations are appropriate to the device.

The amount of data actually accepted by the device depends on the size

of its buffer, its mode of operation, etc. The original contents of location E

are unaffected.

DATAI Data In 4.87 (4.98) us

0 23 910 1213 14 1718 35

Move the contents of the data buffer in device D to location E, and perform

whatever control operations are appropriate to the device.

The number of data bits stored depends on the size of the device buffer,

its mode of operation, etc. Bits in location E that do not receive data are

cleared.

CONSZ Conditions In and Skip if Zero 4.11 (4.22) us

laa Od naa ae See
0 23 910 121314 17 18 * 35

Test the input-conditions from device D against the effective mask E£. If all

condition bits selected by Is in E& are Os, skip the next instruction in

sequence. : 2

If the device supplies more than 18 condition bits, only the right 18 are

tested.

2-69

Keeping instructions and op-

erands in different memories
saves .47 (.36) us. Bringing
conditions into fast memory
saves .46 (.35) us.

Taking the output word from
fast memory saves .34 us.

Keeping instructions and op-

erands in different memories
saves .47 (.36) ys. Placing the
input data in fast memory
saves .46 (.35) ys.

Keeping the pointer in fast
memory saves .43 (.34) us.

Keeping the pointer in fast
memory saves .34 us. Keeping
the instruction and the data

block in different memories
saves .47 (.36) us.

A block IO instruction is

effectively a whole in-out
data handling subroutine. It
keeps track of the block loca-

tion, transfers each data

word, and determines when

the block is finished.

Initially the left half of the

pointer contains the negative
of the number of words in

the block, the right half con-
tains an address one less than

that of the first word in the

block.

88

CENTRAL PROCESSOR §2.12

Conditions In and Skip if One CONSO 4.11 (4.22) us

7 D Bra Ee 2 3X Y
0 23 910 121314 1718 35

Test the input conditions from device D against the effective mask E. If any

condition bit selected by a | in £ is 1, skip the next instruction in sequence.

If the device supplies more than 18 condition bits, only the right 18 are

tested.

BLKO 6.49 (6.71) us

ee ee
121314 1718 35

Block Out

BLKI Ga In

0 23

6.49 (6.71) us

[oo [i y
121314 1718 35

Add 1000001, to a pointer in location E to increment both halves by one,

and place the result back in &. Then perform a data IO instruction in the

same direction as the block IO instruction, using the right half of the incre-

mented pointer as the effective address. If the given instruction is a BLKO,

perform a DATAO; ifa BLKI, perform a DATAI.

The remaining actions taken by this instruction depend on whether it is

executed as a priority interrupt instruction [§2.13].

@ Not as an Interrupt Instruction. If the addition has caused the count in

the left half of the pointer to reach zero, execute the next instruction in

sequence. Otherwise skip the next instruction.

@ As an Interrupt Instruction. If the addition has caused the count in the

left half of the pointer to reach zero, execute the instruction in the second

interrupt location for the channel. Otherwise dismiss the interrupt and

return to the interrupted program.

The above eight instructions differ from one another in their total effect,

but they are not all different with respect to any given device. A BLKO acts

on a device in exactly the same way as a DATAO — the two differ only in

counting and othér operations carried out within the processor and memory.

Similarly, no device can distinguish between a BLKI and a DATAI; and a

device always supplies the same input conditions during a CONI, CONSZ or

CONSO whether the program tests them or simply stores them.

Hence the eight instructions may be categorized as of four types, repre-

sented by the first four instructions described above. Moreover, a complete

treatment of the programming of any device can be given in terms of these

four instructions, two of which are for input and two for output. The four

89

§2.12 INPUT-OUTPUT

exhaust the types of information transfer that occur in the IO system, at

least three of which are applicable to any given device. Thus all instruction

descriptions in the rest of this manual will be of the CONO, CONI, DATAO

and DATAI instructions combined with the various device codes, The dis-

cussion of each device will present timing information pertinent to device

operation, but no instruction times will be included as they are identical to

those given above.

Every device requires initial conditions; these are sent by a CONO, which

can supply up to eighteen bits of control information to the device control

register. The program can determine the status of the device from up to

thirty-six bits of input conditions that can be read by a CONI (but only the

right eighteen can be tested by a CONSZ or CONSO). Some input bits

simply reflect initial conditions sent by a previous CONO; others are set up

by output conditions but are subject to subsequent adjustment by the

device; and still others, such as status levels from a tape transport, have no

direct connection with output conditions.

Data is moved in and out in characters of various sizes or in full 36-bit

words. Each transfer between memory and a device data buffer requires a

single DATAI or DATAO. Every device has a CONO and CONI, but it may

have only one data instruction unless it is capable of both input and output.

Eg, the paper tape reader has only a DATAI, the tape punch has only a

DATAO, but the teletype has both. (A high speed device, such as a disc file,

can be connected to the DF10 Data Channel, which in turn is connected

directly to memory by a separate memory bus and handles data auto-

matically. This eliminates the need for the program to give a DATAO or

DATAI for each transfer.)

A Typical IO Device. Every device has a 7-bit device selection network, a

priority interrupt assignment, and at least two flags, Busy and Done, or some

equivalent. The selection network decodes bits 3—9 of the instruction so

that only the addressed device responds to signals sent by the processor over

the in-out bus. To use the device with the priority interrupt, the program

must assign. a channel to it. Then whenever an appropriate event occurs in

the device, it requests an interrupt on the assigned channel.

The Busy and Done flags together denote the basic state of the device.

When both are clear the device is idle. To place the device in operation, -a

CONO or DATAO sets Busy. If the device will be used for output, the pro-

gram must give a DATAO that sends the first unit of data — a word or char-

acter depending on how the device handles information. When the device has

processed a unit of data, it clears Busy and sets Done to indicate that it is

ready to receive new data for output, or that it has data ready for input.

In the former case the program would respond with a DATAO to send more

data; in the latter, with a DATAI to bring in the data that is ready. If an

interrupt channel has been assigned to the device, the setting of Done signals

the program by requesting an interrupt; otherwise the program must keep

testing Done to determine when the device is ready.

All devices function basically as described above even though the number

of initial conditions varies considerably. Besides Busy and Done flags, the

tape reader and punch have a Binary flag that determines the mode of

operation of the device with respect to the data it processes — alphanumeric

2-71

The word “input” used with-
out qualification always refers
to the transfer of data from
the peripheral equipment into
the processor; “output” refers
to the transfer in the opposite
‘direction.

A DATAI that addresses an
output-only device simply
clears location £. DATAI PI,

(code 70044) produces only
this effect as the priority in-
terrupt has no data for input.
On the other hand a DATAO
that addresses an input-only
device is a no-op.

When the device code is
undefined or the addressed
device is not in the system,
a DATAO, CONO or CONSO
is a no-op, a CONSZ is an
absolute skip,.a DATAI or
CONI clears location £.

Busy and Done both set is a
meaningless situation.

2-72

Occasionally a device with a
second code may use a
DATAI or DATAO to trans-

mit additional control or
maintenance information.

90

CENTRAL PROCESSOR $212

or binary. The teletype has no binary flag, but it has two Busy flags and two

Done flags — one pair for input, another for output. A complicated device,

such as magnetic tape, may require two device codes to handle the large

number of conditions associated with it. Initial conditions for a tape system

include a transport address and an actual command the tape ‘control is to

perform; input conditions include error flags and transport status levels.

Most IO devices involve motion of some sort, usually mechanical (in a

display only the electron beam moves). With respect to mechanical motion

there are two types of devices, those that stay in motion and those that do

not. Magnetic tape is an example of the former type. Here the device

executes a command (such as read, write, space forward) and the done flag

indicates when the entire operation is finished. A separate data flag signals

each time the device is ready for the program to give a DATAI or DATAO,

but the tape keeps moving until an entire record or file has been processed.

Paper tape, on the other hand, stops after each transfer, but the program

need not give a new CONO every time: The reader logic is set up so that a

DATAI not only reads the data, but also clears Done and sets Busy. Hence

if the instruction is given within a critical time, the tape moves continuously

and only two CONOs are required for a whole series of transfers: one to start

the tape, and one to stop it after the final DATAI.

Other devices operate in one or the other of these two ways but differ in

various respects. The tape punch and teletype output are like the reader.

Teletype input is initiated by the operator striking a key rather than by the

program. The card reader reads an entire card on a single CONO, with a

DATAI required for each column. The DECtape stays in motion, and the

program must give a CONO to stop it or it will go all the way to the end

zone.

Readin Mode

This mode of processor operation provides a means of placing information

in memory without relying on a program already in memory or loading one

word at a time manually. Its principal use is to read in a short loader

program which is then used for loading other information. A loader program

should ordinarily be used rather than readin mode, as a loader can check the

validity of the information read.

Pressing the readin key on the console activates readin mode by starting

the processor in a special hardware sequence that simulates a DATAI fol-

lowed by a series of BLKI instructions, all of which address the device whose

code is selected by the readin device switches on the small panel at the left

of the paper tape reader. Various devices can be used, and for each there

are special rules that must be followed. But the readin mode characteristics

of any particular device are treated in the discussion of the device. Here we

are concerned only with the general characteristics.

The information read is a block of data (such as a loader program) pre-

ceded by a pointer for the BLKI instructions. The left half of the pointer

contains the negative of the number of words in the block, the right half

contains an address one less than that of the location that is to receive the

first word.

i 91

§2513 PRIORITY INTERRUPT

To read in, the operator must set up the device he is using, set its code

into the readin device switches, and press the readin key. The processor

places the device in operation, brings the first word (the pointer) into

location 0, and then reads the data block, placing the words in the locations

specified by the pointer. Data can be placed anywhere in memory (including

fast memory) except in location 0. The operation affects none of memory

except location O and the block area.

Upon completing the block, the processor halts only if the single instruc-

tion switch is on. Otherwise it leaves readin mode, and begins normal

operation by executing the last word in the block as an instruction.

Console Data Transfers

Neither the processor nor the priority interrupt system require all four types

of IO instructions, so the program can make use of their device codes for

communicating with the console.

DATAI APR, Data In, Console

70004
0 121314 1718 35

Read the contents of the console data switches into location E.

DATAO PI, Data Out, Console

0 121314 1718 35

Unless the console MI program disable switch is on, display the contents of

location E in the console memory indicators and turn on the triangular light

beside the words PROGRAM DATA just above the indicators (turn off the

light beside MEMORY DATA).
Once the indicators have been loaded by the program, no address condi-

tion selected from the console [§2.16] can load them until the operator

turns on the MI program disable switch, executes a key function that ref-

erences memory, or presses the reset key.

2.13 PRIORITY INTERRUPT

_ Most in-out devices must be serviced infrequently relative to the processor

speed and only a small amount of processor time is required to service them,

but they must be serviced within a short time after they request it. Failure

to service within the specified time (which varies among devices) can often

2-73

Macro also recognizes the
mnemonic RSW _ (Read
Switches) as equivalent to
DATAI APR,.

2-74

Interrupt locations for a sec-
ond processor are 140 + 2N

and 141 + 2N.

92

CENTRAL PROCESSOR S23

result in loss of information and certainly results in operating the device ©

below its maximum speed. The priority interrupt is designed with these

considerations in mind, ie the use of interruptions in the current program

sequence facilitates concurrent operation of the main program and a number

of peripheral devices. The hardware also allows conditions internal to the

processor to signal the program by requesting an interrupt.

Interrupt requests are handled through seven channels arranged in a

priority chain, with assignment of devices to channels entirely at the discre-

tion of the programmer. To assign a device to a channel, the program sends

the number of the channel to the device control register as part of the condi-

tions given by a CONO (usually bits 33-35). Channels are numbered 1-7,

with | having the highest priority; a zero assignment disconnects the device

from the interrupt channels altogether. Any number of devices can be

connected to a single channel, and some can be connected to two channels

(eg a device may signal that data is ready on one channel, that an error has

occurred on another).

Interrupt Requests. When a device requires service it sends an interrupt

request signal over the in-out bus to its assigned channel in the processor. If

the channel is on, the processor accepts the request at the next memory

access unless the processor is either starting an interrupt on any channel or

holding an interrupt on the same channel. The request signal is a level, so

it remains on the bus until turned off by the program (CONO, DATAO or

DATAI). Thus if a request is not accepted because of the conditions given

above, it will be accepted when those conditions no longer hold. A single

channel will shut out all others of lower priority if every time its service

routine dismisses the interrupt, a device assigned to it is already waiting with

another request. The program can usually trigger a request from a device but

delay its acceptance by turning on the channel later.

Starting an Interrupt. After a request is accepted the channel must wait

for the interrupt to start. No interrupts can be started unless the priority

interrupt system is active. Furthermore, the processor cannot start an

interrupt if it is alreadys holding an interrupt on a channel with priority

higher than those on which requests have been accepted (in, other words if

the current program is a higher priority interrupt routine). If there is a

higher priority channel waiting, the processor stops the current program to

start an interrupt on the waiting channel that has highest priority. The inter-

tupt starts following the retrieval of an instruction, following the retrieval of

an address word in an effective address calculation (including the second cal-

culation using the pointer in a byte instruction), or following a transfer in a

BLT. When an interrupt-starts, PC points to the interrupted instruction, so

that a correct return can later be made to the interrupted program.

Two memory locations are assigned to each channel: unrelocated locations

40 + 2N and 41 + 2N, where N is the channel number. Channel 1 uses loca-

tions 42 and 43, channel 2 uses 44 and 45, and so on to channel 7 which

uses 56 and 57. The processor starts an interrupt on channel N by executing

the instruction in location 40 + 2N.

An instruction executed by the interrupt hardware in response to an

interrupt request is referred to elsewhere in this manual as being executed

“as an interrupt instruction”. Some instructions, when so executed, perform

93

§2.13 PRIORITY INTERRUPT

different functions than they do when executed in other circumstances. And

the difference is not due merely to being executed in an interrupt location or

in response (by the program) to an interrupt. To be an interrupt instruction,

an instruction must be executed by the interrupt hardware, in location

40+2N or 41 +2N, because of a request on channel N. §2.12 describes

the two ways a BLKO is performed. If a BLKO is contained in an interrupt

routine called by a JSR, it is not executed “‘as an interrupt instruction” even

if the routine is stored within the interrupt locations. There are two

categories of interrupt instructions.

@ Non-IO Instructions. After executing a non-IO interrupt instruction, the

processor holds an interrupt on the channel and returns control to PC. Hence

the instruction is usually a jump to a service routine. If the processor is in

user mode and the interrupt instruction is a JSR, JSP, PUSHJ, JSA or JRST,

the processor leaves user mode (the Monitor thus handles all interrupt rou--

tines [§2.15]). \

If the interrupt instruction is not a jump, the processor continues the

interrupted program while holding an interrupt — in other words it now

treats the interrupted program as an interrupt routine. Eg the instruction

might just move a word to a particular location. Such procedures are

usually reserved for maintainence routines or very sophisticated programs.

¢ Block or Data IO Instructions. One or the other of two actions can result

from executing one of these as an interrupt instruction.

If the instruction in 40+ 2N is a BLKI or BLKO and the block is not

finished (ie the count does not cause the left half of the pointer to reach

zero), the processor holds and immediately dismisses an interrupt on the

channel, and returns to the interrupted program. The same action results

if the instruction isa DATAI or DATAO.

If the instruction in 40 + 2N is a BLKI or BLKO and the count does reach

zero, the processor continues to start the interrupt by executing the

instruction in location 41+ 2N. This cannot be an IO instruction and the

actions that result from its execution as an interrupt instruction are those

given above for non-IO instructions.

CAUTION

The execution, as an interrupt instruction, of a

CONO, CONI, CONSO or CONSZ in location

~ 40+ 2N or any IO instruction in location 41 + 2N

hangs up the processor.

Dismissing an Interrupt. Automatic dismissal of an interrupt occurs only

in a DATAI or DATAO, or in a BLKI or BLKO with an incomplete block.

Following any non-IO interrupt instruction, the processor holds an interrupt

until the program dismisses it, even if the interrupt routine is itself inter-

rupted by a higher priority channel. Thus interrupts can be held on a num-

ber of channels simultaneously, but from the time an interrupt is started
until it is dismissed, no interrupt can be started on that channel or any

channel of lower priority (requests, however, can be accepted on lower

priority channels).

2-75,

94

2-76 CENTRAL PROCESSOR §2.13

A routine dismisses the interrupt by using a JEN (JRST 12,) to return to

the interrupted program (the interrupt system must be active when the JEN

is given). This instruction restores the channel on which the interrupt is

being held, so it can again accept requests, and interrupts can be started on

it and lower priority channels. JEN also restores the flags, whose states were

saved in the left half of the PC word if the routine was called by a JSR,

JSP, or PUSHJ [§2.9]. If flag restoration is not desired, a JRST 10, can

be used instead.

CAUTION

An interrupt routine must dismiss the interrupt

when it returns to the interrupted program, or its

channel and all channels of lower priority will be

disabled, and the processor will treat the new

program as a continuation of the interrupt routine.

Priority Interrupt Conditions. The program can control the priority in-

terrupt system by means of condition IO instructions. The device code is

004, mnemonic PI.

CONO PI, Conditions Out, Priority Interrupt

70060 Te Xe Ve

0 121314 1718 35

Perform the functions specified by E as shown (a 1 in a bit produces the

indicated function, a O has no effect).

INITIATE BeACHVATE ACTIVATE
INTERRUPT PI Pl

POWER | PARITY [once ENABLE 4 A SELECT CHANNELS FOR BITS 24, 25, 26 | PARITY ERROR : U PLAC | GRROR | INTERRUPT 2 3 4 5 6
18 19 20 21 22

20 Prevent the setting of the Parity Error flag from requesting an
Bites (801 catesnenialine for interrupt on the channel assigned to the processor.

processor conditions [§ 2.14]. 21 Enable the setting of the Parity Error flag to request an interrupt
on the channel assigned to the processor.

23 Deactivate the priority interrupt system, turn off all channels,
eliminate all interrupt requests that have already been accepted but

¢ 3 are still waiting, and dismiss all interrupts that are currently being
held.

24 Request interrupts on channels selected by 1s in bits 29-35, and
force the processor to accept them even on channels that are off.

95

§2.13 PRIORITY INTERRUPT 2-77

A request is lost if it is made by this means to a channel on which

an interrupt is already being held.

25 Turn on the channels selected by 1s in bits 29-35 so interrupt

requests can be accepted on them.

26 Turn off the channels selected by Is in bits 29-35, so interrupt

requests cannot be accepted on them unless made by a CONO PI,

with a 1 in bit 24.

27 Deactivate the priority interrupt system. The processor can then still

accept requests, but it can neither start nor dismiss an interrupt.

28 Activate the priority interrupt system so the processor can accept

requests and can start, hold and dismiss interrupts.

CONI Pl, Conditions In, Priority Interrupt

70064 Li XG ye

0 121314 1718 35

Read the status of the priority interrupt (and several bits of processor condi-

tions) into the right half of location E as shown.

PARITY ERROR
INTERRUPT
ENABLED

POWER | PARITY INTERRUPT IN PROGRESS ON CHANNELS Pig CHANNELS ON

FAILURE] ERROR = ACTIVE ;
2 3 4 5 6

18 Ac power has failed. The program should save PC, the flags and fast Note that bits 18-20 actually

memory in core, and halt the processor. ; read processor status condi-

The setting of this flag requests an interrupt on the channel tions [§2.14].

assigned to the processor. If the flag remains set for 5 ms, the

processor is cleared.

19 A word with even parity has been read from core memory. If bit 20

is set, the setting of the Parity Error flag requests an interrupt on the

channel assigned to the processor.

28 The priority interrupt system is active.

Channels that are on are indicated by 1s in bits 29-35; 1s in bits 21-27

indicate channels on which interrupts are currently being held.

Timing. The time a device must wait for an interrupt to start depends on

the number of channels in use, and how long the service routines are for

devices on higher priority channels. If only one device is using interrupts,

2-78

96

CENTRAL PROCESSOR §2.14

it need never wait longer than the time required for the processor to finish

the instruction that is being performed when the request is made. The

maximum time can be considered to be about 15 us for FDVL, but a ridicu-

lously long shift could take over 35 us.

Special Considerations. On a return to an interrupted program, the proc-

essor always starts the interrupted instruction over from the beginning. This

causes special problems in a BLT and in byte manipulation.

An interrupt can start following any transfer in a BLT. When one does,

the BLT puts the pointer (which has counted off the number of transfers

already made) back in AC. Then when the instruction is restarted following

the interrupt, it actually starts with the next transfer. This means that if

interrupts are in use, the programmer cannot use the accumulator that holds

the pointer as an index register in the same BLT, he cannot have the BLT

load AC except by the final transfer, and he cannot expect AC to be the

same after the instruction as it was before.

An interrupt can also start in the second effective address calculation in a

two-part byte instruction. When this happens, Byte Interrupt is set. This

flag is saved as bit 4 of a PC word, and if it is restored by the interrupt

routine when the interrupt is dismissed, it prevents a restarted ILDB or
IDPB from incrementing the pointer a second time. This means that the
interrupt routine must check the flag before using the same pointer, as it
now points to the next byte. Giving an ILDB or IDPB would skip a byte.
And if the routine restores the flag, the interrupted ILDB or IDPB would

process the same byte the routine did.

Programming Suggestions. The Monitor handles all interrupts for user
programs. Even if the User In-out flag is set, a user program generally cannot
reference the interrupt locations to set them up. Procedures for informing
the Monitor of the interrupt requirements of a user program are discussed in
the Monitor manual.

For those who do program priority interrupt routines, there are several
rules to remember.

No requests can be accepted, not even on higher priority channels, while
a break is starting. Therefore do not use lengthy effective address calcula-
tions in interrupt instructions.

® The interrupt instruction that calls the routine must save PC if there is to
be a return to the interrupted program. Generally a JSR is used as it saves
both PC and the flags, and it uses no accumulator.

The principal function of an interrupt routine is to respond to the situa-
tion that caused the interrupt. Eg computations that can be performed
outside the routine should not be included within it.

The routine must dismiss the interrupt (with a JEN) when returning to the
interrupted program. The flags should be restored.

2.14 PROCESSOR CONDITIONS

There are a number of internal conditions that can signal the program by
requesting an interrupt on a channel assigned to the processor. Flags for

97

§2.14 PROCESSOR CONDITIONS 2-79

power failure and parity error are handled by the condition IO instructions

that address the priority interrupt system [§2.13]. The remaining flags are

handled by condition instructions that address the processor. Its device code

is 000, mnemonic APR or CPA.

CONO APR, Conditions Out, Arithmetic Processor

0 121314 1718 35

Perform the functions specified by E as shown (a | in a bit produces the

indicated function, a 0 has no effect).

CLEAR CLEAR CLEAR CLEAR “CLEAR
PUSHDOWN MEMORY NONEXISTENT FLOATING OVERFLOW
OVERFLOW PROTECTION MEMORY FLAG : OVERFLOW ;

FLAG

| DISABLE} ENABLE PRIORITY
ace Bw INTERRUPT
INTERRUPT ASSIGNMENT

7) oa ENABLE] cyeaR | DISABLE! ENABLE

CLOCK CLOCK sa eet

INTERRUPT FLAG Reet

24 25 26 27 28

Enabling a particular flag to interrupt means that henceforth the setting

of the flag will request an interrupt on the channel assigned (by bits 33-35)

to the processor. Disabling prevents the flag from triggering a request.

A 1 in bit 19 produces the IO reset signal, which clears the control logic in

all of the peripheral equipment (but affects neither the priority interrupt sys-

tem, nor the processor flags cleared by this instruction or CONO PI,).

Notes.

CON! APR, Conditions In, Arithmetic Processor

0 121314 1718 35

Read the status of the processor into the right half of location E as shown

(all interrupt requests are made on the channel assigned to the processor).

PUSHDOWN MEMORY NONEXISTENT CLOCK FLOATING FLOATING OVERFLOW OVERFLOW

OVERFLOW PROTECTION MEMORY INTERRUPT OVERFLOW OVERFLOW — INTERRUPT
FLAG ENABLED INTERRUPT ENABLED

ENABLED

PRIORITY
INTERRUPT ic CLOCK

FLAG ASSIGNMENT -

26 27 22 23 24 25

USER JADDRESS

IN-OUT | BREAK

20 2t

MAY 1968

2-80

4 PC bears no relation to the

break if the access was re-
quested for a console key
function.

4 This flag can also be set by
an. instruction executed from
the console while the USER
MODE light is on, in which
case PC bears no relation to
the violation.

4 PC bears no relation to the
unanswered reference if the
attempted access originated
from a console key function.

A

Notes.

19

20

21

22

23

26

29

30

32

98

CENTRAL PROCESSOR §2.14

Pushdown Overflow — in a PUSH or PUSHJ the count in AC left
reached zero; or in a POP or POPJ the count reached —1. The setting
of this flag requests an interrupt.

User In-out — even if the processor is in user mode, no instructions
are illegal (but protection and relocation still apply) [§2.15].

Address Break — while the console address break switch was on, the
processor requested access to the memory location specified by the
address switches and the memory reference was for the purpose
selected by the address condition switches as follows:

The instruction switch was on and access was for retrieval of an
instruction (including an instruction executed by an XCT or con-
tained in an interrupt location or a trap for an unimplemented
operation) or an address word in an effective address calculation.

The data fetch switch was on and access was for retrieval of an
operand (other than in an XCT).

The write switch was .on and access was for writing a word in
memory.

The setting of this flag requests an interrupt, at which time PC points
to the instruction that was being executed or to the one following it.

Memory Protection — a user program attempted to access a memory
location outside of its area or to write in a write-protected part of its
area and the user instruction was terminated at that time. The setting
of this flag requests an interrupt, at which time PC points either to
the instruction that caused the violation or to the one following it.

Nonexistent Memory — the processor attempted to access a memory
that did not respond within 100 ys. The setting of this flag requests
an interrupt, at which time PC points either to the instruction con-
taining the unanswered reference or to the one following it.

Clock — tis flag is set at the ac power line frequency and can thus
be used for low resolution timing (the clock has high long term
accuracy). If bit 25 is set, the setting of the Clock flag requests an
interrupt.

Floating Overflow — this is one of the flags saved in a PC word, and
the conditions that set it are given at the beginning of §2.9. If bit 28
is set, the setting of Floating Overflow requests an interrupt, at which
time PC points to the instruction following that in which the over-
flow occurred.

Trap Offset — the processor is using locations 140-161 for unimple-
mented operation traps and interrupt locations.

Overflow — this is one of the flags saved in a PC word, and the condi-
tions that set it are given at the beginning of §2.9. If bit 31 is set,
the setting of Overflow requests an interrupt, at which time PC
points to the instruction following that in which the overflow
occurred.

99

§2.15 TIME SHARING

2.15 TIME SHARING

Without time sharing the system has a single user and the program has no

restrictions except those inherent in the hardware: the programmer must

stay within the memory capacity, observe the restrictions placed on the use

of certain memory locations by the hardware [§1.3], and observe the

restrictions on interrupt instructions. Optional hardware can restrict proc-

essor operation to permit time sharing by a number of programs. Each user

program is run with the processor in user mode, in which the program must

operate within an assigned area in core and certain operations may be illegal.

A program that runs unrestricted — the Monitor — is responsible for

scheduling user programs, servicing interrupts, handling input-output needs,

and taking action when control is returned to it from a user program.

Every. user is assigned a core area and the rest of core is protected from

him — he cannot gain access to the protected area for either storage or

retrieval of information. The assigned area is divided into two parts. The

low part is unique to a given user and can be used for any purpose. The

high part may be for a single user, or it may be shared by several users. The

Monitor can write-protect the high part so that the user cannot alter its

contents, ie he cannot write anything in it. The Monitor would do this when

the high part is to be a pure procedure to be used reentrantly by several

users. One high pure segment may be used with any number of low impure

segments. The user can request that the Monitor write-protect the high part

of a single program, eg in order to debug a reentrant program. All users write

programs beginning at address 0 for the low part, and beginning usually at

400000 for the high part. The programmed addresses are retained in the

object program but are relocated by the hardware to the physical area

assigned to the user as each access is made while the program is running.

The size and position of the user area are defined by specifying protection

and relocation addresses for the low and high blocks. The protection address

determines the maximum address the user can give; any address larger than

the maximum is illegal. The relocation address is the address, as seen by the

Monitor and the hardware, of the first location in the block. The Monitor

defines these addresses by loading four 8-bit registers, each of which

corresponds to the left eight bits (18-25) of an address whose right ten bits

are all 0.

To determine whether an address is legal its left eight bits are compared

with the appropriate protection register, so the maximum user address

consists of the register contents in its left eight bits, 1777 in its right ten bits

(ie it is equal to the protection address plus 1777). Since the set of all

addresses begins at zero, a block is always an integral multiple of 102445

(2000,) locations. Relocation is accomplished simply by adding the contents

of the appropriate relocation register to the user address, so the first address

in a block is a multiple of 2000. The relative user and relocated address

configurations are therefore as illustrated here, where P;, R;, P, and Rp are

respectively the protection and relocation addresses for the low and high

parts as derived from the 8-bit registers loaded by the Monitor. If the low

part is larger than 128K locations, ie more than half the maximum memory

capacity (P; > 400000), the high part starts at the first location after the low

2-8]

2-82

Note that the relocated low
part is actually in two sections

with the larger beginning at
R,+ 20. This is because ad-
dresses 0-17 are not relo-
cated, all users having access
to the accumulators. The

Monitor uses the first sixteen
locations in the low user
block to store the user’s accu-

mulators when his program is
not running.

Some systems have only the
low pair of protection and
relocation registers. In this
case the user program is
always nonreentrant and the
assigned area comprises only
the low part.

The user can actually write
any size program: the Monitor
will assign enough core for his
needs. Basically the user must
write a sensible program; if he
uses absolute addresses scat-
tered all over memory his
program cannot be run on a
time shared basis with others.

These instructions are illegal
unless User In-out is set.

100

CENTRAL PROCESSOR §2.15

Piece on O17
Low |\

x P, +1777 \
ad ‘Ry, + 400000
\
es ;
san Bane ny

ILLEGAL ee
A

LEN NX

/ mae

fee Rip, +20
/ /

/ /

400000 iy

P, + 1777

! l
i

' | Ry MUST BE NEGATIVE
ILLEGAL ; | UNLESS SYSTEM HAS A

; | Non. ! MEMORY LARGER THAN
1 ! 128K | EXISTENT |
! MEMORY

| !
1 '

| |
FITTIT Stee A

USER ADDRESSES
BEFORE RELOCATION

TYPICAL PHYSICAL ADDRESS
CONFIGURATION AFTER RELOCATION

part (at location P, + 2000). The high part is limited to 128K. If the Monitor
defines two parts but does not write-protect the high part, the user has a
two-part nonreentrant program.

If the user attempts to access a location outside of his assigned area, or
if the high part is write-protected and he attempts to alter its contents, the
current instruction terminates immediately, the Memory Protection flag is
set (status bit 22 read by CONI APR,), and an interrupt is requested on the
channel assigned to the processor [§2.14].

User Programming. The user must observe the following rules when pro-
gramming on a time shared basis. [Refer to the Monitor manual for further
information including use of the Monitor for input-output. |
@ Use addresses only within the assigned blocks for all purposes — retrieval
of instructions, retrieval of addresses, storage or retrieval of operands. The
low part contains locations with addresses from 0 to the maximum; the high
part contains from the greater of 400000 or P,+2000 to the maximum.
Either part can address the other.

@ If the high part is write-protected, do not attempt to store anything in it.
In particular do not execute a JSR or JSA into the high part.
Use instruction codes 000 and 040-127 only in the manner prescribed in
the Monitor manual.

Unless User In-out is set do not give any IO instruction, HALT (JRST 4,)
or JEN (JRST 12, (specifically JRST 10,)). The program can determine if
User In-out is set by examining bit 6 of the PC word stored by JSR, JSP or

101

§2.15 TIME SHARING

PUSHJ.

The user can give a JRSTF (JRST 2,) but a 0 in bit 5 of the PC word does

not clear User (a program cannot leave user mode this way); and a | in bit 6

does not set User In-out, so the user cannot void any of the restrictions

himself. Note that a O in bit 6 will clear User In-out, so a user can discard

his own special privileges.

UUOs 001-037 execute normally and are relocated to addresses 40 and

41 in the low block [§2.10].

Monitor Programming. The Monitor must assign the core area for each

user program, set up trap and interrupt locations, specify whether the user

can give IO instructions, transfer control to the user program, and respond

appropriately when an interrupt occurs or an instruction is executed in

unrelocated 41 or 61.

Core assignment is made by this instruction.

DATAO. APR, Data Out, Arithmetic Processor

121314 1718 35 So

Load the protection and relocation registers from the contents of location

E as shown, where P;, P,, R; and R, are the protection and relocation

7189 161718 25 26 27 34 35

addresses defined above. If write-protect bit P (bit 17) is 1, do not allow the

user to write in the high part of his area.

Giving a JRSTF with a 1 in bit 6 of the PC word allows the user to handle

his own input-output. The Monitor can also transfer control to the user with

this instruction by programming a 1 in bit 5 of the PC word, or it may jump -

to the user program with a JRST 1, which automatically sets User. The set

state of this flag implements the user restrictions.

While User is set, certain instructions are not part of the user program and

are therefore completely unrestricted, namely those executed in the interrupt

locations (which are not relocated) and in unrelocated trap locations 41 and

61. Illegal instructions and UUO codes 000 and 040-077 are trapped in

unrelocated 40; codes 100-127 are trapped in unrelocated 60. BLKI and

BLKO can be used in the even interrupt locations, and if there is no over-

flow, the processor returns to the interrupted user program. JSR should

ordinarily be used in the remaining even interrupt locations, in odd interrupt

locations following block IO instructions, and in 41 and 61. The JSR clears

User and should jump to the Monitor. JSP, PUSHJ, JSA and JRST are

acceptable in that they clear User, but the first two require an accumulator

2283

For a two part nonreentrant
program, set P = 0. For a one-
part nonreentrant program,

make P;, <P). If the hardware
has only one set of protection
and relocation registers, the
user area is defined by P; and |
R;, the rest of the word is
ignored.

2-84

QO
°
t

fi.
Q
oO

Fas]
ca
iz)
SS

102

CENTRAL PROCESSOR §2.16

(all. accumulators should be available to the user) and the.

latter two do not save the flags.
After taking appropriate action, the Monitor can return to

the user program with a JRSTF or JEN that restores the flags

including User and User In-out.

2.16 OPERATION

Most of the controls and indicators used for normal operation

of the processor and for program debugging are located on

the console operator panel shown here. The indicators are

on the vertical part of the panel; in front of them are two

rows of two-position keys and switches (keys are momentary
contact, switches are alternate action). A key or switch is

on or represents a | when the front part is down.

The thirty-six switches in the front row and the eighteen

at the right in the back row are respectively the data and

address switches through which the operator can supply

words and addresses for the program and for use in conjunc-

tion with the operating keys and switches. The correspond-

ence of switches to bit positions is indicated by the numbers

at the bottom row of lights. At the left end of the back row

are ten operating switches, which supply continuous control

levels to the processor. At their right are ten operating keys,

which initiate or terminate operations in the processor. The.

_ names of the operating keys and switches appear on the ver-

tical part of the panel below the lights.

Also of interest to the operator is the small panel shown
opposite, which is located above the main panel at the left
of the tape reader. The upper section of this panel contains
a total hours meter and the margin-check controls. The lower
section contains the power switch, speed controls for slowing
down the program, switches to select the device for readin

mode (lower part in represents a 1), and four additional

operating switches. The normal position for these last four

is with the upper part in; in this position FM ENB (fast

memory enable) is on, the others are all off.

Indicators

When any indicator is lit the associated flipflop is 1 or the

associated function is true. Some indicators display useful

information while the processor is running, but many change
. too frequently and can be discussed only in terms of the
information they display when the processor is stopped. The

program can stop the processor only at the completion of the
HALT instruction; the operator can stop it at the end of

103

§2.16 OPERATION

every instruction or memory reference, or for main-

tenance purposes, after every step in any operation

that uses the shift counter (shifting, multiplication,

division, byte manipulation).

Of the long rows of lights at the right on ie

operator panel, the top row displays the contents of

PC, the middle row displays the instruction being

executed or just completed, and the bottom row are

the memory indicators. The right half of the middle

row displays MA, the left half displays IR [see page

1-2]. In an IO instruction the left three instruction

lights are on, the remaining instruction lights and the

left AC light are the device code, and the remaining

AC lights complete the instruction code. The I, index

and MA lights change with each indirect reference in

an effective address calculation; at the end of an

instruction I is always off.

Above the memory indicators appear two pairs of

words, PROGRAM DATA and MEMORY DATA. If

the triangular light beside the former pair is on, the

indicators display a word supplied by a DATAO PI,;

if any other data is displayed the light beside MEM-

ORY DATA is on instead. While the processor is

running the physical addresses used for memory refer-

ence (the relocated address whenever relocation is in

effect) are compared with the contents of the address

switches. Whenever the two are equal the contents

of the addressed location are displayed in the memory

indicators. However, once the program loads the indicators, they can be

changed only by the program until the operator turns on the MI program

disable switch, executes a key function that references memory, or presses

the reset key (see below).

The four sets of seven lights at the left display the state of the priority

interrupt channels [see pages 2-74 and 2-75]. The PI ACTIVE lights indicate

which channels are on. The IOB PI REQUEST lights indicate which channels

are receiving request signals over the in-out bus; the PI REQUEST lights

indicate channels on which the processor has accepted requests. Except in

the case of a program-initiated interrupt, a REQUEST light can go on only

if the corresponding ACTIVE light is on. The PI IN PROGRESS lights indi-

cate channels on which interrupts are currently being held; the channel that

is actually being serviced is the lowest-numbered one whose light is on. When

a PROGRESS light goes on, the corresponding REQUEST goes off and can-

not go on again until PROGRESS goes off when the interrupt is dismissed.

At the left end of the panel are a power light and these control indicators.

RUN
The processor is in normal operation with one instruction following another.

When the light goes off, the processor stops.

2-85

Above: Margin Check and
Maintenance Panel
Opposite: Console Operator
Panel .

Note: If a REQUEST light
stays on indefinitely with the
-associated PROGRESS light
off and PC is static, check the

PI CYC light on the indicator
panel at the top of bay 2. If
it is.on, a faulty program has
hung up the processor. Press

STOP.

2-86

If RUN and PROGRAM

STOP are both on, the proc-

essor is probably in an in-

direct address loop. Press

STOP.

104

CENTRAL PROCESSOR §2.16

PI ON

The priority interrupt system is active so interrupts can be started (this
corresponds to CONI PI, bit 28). a

USER MODE

The processor is in user mode (this corresponds to bit 5 of a PC word).

PROGRAM STOP
IR now contains a HALT instruction. If RUN is off, MA displays an
address one greater than that of the location containing the instruction that
caused the halt, and PC displays the jump address (the location from which
the next instruction will be taken if the operator presses the continue key).

MEMORY STOP
The processor has stopped at a memory reference. This can be due to single
cycle operation, satisfaction of an address condition selected at the console,
reference to a nonexistent memory location, or detection of a parity error.

The remaining processor lights are on the indicator panels at the tops of
the bays [illustrated on page C8]. Bay 2 displays AR, BR and MQ, the
output of the AR adder, and the parity buffer which receives every word
transmitted over the memory bus. The RL and PR lights at the lower right
display the relocation and protection registers for the low part of the area
assigned to a user program and the left eight bits of the relocated address
for that part. The remaining lights are for maintenance.

The upper four rows on the bay | panel include the indicators for reader,
punch and teletype, which are described in Chapter 3. The bottom row
displays the information on the data lines in the IO bus. The AR lights at
the upper right are the flags — FXU is Floating (exponent) Underflow, DCK
is No Divide (divide check). OV COND is the condition that the 0 and 1
carries are different, ie the condition that indicates overflow. The Byte
Interrupt flag is BYF6 in the MISC lights in the top row; User In-out is
IOT USER in the EX lights at the center of the panel. The CPA lights in
the top row and the five lights under them at the left are the processor
conditions — PDL OV is Pushdown (list) Overflow. The AS= lights in the
middle row indicate when the (relocated) core memory address or the fast
memory address is the same as the address switches. The remaining lights
are for maintenance.

The panels on the two types of memories are shown on page C9. These
are almost exclusively for maintenance, and (as with most of the lights on
the processor bays) if the operator must use them he should consult the
maintenance manual and the flow charts. The ACTIVE lights indicate which
processor currently has access to the memory.

105

§2.16 OPERATION 2-87

Operating Keys

Each key except STOP turns on one of the key indicators at the upper right

on the bay 2 panel. These are for flipflops that allow the key functions to be.

repeated automatically and also allow certain of them to,be synchronized to \

the processor time chain so they can be performed while the processor is

running. :

READ IN

Clear all IO devices and all processor flags including User; turn on the RIM If RUN is on, pressing this

light in the upper right on bay 1 and the KEY RDI light in the upper right key has no effect.

on bay 2. Execute DATAI D,0 where D is the device code specified by the

readin device switches on the small panel at the left of the reader. Then The, tigtimost device yee
is for bit 9 of the instruction

execute a series of BLKI D,0 instructions until the left half of location 0 and thus selects the least sig-

reaches zero, at which time turn off RIM and KEY RDI. Stop only if the nificant octal digit (which is

single instruction switch is on; otherwise turn on RUN and execute the last always O or 4) in the device

word read as an instruction. [For information on the data format refer to code.

page 2-72.| CAUTION
Do not initiate any other key
function ‘while RIM is on. If

START ; 2 3 read in must be stopped (eg

Load the contents of the address switches into PC, turn on RUN, and begin because of a crumpled tape),

normal operation by executing the instruction at the location specified by press RESET (see below).

IX.

This key function does not disturb the flags or the IO equipment; hence If RUN is on, pressing this

if USER MODE is lit a user program can be started. key has no effect.

CONT (Continue) ’

Turn on RUN (if it is off) and begin normal operation in the state indicated

by the lights.

STOP

Turn off RUN so the processor stops before beginning the next instruction.

Thus the processor usually stops at the end of the current instruction, which

is displayed in the lights. However, if a key function that can be performed

while RUN is on has been synchronized, the processor performs that func-

tion before stopping. In either case PC points to the next instruction.

If the processor does not reach the end of the instruction within 100 us,

inhibit further effective address calculation — it is assumed the processor is

caught in an indirect addressing loop. Pressing CONT when the processor is

stopped in an address loop causes it to start the same instruction over.

RESET

Clear all IO devices and clear the processor including all flags. Turn on the If STOP will not stop the

triangular light beside MEMORY DATA (turn off the light beside PRO- processor, pressing this key

GRAM DATA). If RUN is on duplicate the action of the STOP key before will. \

clearing.

2-88

Note that an instruction exe-

cuted from the console can
alter the processor state just
like any instruction in the
program: it can change PC by
jumping or skipping, alter the
flags, or even cause a non-
existent-memory stop.

If RUN is on, pressing this
key has no effect.

If RUN is on, pressing this
key has no effect.

106

CENTRAL PROCESSOR §2.16

XCT

Execute the contents of the data switches as an instruction without incre-

menting PC. If RUN is on, insert this instruction between two instructions

in the program. Inhibit priority interrupts during its execution to guarantee

that it will be finished.

If USER MODE is lit all user restrictions aDDIY to an instruction executed

from the console.

NoTE

The remaining key functions all reference memory.

They use an absolute address and all of memory is

available to them; in other words protection and

relocation are not in effect even if USER MODE is

lit. However they can set such flags as Address

Break and Nonexistent Memory.

EXAMINE THIS

Display the contents of the address switches in the MA lights and the con-

tents of the location specified by the address switches in the memory indica-

tors. Turn on the triangular light beside MEMORY DATA (turn off the

light beside PROGRAM DATA). If RUN is on, insert this function between
two instructions in the program.

EXAMINE NEXT

Add 1 to the address displayed in the MA lights and display the contents of

the location specified by the incremented address in the memory indicators.

Turn on the triangular light beside MEMORY DATA (turn off the light

beside PROGRAM DATA).

DEPOSIT

Deposit the contents of the data switches in the location specified by the

address switches. Display the address in the MA lights and the word

deposited in the memory indicators. Turn on the triangular light beside

MEMORY DATA (turn off the light beside PROGRAM DATA). If RUN is
on, insert this function between two instructions in the program.

DEPOSIT NEXT
Add 1 to the address displayed in the MA lights and deposit the contents of
the data switches in the location specified by the incremented address. Dis-

_ play the word deposited in the memory indicators. Turn on the triangular
light beside MEMORY DATA (turn off the light beside PROGRAM DATA).

107

§2.16 OPERATION

CAUTION

Never press two keys simultaneously as the proc-

essor may attempt to perform both functions at

once.

Operating Switches

Whenever the processor references memory at the location specified by the

address switches (relocated if USER MODE is on), the contents of that loca-

tion are .displayed in the memory indicators (unless the light beside

PROGRAM DATA is on). The group of five switches at the left of the keys

allows the operator to make the processor halt or request an interrupt when

reference is made to the specified location in core memory for a particular

purpose (no action is produced by fast memory reference). The purpose is

selected by the three address condition switches. INST FETCH selects the

condition that access is for retrieval of an instruction (including an instruc-

tion executed by an XCT or contained in an interrupt location or a trap for

an unimplemented operation) or an address word in an effective address cal-

culation. DATA FETCH selects access for retrieval of an operand (other

than in an XCT). WRITE selects access for writing in memory. Whenever

reference to the specified location satisfies any selected address condition,

the processor performs the action selected by the other two switches. ADR

STOP halts the processor with MEMORY STOP on (PC points to the instruc-

tion that was being executed, or if the MC WR light on bay 2 is on, PC may

point to the one following it); ADR BREAK turns on the CPA ADR BRK

. light (Address Break flag, CONI APR, bit 21) on bay 1, requesting an inter-

rupt on the processor channel.

The description of each switch relates the action it produces while it is on.

SING INST
Whenever the processor is placed in operation, clear RUN so that it stops at

the end of the first instruction. Hence the operator can step through a pro-

gram one instruction at a time, by pressing START for the first one and

CONT for subsequent ones. Each time the processor stops, the lights display

the same information as when STOP is pressed.
CLK FLAG (Clock flag) on bay 1 is held off to prevent clock interrupts

while SING INST is on. Otherwise interrupts would occur at a faster rate

than the instructions.
SING INST will not stop the processor if a hangup prevents it from getting

to the end of an instruction. Use STOP or RESET.

SING CYCLE
Whenever the processor is placed in operation, stop it with MEMORY STOP

on at the end of the first core memory reference. Hence the operator can

step through a program one memory reference at a time, by pressing START

for the first one and CONT for subsequent ones. To determine what infor-

mation is displayed in the lights, consult the flow charts.

AC and index register refer-
ences can be included by
turning off the FM ENB
switch (see below).

To stop at AC and index
register references, turn off
the FM ENB switch (see
below).

2-90

If IGN is on (it displays a sig-
nal from the memory), garity
errors are not detected and no
stop can occur.

The key function is repeated
once after REPT is turned
off, but this is noticeable only
with very long repeat delays.

The end of a key function is
equivalent to completion of
all processor operations asso-
ciated with the function only
for read in, examine, examine

next, deposit, and deposit

next. In other cases the proc-
essor continues in operation.
Eg the execute function is
finished once the instruction
to be executed is set up
internally, but the processor
then executes that instruc-
tion. Hence when using speed
range 6, the operator must be
careful not to allow the key
function to restart before the
processor is really finished.

\
108

§2.16 CENTRAL PROCESSOR

PAR STOP
Stop with MEMORY STOP on at the end of any memory reference in which
even parity is detected in a word read. A parity stop is indicated by the fol-
lowing: CPA PAR ERR (Parity Error flag) on bay 1 is on; and among the
PAR lights in the bottom row on bay 2, IGN (ignore parity) and ODD are
off, STOP is on, and BIT displays the parity bit for the word in the parity
buffer at the left.

NXM STOP
. Stop with MEMORY STOP on if a memory reference is attempted but the
memory does not respond within 100 us. This type of stop is indicated by
CPA NXM FLAG (Nonexistent Memory flag) on bay 1 being on.

REPT

If any key (except STOP) is pressed, then every time the key function is
finished, wait a period of time determined by the setting of the speed control
and repeat the given key function. If CONT is pressed and no switch is on
that would stop the program (eg SING INST, SING CYCLE), then continue
following the repeat delay whenever a HALT instruction is executed. Con-
tinue to repeat the key function until RESET is pressed or REPT is turned
off.

The speed control includes a six-position switch that selects the delay
range and a potentiometer for fine adjustment within the range. Delay
ranges are as follows.

Position Range

1 270 ms to 5.4 seconds

2, 38 ms to 780 ms

3 3.9 ms to 78 ms

4 390 us to 7.8 ms

a) 27 ws to 540 ps

6 2.2 us to 44 us

MI PROG DIS

Turn on the triangular light beside MEMORY DATA (turn off the light
beside PROGRAM DATA) and inhibit the program from displaying any in-
formation in the memory indicators. The indicators will thus continually
display the contents of locations selected from the console.

REPT BYP

If REPT is on, trigger the repeat delay at the beginning of the key function.
Hence the function is repeated even if it does not run to completion.

109

§2.16 OPERATION

FM ENB
This switch is left on for normal operation with a fast memory. Turning it

off (lower part in) substitutes the first sixteen core locations for the fast

memory. The switch is left off if there is no fast memory, and it can be used

to allow stopping or breaking at fast memory references.

SHIFT CNTR MAINT

Stop before each step in any shift operation. Pressing CONT resumes the

operation. Once a shift has been stopped, the processor will continue to

stop at each step throughout the rest of the given shift operation even if the

switch is turned off.

At the right end of panel 1J behind the bay doors are two toggle switches.

FP TRP causes the floating point and byte manipulation instructions (codes

130-177) to trap to locations 60-61. MA TRP OFFSET moves the trap

and interrupt locations to 140-161 for a second processor connected to the

same memory.
Inside each memory bay are switches for selecting the memory number

and interleaving memories. Also in the memory are a power switch, a restart

pushbutton, and a switch for single step operation (these three are located

on the indicator panel for the MB10 memory).

2-91

ill

3

Basic In-out Equipment

The PDP-10 contains three in-out devices as standard equipment: tape

reader, tape punch, and teletype. These devices are used principally for

communication between computer and operator using a paper medium, tape

or form paper.

The punch supplies output in the form of 8-channel perforated paper tape

in either of two modes. In alphanumeric mode, 8-bit characters are proc-

essed; in binary mode, 6-bit characters. The information punched in the

tape can be brought into memory by the tape reader, which handles charac-

ters in the same two modes.

The program can type out characters on the teletype and can,read charac-

ters that have been typed in at the keyboard. This device has the slowest

transfer rate of any, but it provides a convenient means of man-machine

interaction.

3.1. PAPER TAPE READER

The reader processes 8-channel perforated paper tape photoelectrically at a

speed of 300 lines per second. The device can operate in alphanumeric or

binary mode, as specified by the O or | state respectively of the Binary flag.

In alphanumeric a single tape-moving command reads all eight channels from

the first line encountered. In binary the device reads six channels from the

first six lines in which hole 8 is punched and assembles the information into

a 36-bit word. The interface contains a 36-bit buffer from which all data is

retrieved by the processor. The reader device code is 104, mnemonic PTR.

CONO PTR, Conditions Out, Paper Tape Reader

ae y
0 121314 1718 35

Set up the reader control register according to bits 30-35 of the effective

conditions E as shown (a 1 in a flag bit sets the flag, a O clears it).

PRIORITY INTERRUPT
BINARY | BUSY DONE ASSIGNMENT

28 29 30 31 32 33 34 35 27

3-1

3-2

TAPE CHANNELS

FEED
HOLE

Ny
®DOOG@°OO®

+

TAPE MOTION

12

BASIC IN-OUT EQUIPMENT §3.1

CONI PTR, Conditions In, Paper Tape Reader

71064 x Y
0 121314 1718 35

Read the status of the reader into bits 27 and 30-35 of location E as shown.

PRIORITY INTERRUPT TAPE BINARY BUSY DONE ASSIGNMENT

27 28 29 30 31 32 33 34 on

Placing the tape in motion sets the Tape flag and it remains set as long as the
tape is in the read head. A 0 in bit 27 indicates that the last time an attempt
was made to read, the reader was out of tape.

DATAI PTR, Data In, Paper Tape Reader

(0) 121314 1718 35

Transfer the contents of the reader buffer into location E. Clear Done and
set Busy. '

Setting Busy clears the reader buffer, sets the Tape flag (if it is not already
set) and places the reader in operation. If Binary is clear, all eight channels
from the first line on tape are read into bits 28-35 of the buffer with
channel | corresponding to bit 35 (the presence of a hole produces a | in the
buffer). If Binary is set, the device reads only channels 1-6, but it reads the
first six lines encountered in which channel 8 is punched (lines without a
hole in channel 8 are skipped) and assembles them into a full word in the
buffer. The first line 1s at the left in the word and channel 1 corresponds to
the rightmost bit in each 6-bit byte.

After the specified number of lines has been read, the reader clears Busy
and sets Done, requesting an interrupt on the assigned channel. A DATAI
brings the data into memory and also causes the reader to continue in opera-
tion. The programmer must give a CONO to clear Busy if he does not want
the reac: to move the tape after the final DATAI is given.

If the tape runs out or malfunctions while a read operation is in progress,
the Tape flag is cleared and the reader shuts down.
Timing. At 300 lines per second the reader takes 3.33 ms per alpha- .

numeric character, 20 ms per binary word if the binary characters are con-
tiguous. After Done is set, the program has 1.6 ms to give a DATAI and
keep the tape in continuous motion. Waiting longer causes the reader to
shut down for 40 ms. Thus start-stop operation is limited to 25 lines per
second. :

13

§3.1 PAPER TAPE READER

EXAMPLES. This program reads ten binary words (60 lines) from paper

tape and stores them in memory beginning at location 4000. The block

pointer is kept in accumulator PNT.

MOVE PNT,[IOWD 12,4000] ;Put pointer in PNT

CONO PTR,60 ;Set up reader

NEXT: CONSO PTR,10 ;Watch Done

JRST =

BLKI PTR,PNT ;Word ready, get it

JRST sat, ;Got all data

JRST NEXT ;Go gack for next word

If instead of just waiting we wish to continue our program while the data

is coming in, we can use the priority interrupt. The following uses channel 4

and signals the main program that the data is ready by setting bit 35 of

accumulator F.

MOVE 17,{BLKI PTR,[IOWD 12,4000]]
MOVEM 17,50 ;Set up 50 and 51 for channel 4

MOVE 17,[JSR DONE]
MOVEM 17,51

CONO ~PTR, 64 ;Set up reader on channel 4

CONO PI,12210 ;Clear PI, then activate it and turn on

;channel 4

;Continue program

RANE yee ;Check if data ready when needed

JRST llmareat ;Wait if necessary

DONE: 0 Interrupt routine, block done

CONO_ _~PTR,O ;Stop tape

TRO F,1 ;Set F bit 35

JEN @DONE ;Dismiss and restore flags

Operation. Tapes must be unoiled and opaque. The reader is located just

above the console operator panel. To load it, place the fanfold tape stack

vertically in the bin at the right, oriented so that the front end of the tape is

nearer the read head and the feed holes are away from you. Lift the gate,

take three or four folds of tape from the bin, and slip the tape into the rea-

der from the front. Carefully line up the feed holes with the sprocket teeth

to avoid damaging the tape, and close the gate. Make sure that the part of

the tape in the left bin is placed to correspond to the folds, otherwise it will

not stack properly. If the program requires that the Tape flag be set and it is *

not, briefly press the white feed button located on the face of the reader.

After the program has finished reading the tape, run out the remaining

trailer by pressing the feed button.
Indicators for the reader aré on the panel at the top of bay 1 (the panel is

3-3

3-4

This loader is written for min-
imum size and is quite com-
plex. Do not approach it asa
simple programming example.

114

BASIC IN-OUT EQUIPMENT | §3.1

pictured in Appendix C). The paper tape reader lights in the second row

from the bottom display the contents of the buffer. The PI assignment and

flags are displayed in the PTR lights in the middle of the thitd row (EOT is

the Tape flag). The remaining PTR lights are for maintenance.

Readin Mode

The only requirement (beyond those given in $2.12) for readin mode with

paper tape is that the data must be in binary (hole 8 punched). To select

the reader in the readin device switches, turn on the third from the left and

the last on the right (104).

The program below is the RIM10B Loader, which is brought into the

accumulators in readin mode, and then continues to read any number of

blocks of binary data from the same tape. The tape is formatted as a series

of blocks separated by a half-dozen lines of blank tape (tape with only feed

holes punched). The first block is the loader in readin format. The rest of

the tape contains any number of data blocks and ends with a transfer block.

Each data block contains any number of words of program data, preceded

by a standard IO block pointer for the data only, and followed by a check-

sum, which is the sum of all the data words and the pointer. It is recom-

mended that the number of data words per block be limited to twenty for

ease in repositioning the tape in case of error. The transfer block is a JRST

to the starting location of the program, followed by a throw-away word to

stop the reader. ;

XWD —16,0 3149 words starting at location 1
Sik: CONO PTR, 60 ;Set up reader binary

ST1: HRRI A,RD+1 ;Put RD+1 in Y part of A

RD: CONSO PTR,10 ;Watch Done

JRST eae

DATAI PTR,@TBLI-—RD+1(A) _ ;First and last words in

;ADR, data in block

XCT TBL1I—RD+1(A) ;TBL1+2 first word, +1 data,

;+0 checksum

XCT TBL2—RD+1(A) ;LBE2+-2 IRST. +1 ‘data, +0

;bad checksum

A: SOJA A, ; ;RD+1 first word, RD data, RD-1

slast word

EB: CAME CKSM,ADR_ ;Compare computed checksum with

sone read

ADD CKSM, 1(ADR) ;Add word read to checksum

SKIPL CKSM,ADR ;Put first word in CKSM, skip if

;pointer

BIE: JRST 4,ST ;Halt if checksum bad

AOBJN ADR,RD ;If data done, go to A; otherwise wait

;for next word

ADR: JRST ST1 ;Read in. executes this. First and last

;word of each block also put here
CKSM=ADR+1 :

15

§3.2 PAPER TAPE PUNCH

The processor halts if a computed checksum does not agree with the tape.

To reread a block, move the tape back to the preceding blank area and press

the continue key. A halt following the transfer block is not an error — many

programs begin by halting.

3.2 PAPER TAPE PUNCH

The punch perforates 8-channel tape at speeds up to 50 lines per second. It

can operate in alphanumeric or binary mode, as specified by the O or | state

respectively of the Binary flag; but in either mode a single tape-moving

command punches only one line. Alphanumeric mode punches an 8-bit

character supplied by the program; binary mode always punches channel 8,

never punches channel 7, and punches a 6-bit character in the remaining

channels. The interface contains an 8-bit buffer that receives data from the

processor. The punch device code is 100, mnemonic PTP.

CONO PTP, Conditions Out, Paper Tape Punch

71020 AL ake ¥

0 121314 1718 35

Set up the punch control register according to bits 30-35 of the effective

conditions E as shown (a | in a flag bit sets the flag, a O clears it).

PRIORITY INTERRUPT
BINARY BUSY DONE ASSIGNMENT

27 28 29 30 31 32 33 34 35

CONI PTP, Conditions In, Paper Tape Punch

0 121314 1718 35

Read the status of the punch into bits 29-35 of location E as shown.

NO PRIORITY INTERRUPT
TAPE BINARY BUSY DONE ASSIGNMENT

27 28 29 30 31 32 33 34 35

A 1 in bit 29 indicates that the punch is out of tape.

3-5

3-6

116

BASIC IN-OUT EQUIPMENT §3.2

DATAO PTP, _Data Out, Paper Tape Punch

0 121314 1718 35

Load the contents of bits 28-35 of location E into the punch buffer. Clear
Done and set Busy.

A CONO need be given only to change Binary or the PI assignment;
DATAO sets Busy while loading the buffer. Setting Busy places the punch in
operation. If Binary is clear, one line is punched in tape from bits 28-35 of
the buffer with bit 35 corresponding to channel 1 (a 1 in the buffer produces
a hole in the tape). If Binary is set, channel 8 is punched, channel 7 is not
punched, and the remaining channels are punched from bits 30-35 of the
buffer with bit 35 corresponding to channel 1. After punching is complete,
the device clears Busy and sets Done, requesting an interrupt on the assigned
channel.

Timing. If Busy is set when the punch motor is off, punching is auto-
matically delayed 1 second while the motor gets up to speed. While the
motor is on, punching is synchronized to a punch cycle of 20 ms. After
Done sets, the program has 10 ms within which to give a new DATAO to
keep punching at the maximum rate; after 10 ms punching is delayed until
the next cycle. If Busy remains clear for 5 seconds the motor turns off.

ExamPLe. Suppose we wish to punch out the same information we read
from tape in the examples of the previous section. We cannot use a BLKO
as an interrupt instruction unless we first spread the 6-bit characters over
sixty memory locations. The example uses channel 5 and assumes that other
channels are already in use.

MOVE A,[JSR PUNCH]
MOVEM A,52 ;Set up channel 5
CONO ~PTP,55 ;Request interrupt for first word

~ CONO PI,2004 ;Turn on channel 5

;Continue program

PUNCH: 0 ;Interrupt routine

- ILDB A,BY®PNT ;Put byte in A

AOSL CNT : ;Got all bytes?
CONO _—PTP,,40 ;Yes, prevent interrupt after last word
DATAO PTP,A ;Punch byte

\ JEN @PUNCH

BYPPNT: XWD 440600,4000 ;Generate pointer here

CNT: tD—-60 Initialize count

Operation., The punch is located behind the reader; both are in a drawer
that pulls out from the front of the console. Fanfold tape is fed from a box
at the rear of the drawer. After it is punched, the tape moves into a storage

117 ‘

§3.3 TELETYPE

bin from which the operator may remove it through a slot on the front.

Pushing the feed button beside the slot clears the punch buffer and punches

blank tape as long as it is held in. Busy being set prevents the button from

clearing the buffer, so pressing it cannot interfere with program punching.

To load tape, first empty the chad box behind the punch. Then tear off

the top of a box of fanfold tape (the top has a single flap; the bottom of the

box has a small flap in the center as well as the flap that extends the full

length of the box). Set the box in the frame at the back and thread the tape

through the punch mechanism. The arrows on the tape should be under-

neath and should point in the direction of tape motion. If they are on top,

turn the box around. If they point in the opposite direction, the box was

opened at the wrong end; remove the box, seal up the bottom, open the top,

and thread the tape correctly.

To facilitate loading, tear or cut the end of the tape diagonally. Thread

the tape under the out-of-tape plate, open the front guide plate (over the .

sprocket wheel), push the tape beyond the sprocket wheel, and close the

front guide plate. Press the feed button long enough to punch about a foot

and a half of leader. Make sure the tape is feeding and folding properly in

the storage bin. Pushing the button labeled POWER sets No Tape, pushing

it again clears the flag. It can be used to hold the program at bay while a

tape is being loaded.

To remove a length of perforated tape from the bin, first press the feed

button long enough to provide an adequate trailer at the end of the tape

(and also leader at the beginning of the next length of tape). Remove the

tape from the bin and tear it off at a fold within the area in which only feed

holes are punched. Make sure that the tape left in the bin is stacked to

correspond to the folds; otherwise, it will not stack properly as it is being
punched. After removal, turn the tape stack over so the beginning of the

tape is on top, and /abel it with name, date, and other appropriate

information.

Indicators for the punch are the PTP lights in the top row of the panel

at the top of bay 1. The numbered lights display the last line punched.

3.3 TELETYPE

Two teletypewriter models are regularly available with the PDP—10 for use

at the console: the KSR 35, which is capable of speeds up to ten characters

per second, and the KSR 37, which can handle up to fifteen characters per

second. The program can type out characters and can read in the characters

produced when keys are struck at the keyboard.

The teletype separates its input and output functions and in effect acts

like two devices with a single device code: each has its own Busy and Done

flags, but the two share a common interrupt channel. Placing the code for a

character in the output buffer causes the teletype to print the character or

perform the designated control function. Striking a key places the code for

the associated character in the input buffer where it can be retrieved by the

program, but it does nothing at the teletype unless the program sends the

code back as output.

118

BASIC IN-OUT EQUIPMENT _ §3.3

Character codes received from the teletype have eight bits wherein the

most significant is an even parity bit. The Model 35 ignores the parity bit

in characters transmitted to it. The Model 37 ignores the parity bit in a

code for a printable character, but it performs no function when it receives

a control code with incorrect parity.

The Model 37 has the entire character set listed in the table in Appendix

B. Lower case characters are not available on the Model 35, but transmitting

a lower case code to the teletype causes it fo print the corresponding upper

case character. To go to the beginning of a new line the program must send

both a carriage return, which moves the type box to the left margin, and

a line feed, which spaces the paper. The teletype device code is 120,

mnemonic TTY.

CONO TTY, Conditions Out, Teletype

0 1213 14 1718 35

Set up the teletype control register according to bits 24-35 of the effective

. conditions E as shown (a | in bit 24 sets Test, a O clears it; all other flag

functions are produced by Is, Os have no effect).

CLEAR | CLEAR | CLEAR | CLEAR SET SET SET PRIORITY INTERRUPT
TEST INPUT INPUT | OUTPUT |OUTPUT| INPUT INPUT | OUTPUT | OUTPUT ASSIGNMENT

; BUSY DONE BUSY DONE BUSY BUSY DONE

24 25 26 27 28 29 30 31 32 33 34 35

Setting Test connects the output buffer directly to the input buffer, allowing

the program to check out the interface logic without the line and the device.

CONI TTY, Conditions In, Teletype

0 121314 1718 35

Read the status of the teletype into bits 24 and 29-35 of location E as

shown.

Tae INPUT | INPUT | OUTPUT | OUTPUT PRIORITY INTERRUPT
BUSY DONE BUSY DONE ASSIGNMENT

24 25 26 2a fe 28 29 30 31 32 33 34 So

\

DATAO TTY, Data Out, Teletype

0 121314 1718 35

Load the contents of bits 28-35 of location E into the output buffer. Clear

Output Done, set Output Busy, and enable the transmitter.

119

§3.3 é TELETYPE

DATAI TTY, Data In, Teletype

71204 Li) Xe Y

0 1213 14 1718 35

Transfer the contents of the input buffer into bits 28-35 of location E.

Clear Input Done.

Output. A CONO need be given only to change the PI assignment;

DATAO sets Output Busy and enables the transmitter while loading the

buffer. Enabling the transmitter causes it to send the contents of the output

buffer serially to the teletype. Completion of transmission clears Output

Busy and sets Output Done, requesting an interrupt on the assigned channel.

Input. Teletype reception requires no initiating action by the program

except to supply a PI assignment. Striking a key transmits the code for the

character serially to the input buffer. The beginning of reception sets Input

Busy; completion clears Input Busy and sets Input Done, requesting an

interrupt on the assigned channel. A DATAI brings the character into

memory and clears Input Done.

Timing. The Model 35 can type up to ten characters per second. After

Output Done is set, the program has 9.09 ms to give a DATAO to keep

typing at the maximum rate. After Input Done is set, the character is

available for retrieval by a DATAI for 22.73 ms before another key strike

can destroy it.

The 37 can handle fifteen characters per second, 66.7 ms per character.

After Output Done is set, the program has 6.67 ms to send a new character

to maintain the maximum typing rate. After Input Done is set, the character

is available for at least 10 ms.

The sequence carriage return-line feed, when given in that order, allows

sufficient time for the type box to get to the beginning of a new line. After

tabbing, the program must wait for completion of the mechanical function

by sending one or two rubouts. If the time is critical, the programmer

should measure the time required for his tabs. Tabs are normally set every

eight spaces (columns 9, 17, ...) and require one rubout.

Operation. The illustrations on the following two pages show the two

teletype models. The teletype is actually two independent devices, keyboard

and printer, which can be operated simultaneously. Power must be turned

on by the operator. On the 35 the switch is beside the keyboard, and has an

unmarked third position (opposite ON) which turns on power but with the

machine off line so it can be used like a typewriter. A similar switch is

located beneath the stand on the 37.

The keyboard resembles that of a standard typewriter. Codes for printable

characters on the upper parts of the key tops on the 35 are transmitted by

using the shift key; most control codes require use of the control key. Those

familiar with the 35 who are using the 37 for the first time should take a

close look at the keyboard. On the 37 the shift is used for real upper case

characters. The control key is used for some control characters, but many

3-9

3-10

Teletype KSR 35

120

BASIC IN-OUT EQUIPMENT §3.3

have separate keys. Note also that both the keyboard arrangement and the

labels differ somewhat. On both, the line feed (labeled “‘new line” on the 37)

spaces the paper vertically at six lines to the inch, and must be combined

with a return to start a new line. The local advance (feed) and return keys

affect the printer directly and do not transmit codes. Appendix B lists the

complete teletype code, ASCII characters, key combinations, and differences

between the two models.

Indicators for the teletype are the TTY ste in the second - tow of the

TELE YYFE

panel at the top of bay 1. The numbered lights display the last character

typed in from the keyboard (bit 8 is parity). The ACT lights indicate

activity in the transmitter and receiver. The remaining lights display the PI

assignment and flags (the Input and Output Done flags are labeled TTI

FLAG and TTO FLAG).
Teletype manuals supplied with the equipment give complete, illustrated

descriptions of the procedures for loading paper, changing the ribbon, and

setting horizontal and vertical tabs. The first two procedures are fairly

Teletype KSR 37

122

BASIC IN-OUT EQUIPMENT §3.3

obvious: observe the paper or ribbon path and duplicate it. The other tasks

are usually left for maintenance personnel. In any event, the best and easiest

way to learn to do any of these things is to have someone who knows show

you how. :

123

4

Hardcopy Equipment

This chapter discusses the line printer, XY plotter, card reader, and card

punch. Like the basic in-out equipment, these devices are primarily for

communication between computer and operator using a paper medium: form

paper, graph paper or cards.
The line printer provides text output at a relatively high rate. The pro-

gram must effectively typeset each line; upon command the printer then

prints the entire line. With the plotter, the program can produce ink draw-

ings by controlling the incremental motion of pen on paper in a cartesian

coordinate system. Curves and figures of any shape can be generated by

proper combinations of motion in x and y.
The card equipment processes standard 12-row 80-column cards. Many

programmers find cards a convenient medium for source program input and

for supplying data that varies from one program run to another. Cards are

convenient to prepare manually, input is much faster than paper tape, and

simple changes are easy to make: individual cards can be repunched, and

cards can be added or removed from the deck. The card reader cannot be

used in readin mode, but a standard card-reading program in readin format

can be kept on paper tape or DECtape. A possible consideration in using

cards is that many installations do not include an online card punch.

These four devices are all run by the BA10 Hardcopy Control. Interface

logic for a plotter can also be mounted in the TD10A DECtape Control.

4.1 LINE PRINTER

The line printer outputs hardcopy composed of lines 132 characters long at

a nominal rate of 300,600 or 1000 lines per minute. The standard printer

has sixty-four printing characters available to the program. The characters

and codes are the figure and upper case sets, codes 040-137, in the teletype

code [Appendix B]. When a lower case code (140-176) is given, the corres-

ponding upper case code is loaded into the buffer. Besides accepting printing

characters, the printer responds to ten control characters, HT, CR, LF, VT,

FF, DLE and DC1-—4. All other codes are ignored.

The printer has a 132-character buffer that holds the image of a single line;

the program must first load the buffer up to five characters at a time, and

then give a control character to print the entire line. The buffer is loaded

from left to right, and only the portion filled produces a printout. Hence

4-1

4-2

Virtually any character set
can be had on any printer by

special order. In any event

characters after the first
ninety-five are always special
order.

Spacing other than the stan-
dard can be produced by
using a different format tape.
The length of the loop should
correspond to one or more

‘pages of the printer form
used, with holes punched at

the lines where paper spacing
is to stop.

Programmers generally treat
the data for the line printer
and teletype identically, using
the combination CR plus LF
for printing and spacing. This
way a given character string
can be outputted on either
device. CR is used alone only
when the next print command
will overprint, ie will print
another character in a column
position already printed. With
this technique the program
can produce a character such
as “#” by overprinting a
slash on an equal sign (or vice
versa).

124

HARDCOPY EQUIPMENT §4.1

for each line the program need send out characters (including spaces) only as

far as the rightmost nonspace character. The characters are printed in the

order that they pass the print hammers, and a given character is printed

simultaneously in all positions that require it. In other words the drum has a
row of 132 Ms, a row of Ns, etc; all Ms are printed together, all Ns together,

and so forth. The first character printed depends only upon the position of

the drum when the print command is given.

Printers having more than sixty-four characters are also available. The 96-

character printer outputs 600 lines per minute and has the entire figure,

upper case and lower case sets, codes 040-176. This is actually only ninety-

five characters, but an option allows use of the delete code to select an extra

character on ‘the drum. A single delete code is ignored, but two consecutive

177s cause the code 177 to be loaded into the buffer. When the code for a

printing character is the same as one for a nonprinting character and is loaded

by giving it immediately after a delete code, the printing character is said to

be “hidden” under the nonprinting one.

The 128-character printer outputs 500 lines per minute and uses the entire

set of 7-bit codes for printing characters, with characters hidden under the

ten control characters and also under null and delete.

Output Format. Paper, motion is controlled by a format tape loop in the

printer. The tape has eight columns and the loop corresponds to an integral

number of pages of the fanfold form paper. With the exception of CR, every

control character that prints a line from the contents of the buffer produces

a different spacing by selecting a particular tape column. The paper then

advances until a hole is encountered in the selected column.

The standard paper has 11-inch pages of sixty-six lines, and the standard

tape for these generates the formats listed below. The fourth column gives

the hole positions in terms of the numbered lines on the tape. The tape is

usually installed at random and then positioned by pressing the top-of-form

button on the printer. Then the paper is adjusted so that the desired line on

the paper corresponds to line 0 on the tape. Ordinarily the paper is set with

the print hammers at the fourth line, so all but one of these formats leaves

a three-line margin at the top and a margin Of at least three lines at the

bottom of each page.

Character Column Normal meaning Hole positions

FF (014) 1 Top of form Line 0

CR (015) None No spacing (paper

motion inhibited)

LF (012) 8 Single space with auto- Every line from 0

matic top of form after to 59

every 60 impressions

DC! (021) 6) Double space with auto- Every even num-

matic top of form after bered line from 0

every 30 impressions to 58

DC2 (022) 4 Triple space with auto- Every third line

matic top of form after from 0 to 57

every 20 impressions

125

§4.1 LINE PRINTER

DC3 (023) 5 Single space Every line

DC4 (024) 6 Space one sixth of a Lines 0, 10, 20
page 30, 40, 50

VT (013) dt Space one third of a Lines 0, 20, 40

page

DLE (020) 2 Space half a page Lines 0, 30

The actual printer action of advancing the paper to the next hole in the tape

produces the “normal” format only if the program consistently selects the

same tape column. Always using DC1 to print produces double spaced text

from line 4 to line 62 on every page. But if the last print command spaced to

an odd numbered line, DC1 moves the paper only one line.

Printing Speed. The printer is available in five models with differing

printing speeds.

Nominal printing Time per
speed in lines Drum rotation revolution

Printer per minute in rpm in ms

LP10A 300 333 180

LP10B 600 750 80

LP10C 1000 1250 48

96 Character 600 750 80

128 Character 500 550 109

Printing begins as soon as a print command is given and terminates when

the last required character is printed, ie without necessarily waiting for a

complete drum revolution. Therefore print time depends on the initial drum

position and the number of characters that must pass the print head before

the last is printed. No time is required for spaces: the printer produces

spaces in a line by not printing anything in the columns corresponding to the

buffer positions that hold space characters. As a given character is printed, .

space codes replace the codes for the character in all buffer positions that

hold it, and printing ceases when the buffer is filled with spaces.

A complete print cycle consists of the print time plus the time required

for advancing the paper; paper spacing begins immediately after printing ter-

minates, and further printing is inhibited while the paper is moving. It takes

about 12 ms to advance the paper one line, about 6-8 ms for each additional

line. If the buffer is loaded only with spaces, the print cycle consists entirely

of paper spacing.
Using an ordinary distribution of characters results in printing at or

slightly above the nominal speed. Printing is faster however if paper spacing

occurs while unused characters are passing the print head. Eg text that uses

only the alphabet can be printed at the full drum rotation speed.

Instructions. The printer has the usual instructions for sending and reading

conditions, but after initial setup it can be controlled entirely by the charac-

ters sent by a string of DATAOs. The program supplies five characters at a

time to a 35-bit character buffer in the printer interface. The interface proc-

esses the characters from left to right loading valid data characters into the

4-3

126

4-4 HARDCOPY EQUIPMENT §4.1

line buffer, ignoring invalid characters, and sending control signals to the

printer when a control character is encountered. The printer device code is

124, mnemonic LPT.

CONO LPT, Conditions Out, Line Printer

0 121314 1718 35

Perform the function given below if specified by a 1 in bit 25 and set up the

printer control register according to bits 30-35 of the effective conditions E

as shown (a | in a flag bit sets the flag, a O clears it).

CLEAR PRIORITY INTERRUPT PRIORITY INTERRUPT
PRINTER BUSY DONE ASSIGNMENT — ERROR ASSIGNMENT — DONE

33 34 35 32

Power turnon and the IO If bit 25 is 1, clear Done, set Busy, clear the interface logic, and trigger a
reset signal generated by print cycle to clear the line buffer. The cycle clears the buffer by replacing
CONO AP R, 200000 dupli- the characters in it with spaces, and the time required is the same as would
gore Tis clog eoucnon: be required to print whatever is in it. Completion of the cycle clears Busy

and sets Done, requesting an interrupt on the channel assigned by bits
33-35.

CONI LPT, Conditions In, Line Printer

71264 X y
0 121314 1718 35

Read the status of the printer into bits 24-35 of location E as shown.

PRIORITY INTERRUPT PRIORITY INTERRUPT
128 ERROR | BUSY | DONE ASSIGNMENT — ERROR ASSIGNMENT — DONE

24 25 26 27 28 29 30 31 32 33 34 35

A | in bit 24 indicates that the printer has a 128-character drum; a 1 in bit

25 indicates that at least 95 characters are available to the program.

DATAO LPT, Data Out, Line Printer

0 121314 1718 35

Load the contents of bits 0-34 of location E into the character buffer, clear

Done, set Busy, and trigger the interface processing cycle. The format of the

127

§4.1 LINE PRINTER

data word and the order in which the characters are processed is as shown.

FIRST SECOND THIRD FOURTH FIFTH |

} 10) 6 1314 2021 2728 34

Following power turnon, the Error flag (CONI bit 27) is set if the printer

cable is not connected or any other condition exists that makes the printer

unavailable to the program [these other conditions are given in the discussion

of printer operation at the end of the section]. If Error is set when a CONO

gives an error PI assignment (with bits 30-32 of £), there is an immediate

interrupt request on the error channel. Barring accident or hardware mal-

function, an error interrupt is likely to occur during a printout run only

when the printer is about to run out of paper or the operator stops it (in

either case Error sets and the printer stops when the buffer is empty

following the printing of a line).

At the beginning of a print run the program should give a CONO to clear

the line buffer and assign the PI channels. After that a CONO need be given

only to change the PI assignments; each DATAO starts the character-proc-

essing operations of the interface while loading the character buffer. The

interface processes the characters from left to right, starting each character

cycle when the line buffer is ready. Printing characters are simply sent to the

buffer, with lower case codes translated to upper case for a 64-character

printer. Unused codes are ignored. The interface responds as follows when a

control character is encountered.

@ A horizontal tab (HT) is simulated by sending a string of spaces to the line

buffer. Tab stops are every eight columns (9, 17, . . .). The interface always

sends at least one space, and then sends as many more as are necessary for

the next character to be ata tab stop. Thus if a DATAO gives the sequence

A HT By

where A is placed in column 7, B will go into column 9. But if A goes into

column 8, B will go into column 17.

@ Upon encountering any other printer control character, the interface

signals the printer to print the contents of the line buffer, and unless the

character is CR, it also selects a format tape column to space the paper as

listed in the format discussion at the beginning of this section. When the

buffer again becomes available, subsequent characters will be loaded starting

in column 1. If printing is caused by a CR, the next line will overprint unless

the paper is advanced before any nonspace characters are loaded into the

buffer.

If the buffer is filled with 132 characters and the next character does not

cause printing, the interface simulates a line feed to print and advance the

paper, and then loads the next character at’column 1 for the new line. If the

program tabs to the end ofa line, the interface simulates a line feed and also

tabs at the beginning of the next line. In other words a printing character

following the tab will be loaded at column 9 for the new line.

When the interface finishes processing the five characters supplied by a

4-5

Characters are assembled into
words in this manner by an
IDPB loop or an ASCII or
ASCIZ pseudoinstruction.

These tabs are the same as
the ones ordinarily used on
the teletype.

128

HARDCOPY EQUIPMENT §4.1

DATAO, it clears Busy and sets Done, requesting an interrupt on the channel

assigned by bits 33-35 of the conditions out.

Timing. The time from one DATAO to the next while the program is

loading the buffer is simply the time required by the interface to process five

characters. Loading each printing character, including each space in a

horizontal tab, takes 10 ys. Skipping an illegal character takes 8 ys.

If the fifth character causes printing, Done is set immediately and the

program can give a DATAO to send the first set of characters for the next

line. However, the interface does not begin processing the new characters

until the buffer becomes available after the printer finishes printing the

previous line. If printing is produced by any character before the last, the

print time elapses before the interface processes the next character in the
current set.

The overall time required for a print run is the total printing and spacing

time for all lines as given above in the discussion of the printing speed. The

time required to process individual characters is a consideration in pro-

gramming the DATAOs that load the buffer, but buffer loading time is not

a factor in total printer operating time except when loading characters for

overprinting (following a CR). This is because the buffer becomes available

while the paper is moving, in plenty of time for the program to load it before

the paper stops.

Examp tes. In the first example, which uses the line printer without the

interrupt, we have simply filled in the missing part of the print subroutine

given at the top of page 2-61 (it prints the characters that accompany the

calling sequence given at the bottom of page 2-60).

PRINT: HRLI T, 440700

ILDB CH,T

JUMPE CH,1(T)

CONSZ_ LPT,200 ;Skip when printer not busy

JRST el ;Wait for Busy to clear

ISH: CHI ;Shift character to bits 28-34
DATAO_ LPT,CH ;Send character to printer

JRST PRINT+1

The same program could be used for output on the teletype by making the
substitution

CONSZ LPT,200 ~ CONSZ TTY,20

and deleting the LSH CH,1.

The above is perhaps an overly simple example. It assumes the line buffer

is clear initially and the printer is available. Moreover the processor spends

most of its time waiting. Characters are processed individually in order to

detect the null, but if the processor has anything else to do, it would be

much more efficient to use the interrupt and send five characters at a time.

In the following example the main program sets up each print run by

giving a JSR SETUP. The number of words printed and the starting location

of the block containing them are determined by the contents of PNTR1.

Once a run is set up, the program can change the contents of PNTR1 for
the next one.

129

§4.1 LINE PRINTER . 4-7

SETUP: 0)
SKIPGE PNTR
JRST pl ;Wait for current IO to finish

MOVE T,[JSR ERROR]

MOVEM T,42 ;Channel | for error

MOVE T,[JSR DATA]
MOVEM 1T,44 ;Channel 2 for data

MOVE T,PNTRI

MOVEM T,PNTR ;Set up new IO block pointer

CONO _LPT,2012 ;Clear printer, assign channels End of clear function sets

CONO PI,2340 :-Turn on PI and channels Done, requesting a data

JRST @SETUP interrupt.

PNTRI: 0

PNTR: 0)

ERROR: 0
CONO?) EPI.2 ;Drop error request by dropping error

;PI assignment

;Start typing error message

JEN @ERROR

DATA: 0
GONOs = EET ;Reassign error channel

BLKO LPT,PNTR ;Send out word

CONO- LPT,0 ;Turn off printer

JEN @DATA

Operation. The 600-line-per-minute printer is illustrated on the following

page. At the left on the front of the printer are two round indicators and

two columns of square buttons and indicators, some of which are not used.

The round lights indicate whether the printer has power: green light for

power on, red for off.

The buttons at the top of the columns operate the printer. Pushing

START places the printer on line so it can respond to the program (the

button is lit while the unit is on line). Pushing STOP takes the unit off line;

the operator can then use the TOP OF FORM button to position the paper

(or the format tape). If the program has left anything in the buffer, it can

be printed by pressing MANUAL PRINT. The maintenance button TEST

can also be used while STOP is lit. START, STOP and TOP OF FORM are

duplicated at the rear of the printer.

At the bottom of the columns are four alarm lights that indicate when the

paper supply is low, the printer is out of paper or the paper is broken, the

yoke is open, or there is a circuit malfunction (ALARM STATUS). When

the operator presses STOP or there is a paper low alert, START does not go

out until the buffer is empty (in other words until the printer finishes

printing a line currently being loaded or printed). START goes out immedi-

ately if any other alarm condition occurs or power fails. When START is

out or the cable to the interface is not connected, the Error flag is set and

the printer cannot respond to the program.

- Line Printer LP10B

130

HARDCOPY EQUIPMENT §4.1

The lights for the interface are in the top two rows on the hardcopy
control indicator panel [illustrated on the opposite page|. The top row dis-
plays the contents of the character buffer; the 7-bit characters are shifted
left for processing. The shift and column counters at the left end of the
second row indicate the last character processed (0-4) and the last buffer
position loaded. The group of lights at the right display the status condi-

131

§4.2 PLOTTER

Ma hee ee en ae

tions. Of the group in the center, BUFF AVAIL indicates the line buffer is

ready for the next character; the remaining lights are for maintenance.

To load paper, press STOP. If START does not go out, the program

probably left the last line in the buffer: press MANUAL. When printing is

complete the light will go out. Open the printer cover. At the front are two

toggle switches: switch both of them to OPEN. The printer yoke will slide

forward. Lift the guide plates over the two pairs of tractors, pull out the

remaining paper, and press TOP OF FORM to line up the spacing format

tape. Bring the beginning of the paper up behind the yoke, over the top and

through the rollers on the back. Move the paper until line 4 of a page is

lined up with the print hammers (at most installations the point at which the

fold should come is marked). Make sure the tractor wheels engage the holes

at the edges of the paper, close the guide plates, switch the toggles to

CLOSE, close the cover, and press START. ‘

All of the larger and faster printers are as described above! On the slowest

printer the lights are at the right, the single PAPER ALARM indicates the

paper is either low or broken, and there are no buttons on the back. With

the cover open the yoke is controlled by two unmarked plastic switches on

either side at the top. Pressing them in at the end nearer the front opens the

yoke. This printer has only one pair of tractors, but it has a pair of bars

below the yoke. The paper must go over the stationary bar and under the

movable one.

4.2 PLOTTER

The XY10 plotter control interfaces the PDP—10 central processor to various

plotters that use cartesian coordinates. The models most frequently used are

manufactured by Calcomp, but others can be accommodated. The following

lists the type and paper size of the most commonly supplied Calcomp

models.

Indicator Panel,
Hardcopy Control

4-10

Calcomp plotters in the 600
series have two step sizes and

two plotting speeds: a switch
at the back selects the step
size, delay settings in the
plotter control determine the
speed.

132 :

HARDCOPY EQUIPMENT

Calcomp model

502, 602

518, 618

563, 663

565, 665

Type

Bed

Bed |

Drum

Drum

Paper size in inches

31 X 34

54 X 72

29% X 1440

11 X 1440

§4.2

These are high accuracy, incremental digital plotters that produce fine

quality ink plots of computer-generated data. Bidirectional stepping motors

provide individual increments of motion in either coordinate or both at once.

The program draws a continuous sequence of line segments by controlling

the relative motion of pen and paper with the pen lowered, and it can raise

the pen, for repositioning.

Motion in y is movement of the pen carriage along a pair of rods. Motion

in x is movement of the entire carriage-and-rod mechanism on a bed plotter,

movement of the paper underneath the carriage on the drum type. Ona bed

plotter the coordinate directions are the standard ones when viewing the

device from the front: positive x to the right, positive y to the back. The
coordinate system on a drum is in the standard orientation when the viewer
is standing at the right side, unrolling the paper from the drum with his left
hand. In other words positive y is movement of the pen from right to left
across the drum, positive x is drum rotation downward at the front (drawing
a line toward the paper supply roll at the back).

The step sizes and plotting speeds available with the various Calcomp
models are the following.

Model

502

518

563

565

602

618

663

665

Step size

All sizes

.005 inch

.002 inch

.lmm

.05 mm

.010 inch

.005 inch

.imm

All sizes

All sizes

.005/.0025 inch

.002/.001 inch

.1/.05 mm

.05/.025 mm

.010/.005 inch

.005/.0025 inch

.0025/.00125 inch

All sizes

Plotting speed in
steps per second

300

200
450
200
400

200
300
300

300

450/900

200/400
450/900
200/400
450/900

350/700
450/900
450/900

450/900

133

§4.2 PLOTTER 4:1]

The program can draw any complete figure by giving a string of DATAOs, Calcomp Drum Plotte:

each of which supplies the information for one step. The plotter device code Model 565
is 140, mnemonic PLT. |

CONO PLT, Conditions Out, Plotter

71420
0. 121314 1718 35

Set up the plotter control register according to bits 31-35 of the effective

conditions E as shown (a | in a flag bit sets the flag, a O clears it).

PRIORITY INTERRUPT
BUSY DONE ASSIGNMENT

28 29 30 31 32 ba 33 34 35

4-12

134

HARDCOPY EQUIPMENT §4.2

CONI PLT, | Conditions In, Plotter

0 1213 14 1718 . 35

Read the status of the plotter into bits 30-35 of location E as shown.

PRIORITY INTERRUPT | ae
a5c8; |

Power On is not available on all plotters.

DATAO PLT, Data Out, Plotter

71414
0 121314 1718 35

Clear Done, set Busy, and move the pen as specified by bits 30-35 of the

contents of location E as shown (a 1 in a bit produces the indicated motion,

a 0 has no effect).

—AX SAX
(DRUM (DRUM ‘cannes cakes
UP) DOWN) LEFT) a

A CONO need be given only to change the PI assignment; DATAO places

the plotter in operation by supplying plotting data. After sufficient time has

elapsed for the device to carry out the specified action, the control clears

Busy and sets Done, requesting an interrupt on the assigned channel.

To avoid drawing line segments shorter than one step, do not raise or

lower the pen in the same DATAO that calls for xy motion. The conse-

quences of specifying contradictory movements cannot be predicted.

Timing. Lowering the pen takes 60 ms, raising it takes 10 ms. The time

required to move one step in either or pod coordinates depends on the

plotting speed as follows.

Plotting speed in

steps per second Time per step in ms

200, DES

300 1.66

350 1.45

400 125)

450 1.10

700 .70

900 1

135

§4.2 PLOTTER

Examp.e. The plotting commands sent out by this program are contained

six to a word in WC words beginning at location BUFFER. The interrupt

routine uses one accumulator which is shared with the main program and

other channels.

CONSZ?- PEI ;Wait until previous run finished as

JRST s='ll ;indicated by no PI assignment

MOVE T,[JSR DATA]
MOVEM 1T,50 ;Set up channel 4

MOVEI T,WC*6 ;Set up count for plotting commands

MOVEM T,COUNT
MOVE T,[POINT 6,BUFFER]
MOVEM T,CHARP
CONO PLT,4
CONO PI,2210
DATAO PLT,PUP

Initiate byte pointer

;Assign channel

:Turn on PI and channel

;Raise pen to trigger first interrupt

DATA: 0)
SOSGE COUNT sIs plot finished?

JRST DATA1 ;Yes

; MOVEM T,TSAVE __ ;Save T
ILDB T,CHARP ;Get next plotting command

DATAO PLT,T ;Plot point

MOVE’ T,TSAVE ;Restore T

JEN @DATA

PUP: 40

TSAVE: 0
COUNT: 0

CHARP: 0

DATAI: CONO PLT,0 :Disconnect plotter from interrupt

DATAO PLT,PUP
JEN, @DATA

;Raise pen

Operation. On a drum plotter the supply roll is behind the drum. Bring

the paper over the drum, down in front, and above and behind the pickup

roll underneath the drum (use a piece of masking tape to attach the paper,

or roll some onto the tube).

The controls are on the front [refer to the illustration on page 4-11]. To

put the plotter on line simply turn on the power and the chart drive. The

remaining controls are for manual operation: raising and lowering the pen,

moving the carriage and drum in either direction, rapidly or single step. The

switch that selects the step size on a 600-series plotter is on the back. The

bed plotter has similar controls.

Lights for the plotter are the group at the right end in the bottom row on

the hardcopy control indicator panel [page 4-9]. These display the status

conditions and the plotting data supplied by the last DATAO. If the plotter

interface is mounted in a DECtape control, there are no lights.

4-13

The asterisk is the sign for
multiplication in MACRO.

POINT is a pseudoinstruction
that causes MACRO to gener-
ate a byte pointer from the
three arguments that follow
it. In order these arguments
are the byte length in deci- |
mal, the address of the loca-
tidn containing the byte, and

the position of the rightmost
bit of the byte as the decimal
number of the bit in the
word. If the last argument is
omitted, MACRO takes it as
-1; in other words, after
being incremented the pointer
will point to the first byte.
The left half of the pointer
generated here is 440600.

4-14

136

HARDCOPY EQUIPMENT §4.3

4.3 CARD READER

The card reader handles standard 12-row 80-column cards at speeds up to
1000 cards per minute (833 if power is 50 Hz). Once started, an entire card
is read column by column. The reader supplies each column to the processor
as twelve bits, and the program can translate in any way it wishes; the
standard DEC character representations and the translation to ASCII made
by the Monitor are given in Appendix B. Of course the data can simply be in
binary at three columns per word (a 7 and 9 punch in the first column is the
standard indication that the rest of the card contains binary ‘data).

The interface contains a 12-bit buffer from which each column is retrieved
by the processor. The reader device code is 150, mnemonic CR.

CONO CR, Conditions Out, Card Reader

0 12 1314 1718 35

Assign the interrupt channel specified by bits 33-35 of E and perform the
functions specified by bits 23-32 as shown (in bits 27 and 29 a 1 enables
the given flag to interrupt, a 0 disables it; in all other bits a 1 produces the
indicated function, a 0 has no effect).

ENABLE ENABLE
TROUBLE READY
INTERRUPTS TO READ

CLEAR PRIORITY CLEAR | OFFSET mae END ae INTERRUPT READER | CARD MISSED we READY ASSIGNMENT

With the console model, off-

setting a card places it in a
separate stacker.

Notes.

23 Dismiss the PI assignment (assign zero); clear flags Reading Card,
Data Missed, End of File, End of Card, Data Ready, Trouble
Interrupt Enabled, Ready to Read Interrupt Enabled; clear the card
column buffer; and disable any read command given by a CONO if
the reader has not yet started the card. If any action specified by the
test of the CONO bits conflicts with these actions, the clear function
has precedence.

24 If a card is currently being processed in the reader (Card In Reader,
CONI bit 24, is 1), offset it when it is placed in the stacker. The card
will actually stick out about a half inch from the rest of the stacked
deck.

137

§4.3 CARD READER 4-15

CONI CR, Conditions In, Card Reader

T1534
0 121314 1718 35

Read the status of the reader into the right half of location Z as shown.

* * * * * *

jane PHOTO READY | END | END PRIORITY
EMPrYs READING DATA DATA INTERRUPT

26 27 28 29 30 sie 32

Notes. . *These bits cause interrupts.

TROUBLE READY
INTERRUPT TO READ
ENABLED INTERRUPT

ENABLED

Interrupts are requested on the assigned channel by the setting of Data

Ready, Data Missed, End of Card, End of File, and if enabled, Trouble and

Ready to Read.

20 The reader has received a read command but has failed to bring in

a card from the hopper.

21 The reader has failed to read a card properly and maintenance is

probably required. The program should be dubious of any data

taken from the card being read when the error occurred.

22 A card has failed to move properly through the reader (it has

probably slipped). The program should be dubious of any data taken

from the card being read when the error occurred.

23 Reader power is on but the reader is or soon will be unavailable to

the program either because the operator has pressed the stop button

or there is a trouble condition (bit 27). If Stop is set while a card is

being read, the reader usually finishes it; only a power failure can

stop the reader in the middle of a card.

24 The reader has‘ brought a card in from the hopper and has not yet

finished reading it. The program can give a CONO offset command

while this bit is 1.

26 The reader has accepted a read command and has not yet finished

reading the card.

Uy Bit 20, 21, 22 or 25 is 1. If bit 18 is also 1, the setting of Trouble

requests an interrupt on the assigned channel.

Any condition that sets Trouble also sets Stop (bit 23) and the

reader will stop at the end of the current card (of course a pick

failure prevents the reader from even starting a card). Although a 1

in bit 27 does not necessarily imply an error or malfunction, it

always requires operator intervention. If bit 25 is 1 it is very likely

that the only trouble is the hopper is empty or the stacker is full.

28 The program failed to retrieve a column of data before the next

column was loaded into the buffer by the reader. :

4-16

The usual procedure is to put
an end-of-file card at the end
of the deck rather than use
the button. Actually the but-
ton can be used to signal the
program for any purpose pro-
vided the reader is off line
(stopped).

138

“HARDCOPY EQUIPMENT §4.3

29 The reader is ready to accept a read command. If bit 19 is 1, the

setting of Ready to Read requests an interrupt on the assigned

channel.

30 The reader has stopped (probably because the hopper is empty) and

the operator has pressed the end-of-file button.

DATAI CR, Data In, Card Reader

0 121314 1718 35

Clear Data Ready, and transfer the contents of the card column buffer into

bits 24-35 of location E where the correspondence of card rows to bit

positions is as shown.

24 25 26 27 28 29 30 31 32 33 34 35

If the program does ‘not re-
trieve the final column and a

CONO that starts a new card

does not clear Data Ready,

Data Missed will be set by the
first column in the new card.

If the reader operates on 50
Hz power, all times must be

increased by 20 per cent.

The program must give a CONO with a 1 in bit 26 to start every card.

This read card command waits until the reader is ready, at which time Read-

ing Card sets and the reader card cycle begins. Movement of a card in from

the hopper sets Card in Reader. As each column is loaded into the buffer,

Data Ready sets, requesting an interrupt on the assigned channel. The

program must respond with a DATAI to transfer the column to memory and

clear Data Ready. If Data Ready is still set when the next column is loaded
into the buffer, Data Missed is set, requesting a second interrupt.

After all eighty columns have been read, Card in Reader goes off, clearing
Reading Card and setting End of Card, which requests an interrupt. The

card then moves out to the stacker, and when the device is ready to begin a

new card cycle, Ready to Read goes on, but only if no new read card

command has been given. If a read card command is already waiting when

the reader becomes ready, it simply accepts the command and Ready to

Read remains off. If no command is waiting, Ready to Read goes on,

requesting an interrupt if enabled (CONI bit 19 is 1), and it goes off auto-

matically when a new command is given.

Timing. After Reading Card sets, 18 ms elapse before Card in Reader goes

on. The first Data: Ready occurs 1.8 ms later. Subsequent columns are ready

every 370 us — the program must give a DATAI within 350 us after each

setting of Data Ready. Total time from first to last Data Ready is 29.2 ms.

After the final Data Ready, 1.8 ms elapse before Card in Reader and Reading

Card clear and End of Card sets. The program then has 9.2 ms within which

to give a new CONO read card command to keep the reader going at the

maximum rate. Ready to Read goes on at the end of this period if no new

“command appears.

When the last card in a deck is read, the hopper empty signal is simul-

139

§4.3 CARD READER

taneous with End of Card.
Operation. The reader has a

hopper and stacker capacity of

1000 cards. To load a deck,

first fan the cards and jog

them on the reader shelf. Turn

the deck over and put the first

hundred cards (about an inch

of the deck) into the hopper

(upper right) with the 9 edge

‘against the back so column 1

is read first. Place the rest of

the deck on top of the first

part. Cards can be added to

the hopper while the reader is

running, but always stop the

reader before removing cards

from the stacker.

The reader is operated

by the buttons at the left.

The alternate-action POWER

switch lights green when

power is on. Pushing START

places the reader on line so the

program can read cards. Pushing STOP turns off the reader, taking it off line.

The lights at the right indicate an empty hopper, a full stacker, a pick

failure, a card motion error, and a photocell output that is too weak or too

strong. When one of these lights goes on the STOP light also goes on (the

reader always finishes the current card before stopping). Do not attempt to

reread a worn or damaged card that has caused a pick failure or motion

error — duplicate it first. If any trouble light remains on after the problem is

corrected press the CLEAR button; this turns off both the lights and the

corresponding status signals read by a CONI. Press START to allow the

program to continue reading the deck. If the trouble persists, enter it in the

system log and notify maintenance personnel.

Pressing the END OF FILE button (at the right) when the reader is off

line, as when the hopper is empty, sets the End of File flag. When the TEST

MODE light is on, the reader processes cards off line (the test switch is

behind the panel under the shelf).

' Lights for the interface are in the bottom two rows on the hardcopy

control indicator panel [page 4-9]. The left section of the upper row dis-

plays the contents of the card column buffer; the lights are marked by card

row. The left section of the bottom row displays bits 24-35 of the status

conditions. (The second light from the left is labeled HOP EMPTY, but it

goes on when the hopper is empty or the stacker is full.) Of the five lights

in the center, the left one is the momentary offset signal. READ is on when

a read command has been given but the reader is not yet ready. The next

two lights display bits 18 and 19 of the status conditions, and the last light

is on while an interrupt is being requested whatever the cause.

Card Reader

4-17

4-18

140

HARDCOPY EQUIPMENT §4.4

Also available is a console model reader that has a 2000-card hopper and

two 2000-card stackers. In use it differs from the compact model only in

that offsetting a card places it in the second stacker (the one on the right),

and cards can be removed from the stackers while the reader is running.

4.4 CARD PUNCH

The card punch handles standard 12-row 80-column cards at speeds up to

200 cards per minute if all eighty columns are punched, 365 cards per minute

if only the first sixteen columns are punched. The processor must supply

each column to the punch as twelve bits, and the program can generate this

data by any procedure it wishes; the standard DEC character representations

and the translation from ASCII made by the Monitor are given in Appendix

B. Of course the data can simply be in binary at three columns per word

(punching rows 7 and 9 in the first column is the standard procedure for in-

dicating that the rest of the card contains binary data).

A card is taken from the hopper only when the program supplies data for

the first column. In the interface is a 12-bit buffer to which the processor

sends each column, but the punch has a 48-bit buffer, and it punches four

columns at a time from each set of four |2-bit bytes sent through the inter-

face. The program can send a card to the stacker after punching any number

of columns. The punch device code is 110, mnemonic CDP.

CONO CDP, Conditions Out, Card Punch

0 1213 14 1718 35

Assign the interrupt channel specified by bits 33-35 of the effective condi-

tions E and perform the functions specified by bits 20-32 as shown (a 1 ina

bit produces the indicated function, a 0 has no effect).

DISABLE] ENABLE | CLEAR | cry | CLEAR SET PRIORITY

END | PUNCH DATA INTERRUPT
END OF CARD 4 REQUEST ASSIGNMENT

27 28 31 32

isaBLe| ENABLE

TROUBLE
INTERRUPTS

CLEAR | OFFSET
PUNCH | CARD

20 24 22

Notes.

23 33 34 35

20 Clear flags Trouble Interrupt Enabled, Error, End of Card Enabled,

End of Card, Punch On, Busy, Data Request; clear the card column

buffer. If any action specified by the rest of the CONO bits conflicts

with these actions, the other bits have precedence.

141

§4.4 CARD PUNCH : 4-19

21 If a card is currently being processed in the punch (Card in Punch, With the console model, off-

CONI bit 27, is 1) or was ejected less than 3 ms ago, offset it when it setting a card places it in a

is placed in the stacker. The card will actually stick out about a half separate stacker.

inch from the rest of the stacked deck.

23 If a card is currently being processed (Card in Punch, CONI bit 27,

is 1), punch whatever data is in the 4-column buffer and then eject

the card. Ejection moves a card through the punch head assembly

four times as fast as punching blank columns.

CONI CDP, Conditions In, Card Punch

0 5 12 13 14 1718 35

Read the Status of the punch into the right half of location E as shown.

pe) pe
18 19 20

Notes.

NEED TROUBLE
OPERATOR INTERRUPT
SERVICE ENABLED

* :
* 2

caro | END | Eno
FAILURE TROUBLE ERROR | _ IN aes OF RUNEH

PUNCH Tewasten| CARO
23 24 26 27 28 29 30 25

Interrupts are requested on the assigned channel by the setting of Data

Request, End of Card, and if enabled, Trouble.

PICK

*

PRIORITY
pusy | OATA INTERRUPT

REQUEST ASSIGNMENT

34 32 33 34 35

*These bits cause interrupts

‘18 The operator has turned on the test switch, taking the punch off line.

20 Less than a hundred cards are left in the hopper.

21 The hopper is empty or the stacker or chip box is full.

2D The punch has received data for the first column but has failed to

bring in a card from the hopper; or it has received an eject command

but has failed to place the card properly in the stacker.

23 The punch has received an eject command but has failed to move the

card out of the punch head assembly.

24 Bit 18, 22 or 23 is 1, or bit 21 is 1 because the hopper is empty or the

stacker is full, or the operator has taken the punch off line. If bit D5

is also 1, the setting of Trouble requests an interrupt on the assigned

channel.

Ordinarily a trouble condition allows the punch to finish a card

but prevents it from starting another; only a power failure or the op-

erator turning on the test switch (bit 18) can take the punch off line

in the middle of a card. A full chip box does not stop the punch at

all as there is actually enough room left for the chips from a whole

4-20

If the program gives aDATAO
to turn on the motor, the ini-

tial ready from the punch
takes the first column from
the column buffer but does
not set Data Request. When
that flag does set, the punch is
ready for the second éolumn.

ROW 12
24 25 26

142

HARDCOPY EQUIPMENT §4 4

hopper full of cards. Although a | in bit 24 does not necessarily im-
ply a malfunction, it always requires operator intervention. If bit 21
is | it is very likely that the only trouble is the hopper is empty or the
stacker is full.

26 A column punched in a card does not agree with the data sent by the
processor.

27s A card is in the punch head assembly. The program can give a CONO
offset or eject command while this bit is 1 (the offset can also be

given within 3 ms after Card in Punch clears).

29 Bit 28 is | and the program has given either an eject command or data
for column 80. The setting of End of Card requests an interrupt on
the assigned channel.

DATAO CDP, Data Out, Card Punch

0 12 13 14 17 18 35

Clear Data Request, set Punch On and Busy, and load the contents of bits
24-35 of location E into the interface column buffer where the correspond-
ence of bit positions to card rows is as shown.

row? | row 3 ROW 7
27 28 29 30 wars 32 33 34 35

Setting Punch On turns on the punch motor, but only a DATAO can pick
a card. Since DATAO also sets Punch On, the program can initiate punch
operations while supplying data, but the usual procedure is to set Punch On
while giving other initial conditions.

When the punch is ready to take a card from the hopper it sends a ready
signal to the interface. This sets Data Request, which requests an interrupt
on the’ assigned channel. To pick a card the program must respond with a
DATAO, which supplies the first column, clears Data Request, and sets Punch
On and Busy. The interface then sends the column to the 4-column punch
buffer and clears Busy. While the punch is picking a card it also makes three
more data requests to each of which the program must respond with a
DATAO. When the card is properly registered in the punch head assembly,
Card in Punch sets. When this flag has set and the program has supplied the
first four columns, thé device punches the four columns simultaneously (a 1
sent to the column buffer produces a hole in the card). The punch then con-
tinues in this fashion making four data requests for each set of four columns.

Punch On clears when the program gives an eject command. This causes
the device to punch whatever is in its 4-column buffer and the card then

143

CARD PUNCH 84.4

moves out to the stacker. If the punch has already sent a ready signal, the

CONO that ejects should also clear Data Request. If End of Card has been
enabled by a 1 in CONO bit 28, the eject command sets it, requesting an in-

terrupt. If no eject command has been given by the time data is supplied for

column 80, End of Card sets anyway if it is enabled (producing an interrupt

request), but the card remains in the punch head assembly until an eject com-

mand is given. The actual ejection of a card clears Card in Punch.

Timing. If Punch On is set when the punch motor is off, the first ready

signal is delayed about 120 ms while the motor gets up to speed. When the

motor is on, Card in Punch sets about 60 ms after the DATAO that sends the

first column for a card. While the card is in the head assembly, punching is

synchronized to a punch cycle of 11.1 ms. About 30 us elapse from each

DATAO to the next Data Request, but after the first request the program

has the full punch cycle time to supply all four columns and keep punching

at the maximum rate; after that punching is delayed until the next cycle.

Giving an eject command clears Punch On and sets End of Card after 5 ys,

but Card in Punch does not clear until the card leaves the head assembly; this

takes about 25 ms plus 2.8 ms for each set of four columns skipped over.

After Card in Punch clears, about 30 us elapse before the punch indicates

that it is ready to pick another card from the hopper, at which time the pro-

gram should give a DATAO to pick another card at the maximum rate. (Of

course the first DATAO can be given right after the eject command, and the

punch will then pick another card automatically without setting Data Re-

quest for the first column.) When the final card is punched, the hopper

empty signal is simultaneous with End of Card. If Punch On remains clear

for about 30 seconds, the motor turns off.

Operation. The punch has a

hopper and stacker capacity of

1000 cards. To load the hop-

per, first fan the cards and jog

them on the punch shelf. Turn

the deck over and put the first
hundred cards (about an inch

of the deck) into the hopper

(upper right) with the 9 edge
against the back so column | is

punched first. Hold the right
end higher so the leading edge

of the bottom card rests against

the picker throat, and drop the

cards in place. Put the rest of

the deck on top of the first

part. Cards can be added to

the hopper while the punch is

running, but always stop the

punch before removing cards

from the stacker. To remove
cards, push down the elevator

and lift the stack out.

a ie

If the program does not eject
before the punch starts punch-
ing columns 77— 80, it makes
another data request. The
program can then supply two
more columns, which will be

punched in the margin of the
card.

CAUTION

Any data that is given but
not punched (eg the first col- .
umn(s) when there is a pick
failure) is usually lost when
the punch goes off line. Hence
the program should always
start with the first column of
a card when the punch is re-
started.

Card Punch

144

HARDCOPY EQUIPMENT ; §4.4

The punch is operated by the buttons in the upper part of the panel at the

right. The alternate-action POWER switch lights green when power is on.

Pushing START places the punch on line so the program can punch cards.

The OPERATE indicator at the lower right lights green when the punch mo-

tor is up to speed. Pushing STOP takes the reader off line but does not stop

the motor; the motor is turned off only by pressing CLEAR.

The lights in the bottom row indicate an empty hopper or full stacker, a

full chip box, a pick failure, an eject failure, and a stack failure. When one of

these lights other than CHIP BOX goes on, the STOP light also goes on (the

punch always finishes the current card before stopping). If any trouble light

remains on after the problem is corrected, press the CLEAR button; this turns

off both the lights and the corresponding status signals read by a CONI. Press-

ing CLEAR also ejects a card if one is in the head assembly, and the button

glows red when clear action is required (eg when a card has gotten stuck). For

a pick failure, empty the hopper, throw out the bottom card, and reload.

Press START to allow the program to continue punching. If the trouble per-

sists enter it in the system log and notify maintenance personnel.

A full chip box does not stop the punch, but once it has been stopped by

some other condition (such as an empty hopper), pressing START will not

place the unit on line until the box has been emptied.

At the right is a light for the Card in Punch flag. The ERROR light dis-

plays the signal that sets the'Error flag; it goes off when CLEAR is pressed.

The CHECKOFF light is not used. When the TEST light is on, the device

punches cards off line in a test pattern (the test switch is behind the panel
under the shelf).

Lights for the interface are in the second row from the bottom on the hard-

copy control indicator panel [page 4-9]. The middle section of the row dis-
plays the contents of the card column buffer; the lights are marked by card

row. Among the lights in the right section, PI REQ is on while an interrupt

is being requested whatever the cause. The remaining lights display some of
the status conditions read by a CONI.

Also available is a console model punch that has a 2000-card hopper and

two 2000-card stackers. In use it differs from the compact model only in

that offsetting a card places it in the second stacker (the one on the right),

and cards can be removed from the stackers while the punch is running.

Appendices

145

146

147

APPENDIX A

INSTRUCTION AND DEVICE MNEMONICS

The illustration on the next page shows the derivation of the instruction

mnemonics. The two tables following it list all instruction mnemonics and

their octal codes both numerically and alphabetically. When two mnemonics

are given for the same octal code, the first is the preferred form, but the

assembler does recognize the second. For completeness, UUOs are listed for

user mode (an asterisk indicates a UUO mnemonic recognized by Macro for

communication with the PDP-10 Time Sharing Monitor). All UUOs

000-077 are identical when the processor is not in user mode.

In-out device codes are included only in the alphabetic listing and are

indicated by a dagger ({). Following the tables is-a chart that lists the

devices with their mnemonic and octal codes and DEC option numbers for

both PDP-10 and PDP-6. A device mnemonic ending in the numeral 2 is

the recommended form for the second of a given device, but such codes are

not recognized by Macro — they must be defined by the user.

Al

148

INE MNEMONICS

E ADD
e Negative SUBtract

MOV e Magnitude to AC MULtiply

e Swapped Immediate to ac Integer MULtiply a

: no effect to Memory Pt nay ; aes

Right Right | | Ones to Self nteger ide o Memory

Hao Left | Left Zeros and Round-! { to Both
Extend sign Floating AdD | ~

BLock Transfer Floating SuBtract Long

Floating MultiPly to Memory
EXCHange ac and memory Floating DiVide to Both

use present pointer| |, { LoaD Byte into ac Floating SCale
Increment pointer DePosit Byte in memory Double Floating Negate

Increment Byte Pointer Unnormalized Floating Add

PUSH down) { ~ ;

zt re
ROTate Combined

Zeros

Ones
Ac to SubRoutine

Memory and Save Pc

Complement of Ac and Save Ac
Complement of Memory ING and Restore Ac

if Find First One
on Flag and CLear it
on OVerflow (JFCL 10,)

on CaRrY 0 (JFCL 4,)

on CaRrY 1 (JFCL 2,)
Inclusive OR on CaRrY (JFCL 6,)
eXclusive OR on Floating OVerflow (JFCL 1,)
EQuiValence and ReSTore

and ReSTore Flags (JRST 2,)
never and ENable prchannel (JRST 12,) SKIP if memory ices

JUMP if ac aa HALT GRST 4)
Add One to memory and Skip] . f Less or Equal eXeCuTe
Subtract One from | | ac and Jump : Always

SET to

im Ac Immediate

AND with Complement of Ac ° | Memory
inclusive ant with Complement of Memory Both

Complements of Both

Immediate Greater DATA |

with Memory
Compare Ac and skip if Ac Greater or Equal BLocK

Not equal

CONditions all masked bits Zero

some masked bit One

Positive
Add One to Both halves of ac and Jump if :

Negative in and Skip |

with Swapped mask
Right with £
Left with £

Testeic set masked bits to Zeros andakee if all masked bits Equal 0
set masked bits to Ones if Not all masked bits equal 0
Complement masked bits Always

with Direct mask | | No modification never

000°
001

037
040
041
042
043
044

045
046

047

050
051

052
053

054

055

056

057

060
061

062
062

063
064
065
066
067 °

070
071
072

- 073
074
075
076
077
100

127

130

131

ILLEGAL

USER
UUO’S

*CALL
*INIT

RESERVED
FOR

SPECIAL
MONITORS

*CALLI

*OPEN
Pe Age

RESERVED
FOR DEC

*RENAME
*IN

*OUT
*SETSES=.
*STATO
*STATUS
*GETSTS
*STATZ

*INBUF
*OUTBUF
*INPUT
*OUTPUT
*CLOSE
*RELEAS
*MTAPE
*UGETF
*USETI
*USETO
*LOOKUP
*ENTER

UNASSIGNED
CODES

UFA

DFN

\

149

NUMERIC LISTING

INSTRUCTION MNEMONICS

NUMERIC LISTING

132
133
134
135
136
137
140
141

142
143 |

144

145
146

147

150
151

152

153
154

155

156
157

160
161

162

163
164
165
166
167
170
171

172
173
174
175
176
177
200
201

202
203

204
205

FSC
IBP
ILDB
LDB
IDPB
DPB
FAD
FADL
FADM
FADB

FADR

FADRI
FADRM

FADRB

FSB
FSBL
FSBM

FSBB

FSBR

FSBRI
FSBRM

FSBRB
FMP

FMPL
FMPM

FMPB
FMPR
FMPRI
FMPRM
FMPRB
FDV
FDVL
FDVM
FDVB
FDVR
FDVRI
FDVRM
FDVRB
MOVE
MOVEI

MOVEM
MOVES

MOVS —
MOVSI

206
207
210
211
212
213
214
215

216
217

220

221
22

223
224

225
226

227

230
231

232

233
234

235
236
237
240
241
242
243
244
245

246
247
250
251
252
253
254
25410
25420
25450

255
25504

MOVSM
MOVSS
MOVN
MOVNI
MOVNM
MOVNS

MOVM
MOVMI
MOVMM
MOVMS

IMUL
IMULI
IMULM

IMULB

MUL

MULI
MULM

MULB
IDIV
IDIVI

IDIVM

IDIVB
DIV

DIVI
DIVM
DIVB

ASH
ROT
LSH
JFFO
ASHC
ROTC
LSHC

EXCH
BLT
AOBJP
AOBJN
JRST
JRSTF
HALT
JEN
JFCL
JFOV

A3

A4

25510
25520
25530
25540 .
256
257
260
261
262
263
264
265
266
267
270
271
272
273
274
275
276
277
300
301
302
303
304
305
306
307
310
311
312
313
314
315
316
Sly
320
ae
32
323
324
325
326
327
330
331
332

JCRY1
JCRYO
JCRY
JOV
XCT

PUSHJ
PUSH
POP
POPJ
JSR
JSP
JSA
JRA
ADD
ADDI
ADDM
ADDB
SUB
SUBI
SUBM
SUBB
CAI
CAIL
CAIE
CAILE
CAIA
CAIGE
CAIN
CAIG
CAM
CAML
CAME
CAMLE
CAMA
CAMGE
CAMN
CAMG
JUMP »
JUMPL
JUMPE
JUMPLE
JUMPA
JUMPGE
JUMPN
JUMPG
SKIP
SKIPL
SKIPE .

333
334
335
336
337
340
341
342
343
344
345
346
347
350
351
352
Sys)
354
355
356
357
360
361
362
363
364
365
366
367
370
371
372
373
374
SS
376
STE
400
400
401
401
402
402
403
403
404
405
406
407

150

MNEMONICS

SKIPLE
SKIPA
SKIPGE
SKIPN
SKIPG
AOJ
AOJL
AOJE
AOJLE
AOJA
AOJGE
AOJN
AOJG
AOS
AOSL
AOSE
AOSLE
AOSA
AOSGE
AOSN
AOSG
SOJ
SOJL
SOJE
SOJLE
SOJA
SOJGE
SOJN
SOJG
SOS
SOSL
SOSE
SOSLE
SOSA
SOSGE
SOSN
SOSG
SETZ
CLEAR
SETZI
CLEARI
SETZM
CLEARM
SETZB
CLEARB
AND
ANDI
ANDM
ANDB

410

411
412
413
414

_ 415

416
417
420
421
422
423
424
425
426
427
430
431
432
433
434
434
435
435
436
436
437
437
440
441
442
443
444
445
446
447
450
451
452
453
454
455
456
457
460
461

, 462
463
464

465
466
467
470
471
472
473
474
475
476
477
500
501
502
503
504
505
506
507
510
S11
Se
yl!
514
515
516
517
520
521
522
523
524
o25)
526
527
530
531
532
533
534
535
536
537
540
541
542
543
544
545

ORCMI
ORCMM
ORCMB
ORCB
ORCBI
ORCBM
ORCBB
SETO
SETOI
SETOM
SETOB
HLL
HLLI
HLLM
HLLS
HRL
HRLI
HRLM
HRLS
HLLZ
HLLZI
HLLZM
HLLZS
HRLZ
HRLZI
HRLZM
HRLZS
HLLO
HLLOI
HLLOM
HLLOS
HRLO
HRLOI
HRLOM
HRLOS
HLLE
HLLEI
HLLEM
HLLES
HRLE
HRLEI
HRLEM
HRLES
HRR
HRRI
HRRM
HRRS
HLR
HLRI

151

NUMERIC LISTING

546
547
550

551
52

553
554

Be)

556

So

560

561
562

563
564

565

566
567
570

S71
Sy?

573
574
575
576
SH 1
600
601
602
603
604

605
606
607
610

611
612

613
614

615
616
617

620
621
622
623
624

625
626

HLRM
HLRS
HRRZ
HRRZI

HRRZM
HRRZS
HLRZ

HLRZI

HLRZM
HLRZS

HRRO

HRROI
HRROM

HRROS

HLRO

HLROI
HLROM

HLROS

HRRE
HRREI
HRREM

HRRES
HLRE
HLREI

' HLREM

HLRES
TRN
TLN
TRNE
TLNE
TRNA
TLNA
TRNN
TLNN
TDN
TSN
TDNE
TSNE
TDNA
TSNA
TDNN
TSNN
TRZ
iubyA
TRZE
TLZE
TRZA
TLZA
TRZN

627
630
631
632
633
634
635
636
637
640
641
642
643
644
645
646
647
650
651
652
653
654
655
656
657
660
661

662
663
664
665

666
667
670

671
672

673
674
675

676
677
70000

70004
70004

- 70010
70014
70020
70024
70030
70034

AS

A6

tADC

ADD

ADDB
ADDI

ADDM

AND

ANDB

ANDCA |
ANDCAB

ANDCAI
ANDCAM
ANDCB
ANDCBB
ANDCBI
ANDCBM
ANDCM
ANDCMB
ANDCMI
ANDCMM

ANDI
ANDM

AOBJN
AOBJP

AOJ

AOJA
AOJE

AOJG

AOJGE

AOJL
AOJLE

AOJN

AOS
AOSA

AOSE
AOSG
AOSGE
AOSL
AOSLE
AOSN

tAPR
ASH
ASHC
BLKI
BLKO

024

270 -

273

271

272

404

407

410

405

356

244
70000
70010

152

MNEMONICS

INSTRUCTION. MNEMONICS

ALPHABETIC LISTING

BL
CAI
CAIA
CAIE
CAIG
CAIGE
CAIT.
CAILE
CAIN
*CALL
*CALLI
CAM
CAMA
CAME
CAMG
CAMGE
CAML
CAMLE
CAMN

+CCI
+CDP
+CDR
CLEAR
CLEARB
CLEARI
CLEARM
*CLOSE
CONI
CONO
CONSO
CONSZ

+CPA
+CR
DATAI
DATAO

+DC
+DCSA
+DCSB
+DF
DFN

+DIS
DIV
DIVB
DIVI

251

300

304

302

307

305

301

303

306

040
047
310
314
312

317
315
311
313

316
014

110
114

400
403

401

402

070

70024

70020

70034

70030
000
150

70004
70014
200
300
304

~ 270
131

130
234
235i);
235

DIVM
+DLS
DPB

a +DPC

+DSK
+DTC
+DTS
*ENTER
EQV
EQVB
EQVI
EQVM
EXCH
FAD
FADB
FADL
FADM
FADR
FADRB
FADRI
FADRM
FDV
FDVB
FDVL
FDVM
FDVR
FDVRB
FDVRI
FDVRM
FMP
FMPB
FMPL
FMPM
FMPR
FMPRB
FMPRI
FMPRM
FSB
FSBB
FSBL
FSBM
FSBR
FSBRB
FSBRI

236
240

137
250
170
320
324

O77

444
447
445
446
250
140
143
141
142
144
147
145
146
170
173
171
172
174
177
175
176
160
163
161
162
164
167
165
166
150
153
151
152
154
157
155

FSBRM
FSC
*GETSTS
HALT
HLL
HLLE
HLLEI
HLLEM
HLLES
HLLI
HLLM
HLLO
HLLOI
HLLOM
HLLOS
HLLS
HLLZ
HLLZI
HLLZM
HLLZS
HLR
HLRE
HLREI
HLREM
HLRES
HLRI
HLRM
HLRO
HLROI
HLROM
HLROS
HLRS
HLRZ
HLRZI
HLRZM
HLRZS
HRL
HRLE
HRLEI
HRLEM
HRLES
HRLI
HRLM
HRLO
HRLOI
HRLOM
HRLOS
HRLS
HRLZ

156
132

062

25420
500
530

531
532
533
501
502

520
Sy I

522

523

503

510
S11

512

513
544

574

575

576

577

545

546
564

565
566
567
547
554

555
556 |
557
504
534
535

536
Seif/
505
506
524
e525

526
527

507
514

153

ALPHABETIC LISTING

HRLZI
HRLZM

HRLZS

HRR
HRRE
HRREI
HRREM
HRRES
HRRI
HRRM
HRRO
HRROI
HRROM
HRROS

HRRS
HRRZ
HRRZI
HRRZM

HRRZS

IBP
IDIV

IDIVB

IDIVI

IDIVM

IDPB

ILDB
IMUL

IMULB

IMULI
IMULM

*IN
*INBUF
*INIT
*INPUT
IOR
IORB
IORI
IORM
JCRY
JCRYO
JCRY1
JEN
JFCL
JFFO
JFOV

JOV
JRA

JRST
JRSTF

515
516
517
540
570
571
572
573
541
542
560
561
562
563
543
550
551
552
553
133
230
233
231
232
136
134
220
223
221
222
056
064
041
066
434
437
435
436
25530
25520
25510
25460
255
243
25504
25540
267
254
25410

JSA
JSP

JSR
JUMP
JUMPA
JUMPE
JUMPG
JUMPGE
JUMPL
JUMPLE
JUMPN
LDB
*LOOKUP
+LPT
LSH
LSHC

+MDF
MOVE
MOVEI
MOVEM
MOVES
MOVM
MOVMI
MOVMM -
MOVMS

MOVN
MOVNI

MOVNM

MOVNS
MOVS

MOVSI
MOVSM

MOVSS
*MTAPE
+MTC
+MTM
+MTS
MUL

266

455

456

470

AT

A8&

ORCBB
ORCBI
ORCBM
ORCM
ORCMB
ORCMI
ORCMM
ORI
ORM
*OUT
*OUTBUF
*OUTPUT
+PI
+PLT
POP
POPJ

+PTP
+PTR
PUSH
PUSHJ
*RELEAS
*RENAME
ROT
ROTC
RSW
SETA
SETAB
SETAI
SETAM -
SETCA
SETCAB
SETCAI
SETCAM
SETCM
SETCMB ©

SETCMI
SETCMM

SETM

SETMB
SETMI
SETMM
SETO
SETOB
SETOI
SETOM

*SETSTS
SETZ
SETZB
SETZI

473
471
472
464
467
465
466
435
436
057
065
067
004
140

262
263
100
104

261
260
071
055
241
245
70004
424
427
425
426
450
453
451
452
460
463
461
462
414
417
415
416
474
477
475
476
060
400
403
401

MNEMONICS

SETZM 402

SKIP 330

SKIPA 334

SKIPE 332

SKIPG 337

SKIPGE 335

SKIPL SoH
SKIPLI 333

SKIPN 336

SOs, 360

SOJA 364

SOJE 362
SOJG 367

SOJGE 365

SOJL 361
SOJLE 363

SOJN 366
SOS 370
SOSA 374
SOSE 372
SOSG 377
SOSGE 375
SOSL 371
SOSLE 373
SOSN 376
*STATO 061

*STATUS 062
*STATZ 063
SUB 274
SUBB 277

SUBI 275

SUBM 276
TDC 650
TDCA 654

TDCE 652

TDCN 656
TDN 610

TDNA 614
TDNE- 612
TDNN 616
TDO 670
TDOA 674
TDOE 672
TDON 676
TDZ 630
TDZA 634
TDZE 632

TDZN 636
LEG 641

TLCA
TLCE
TLCN
TLN
TLNA
TLNE
TLNN
TLO
TLOA
TLOE
TLON
TLZ
TLZA
TLZE
TLZN
+TMC
+TMS
TRC
TRCA
TRCE
TRCN
TRN
TRNA
TRNE

| TRNN
TRO
TROA
TROE
TRON
TRZ
TRZA
TRZE
TRZN
TSC
TSCA
TSCE
TSCN
TSN
TSNA
TSNE
TSNN
TSO
TSOA
TSOE
TSON
TSZ
TSZA
TSZE
TSZN

645
643
647
601
605
603
607
661
665
663
667
621
625
623
627
340
344

640
644
642
646
600
604
602
606
660
664
662
666
620
624
622
626
651
655
653
657
611
615
613
617
671
675
673
677
631
635
633
637

*TTCALL
UFA
*UGETF
*USETI

051
130
073
074

155

ALPHABETIC LISTING

*USETO 075

tUTC 210
TUTS 214
XCT 256

XOR
XORB
XORI

XORM:

430
433
431

432

AQ’

DEC STANDARD DEVICES

USER SPECIAL DEVICES

SECOND AND
THIRD OCTAL

OIGIT:

FIRST

DIGIT

PROCESSOR

6
10

TAPE PUNCH

> 00
OCTA SI°NpR

0 CPA
CENTRAL PRIORITY

INTERRUPT

14 20
0A10}10 DAIO}10

CCI ccl2
PDP-8,9 POP-8,9

24
AD10}10

ADC

167|10

ORUM
PROCESSOR

ADC2
ANALOG- DIGITAL |ANALOG-DIGITAL|

TER | CONVERTER

30
AD10

34 40

PTP
PAPER

76116 760} 10
10 10 10

TAPE READER

INTERFACE INTERFACE | CONVERTER

46116 626/6 646
LP10} 10

LPT

LINE PRINTER

CP10/6

PTR
PAPER

CDP CDR TTY
CONSOLE

CARD PUNCH | CARD READER| TELETYPE

6,10 340/10
VP10

XY10}10

PLT

PLOTTER ~

XY10

PLT2

340/6,10
VP10] 10

DIS DIS2

DISPLAY DISPLAY PLOTTER
6 136}6

DC
DATA

CONTROL CONTROL

136|6 | 55116 |

UTC UTS MTC MTS

OECTAPE MAGNETIC TAPE

DC2
DATA

10

ARD READER

CR10

CR

10. CRIO

CR2

CARD READER| INTERFACE

516 10

MTM

0610/10

DLS DLS2
DATA LINE
SCANNER

Ci

0C10} 10 RPIO

DPC
DISK PACK
SYSTEM

POP-7,8

RAO

MDF2
MASS

DISK FILE

10 RP10 }10

DPC2
DISK PACK
SYSTEM.

RA10}10

MDF
MASS

OISK FILE

DCSA

DATA COMMUNICATION

630

DCSB

ee] TD10] 10

DTC DTS
DECTAPE

IN-OUT
INSTRUCTION

WORD

DATA LINE
SCANNER

TD10} 10 TM10

DTc2 = DTS2 | TMC TMS

OECTAPE MAGNETIC TAPE

DEVICE CODE

FIRST SECOND
OCTAL DIGIT OCTAL DIGIT

to) 1 2 S) 4 5 6 7 8

THIRD
OCTAL
DIGIT

(iB ONLY)

DEVICE MNEMONICS

10

TMC2

MAGNETIC TAPE

TM10

TMS2

SS he wateaeiee ;
Used with POP-6 ———~6 646--——- Option number for PDP-6 1
Used with PDP-10 ——7 10 LP10-_ option number for POP-10

1 LPT. | (No number indicates device is
part of central processor)

Device whose code——_Ll ine PRINTER| _ Mnemonic for device code 124

1. !
1 1

'

OlV

SOINOWANW
9S

157

APPENDIX B

INPUT-OUTPUT CODES

The table beginning on the next page lists the complete teletype code. The

lower case character set (codes 140-176) is not available on the Model 35,

but giving one of these codes causes the teletype to print the corresponding

upper case character. Other differences between the 35 and 37 are men-

tioned in the table. The definitions of the control codes are those given by

ASCII. Most control codes, however, have no effect on the console teletype,

and the definitions bear no necessary relation to the use of the codes in con-

junction with the PDP-10 software.

The line printer has the same codes and characters as the teletype. The

64-character printer has the figure and upper case sets, codes 040-137

(again, giving a lower case code prints the upper case character). The “96’-

character printer has these plus the lower case set, codes 040-176. The

latter printer actually has only ninety-five characters unless a special charac-

ter is “hidden” under the delete code, 177. A hidden character is printed by

sending its code prefixed by the delete code. Hence a character hidden under

DEL is printed by sending the printer two 177s in a row.

Besides printing characters, the line printer responds to ten control charac-

ters, HT, CR, LF, VI, FF, DLE and DC1—4. The 128-character printer uses

the entire set of 7-bit codes for printable characters, with characters hidden

under the ten control characters that affect the printer and also under null

and delete. In all cases, prefixing DEL causes the hidden character to be

printed. The extra thirty-three characters that complete the set are ordered

special for each installation. ‘

The first page of the table of card codes [pages B6-8] lists the column

punch required to represent any character in the two DEC codes. The octal

codes listed are those used by the PDP-10 software. In other words, when

reading cards, the Monitor translates the column punch into the octal code

shown; when punching cards, it produces the listed column punch when

given the corresponding code. The remaining pages of the table show the

relationship between the DEC card codes and several IBM card punches.

Each of the column punches is produced by a single key on any punch for

which a character is listed, the character being that which is printed at the

top of the card.

Bl

B2

(=)

oor OF KF Oe

or KS OOK

158

INPUT-OUTPUT CODES

TELETYPE CODE

7-Bit
Octal 3

Code Character Remarks

000 NUL Null, tape feed. Repeats on Model 37. Control shift P on Model 35.

001 SOH Start of heading; also SOM, start of message. Control A.

002 STX Start of text; also EOA, end of address. Control B.

003 ETX End of text; also EOM, end of message. Control C.

004 EOT End of transmission (END); shuts off TWX machines. Control D.

005 ENQ Enquiry (ENQRY); also WRU, “Who are you?” Triggers identification

(“Here is...) at remote station if so equipped. Control E.

006 ACK Acknowledge; also RU, “Are you... ?” Control F.

007 BEL Rings the bell. Control G.

O10 BS Backspace; also FEO, format effector. Backspaces some machines.

Repeats on Model 37. Control H on Model 35.

011 HT Horizontal tab. Control I on Model 35.

G12 LF Line feed or line space (NEW LINE); advances paper to next line. Repeats

on Model 37. Duplicated by control J on Model 35.

013 WAL Vertical tab (VTAB). Control K on Model 35.

014 FF Form feed to top of next page (PAGE). Control L.

015 CR Carriage return to beginning of line. Control M on Model 35.

016 SO Shift out; changes ribbon color to red. Control N.

017 SI Shift in; changes ribbon color to black. Control O.

020 DLE Data link escape. Control P (DCO).

021 DCl Device control 1, turns transmitter (reader) on. Control Q (X ON).

022 DC2 Device control 2, turns punch or auxiliary on. Control R (TAPE,

AUX ON).

023 DC3 Device control 3, turns transmitter (reader) off. Control S (X OFF).

024 + DC4 Device control 4, turns punch or auxiliary off. Control T (FAPE,

AUX OFF).

025 NAK Negative acknowledge; also ERR, error. Control U.

026 SYN Synchronous idle (SYNC). Control V.

027 ETB End of transmission block; also LEM, logical end of medium. contol W.

030 CAN Cancel (CANCL). Control X.

031 EM End of medium. Control Y.

032 SUB Substitute. Control Z.

033 ESC Escape, prefix. This code is generated by control shift K on Model 35,

but the Monitor translates it to 175.

034 FS File separator. Control shift L on Model 35.

035 GS Group separator. Control shift M on Model 35.

159

TELETYPE CODE B3

Even 7-Bit

Parity Octal
Code Character Remarks & -

036 RS Record separator. Control shift N on Model 35.

037 US Unit separator. Control shift O on Model 35.

040 SP Space.

041 !

042 zs

043

0 a
045 %

046 &

047 : Accent acute or apostrophe.

050 (

051)

052 * Repeats on Model 37.

053 +

054 ;

055 = Repeats on Model 37.

056 , Repeats on Model 37.

057

060

061

062

063

064

065

066

067

070

071

072

073

074

075 = Repeats on Model 37.

076

077

100

101

102

oOo ovyaAY HA PWN - Oo

A »

COTrorFrHOHOOFKF OOF OR HOH OC OFP OFF OOF KF OF OOF FHO co > 3 (6) eV

B4

Even

Parity
& -

SN eS ae ke) et ed) at Oe Nal Seo mo I (cm) I NAN cm a) Tem tN mY ty a kA

7-Bit

Octal

Code

103

104

105

106

107

110

111

112

{03
114

115

116

117

120

121

122

123

124

125

126

127

130

131

132

133

134

135

136

137

140

141

142

143

144

145

146

147

Character

CO NEB Oe Givin Qa Gs. 8)

160

INPUT-OUTPUT CODES

Repeats on Model 37.

Shift K on Model 35.

Shift L on Model 35.

Shift M on Model 35.

Repeats on Model 37.

Accent grave.

Remarks

Even 7-Bit
Parity Octal
Bit Code Character

] 150 he

0) 151 i

0 52 j

i 153 k

0 154]

i 155) ede

| 156 n

0 157 (0)

1 160 p

0 161 q

0) 162 r

1 163 S

0 164 t

1 165 u

i 166 Vv

0 167 Ww

0 170 x

1 171 y

1 172 vA

0 173 {
1 174 |

0 175 i
0 176 7

1 eg DEL

REPT

PAPER ADVANCE

LOCAL RETURN

LOC LF

LOC CR

INTERRUPT, BREAK

PROCEED, BRK RLS

HERE IS

161 j

TELETYPE CODE BS

Remarks

Repeats on Model 37.

This code generated by ALT MODE on Model 35.

This code generated by ESC key (if present) on Model 35, but the

Monitor translates it to 175.

Delete, rub out. Repeats on Model 37.

Keys That Generate No Codes

Model 35 only: causes any other key that is struck to repeat continuously

until REPT is released.

Model 37 local line feed.

‘Model 37 local carriage return.

Model 35 local line feed.

Model 35 local carriage return.

Opens the line (machine sends a continuous string of null saractelen

Break release (not applicable).

Transmits predetermined 21-character message.
NS

MAY 1968

162

Bo INPUT-OUTPUT CODES

CARD CODES

PDP-10 PDP-10
4 Character ASCII DEC 029 DEC 026 Character ASCII DEC 029 = DEC 026

Space 040 None None @ 100 84 84
! 041 1182 12E8ai A 101 12 1 12s
if 042 87 1085 B 102 12e2, 122
043 8 3 086 Cc 103 12 3 12 3
$ 044 1183 11 83 D 104 124 12 4
% 045 084 087 E 105 119355) 1255
& 046 12 1187 F 106 12 6 126
; 047 85 8 6 G 107 127 Dee,
(050 1285 084 a H 110 12 8 12 8
) 051 1185 1284 a4 I 111 1259 IDS
‘ 052 1184 1184 J io 11.1 11 1
ae 053 1286 12 K 113 Is E2

054 083 083 L 114 113 113
= 055 11 11 M 115 11 4 114
: 056 12'8 3 12 83 N 116 JS ES
/ 057 01 01 O 117 116 116
0 060 0 0 P 120 7 117
1 061 1 1 Q 121 11 8 11 8
2 062 Oran 2 R 122 ES) tS)
3 063 3 3 S 123 02 02
4 064 4 4 T 124 03 03
5 065 5 5 U 125 04 04
6 066 6 6 Vv 126 05 05
7 067 7 7 W 127 06 06
8 070 8 8 x 130 07 07
9 071 9 9 Ye 131 08 08
: 072 82 11 82o0r110 Z 132 09 09
: 073 1186 082 [133 1282 1185
< 074 1284 1286 \ 134 1187 87
= 075 8 6 8 3] 135 082 (Di8e5
> 076 086 1186 t 136 1287 85
? 077 087 12 8 2o0r120 = 137 085 8 2

Binary 19

Mode Switch 1202468
End of File 121101

The octal codes given above are those generated by the Monitor from the column punches. The card
reader interface actually supplies a direct binary equivalent of the column punch, as listed in the following
two pages.

MAY 1968

163

CARD CODES B7

Column Column z:
Punch Character Octal Punch Character Octal

None Space 0000 129 I 4001

0) 0 1000 11 1 J 2400

1] 0400 ile K 2200

2 2 0200 13 16, 2100

3 3 0100 114 M 2040

4 4 0040 115 N 2020

5 5 0020 116 O 2010

6 6 0010 : 117 P 2004

7 7 0004 M18 Q 2002
8 8 0002 ie ®) R 2001

9 9 0001 01 / 1400

12 1 A 4400 02) 1200

12 2 B 4200 03 T 1100

12 3 C 4100 04 U 1040

12 4 D 4040. 05 Vv 1020

1S E 4020 0 6 W 1010

12 6 F 4010 07 xX 1004

127 G 4004 08 x 1002

128 H 4002 09 Uh, 1001

Column 026 Data 026
Punch Processing Fortran 029 DEC 026 DEC 029 Octal

12 & aE & ar & 4000

11 = = = = = 2000

120 z 5000

110 ; 3000

8 2 i <- g 0202

8 3 # = * = # 0102

8 4 @ - @ @ @ 0042

85 ; : t : 0022

8 6 = : = 0012

87 ‘ 2 \ ut 0006

1282 ¢ eer! [4202

12 83 : F : : ; 4102

1284 q) BES) < 4042

1285 aK fed e (4022
12 86 + << ar 4012

B8

Column 026 Data
Punch Processing

L2ESY7.

1182

11 83 $

1184 =

Wis: 5,

1186

1187

032

083 ,

084 %

085

086

087

PZ U0} 1

1202468

TES

026
Fortran

164

INPUT-OUTPUT CODES

029

!

$
*

)

-

See note

DEC 026

—

%

End of File

Mode Switch Mode Switch

Binary

DEC 029 ©

~~

End of File

Binary

Note: There is a single key for the 0 8 2 punch on the 029 but printing is suppressed.
The Monitor translates the octal code for the 12 0 punch in DEC 026 to 4202 (which corresponds to a

12 8 2 punch), and the code for 11 0 to 2202(11 8 2).

Octal

4006

2202

2102

2042

2022

2012

2006

1202

1102

1042

1022

1012

1006

7400

5252

xx05

165

APPENDIX C

MISCELLANY

Instruction Flow Simplified : ; ; j : 4 ; : (Cw

Word Formats. : ; ; 4 3 : : : : : C3

Instruction Timing Flow Chart . ; i : : ; : ; C4

In-out Device Bit Assignments. : : ; : : : 3 C6

Indicator Panels . : : 3 : ’ } ‘ : : : C8

PowersofTwo . { : 2 j ; ; 3 : : eo LO

Cl

166

2 MISCELLANY

INTERRUPT
REQUEST

?

ADDRESS

CALCULATION

INTERRUPT
REQUEST

?

POINTER DONE IN

BYTE, BLKI, BLKO
INSTRUCTION
EXECUTION

INSTRUCTION FLOW SIMPLIFIED

167

WORD FORMATS |

BASIC INSTRUCTIONS

INSTRUCTION CODE ah

89 eB) tk) 17 18 35
fo}

IN-OUT INSTRUCTIONS

INSTRUCTION f

0 23 9 10 17 2 13 14 18 35

PC WORD

CARRY CARRY | FLOATING BYTE FLOATING NO
FLOW

~

aL! OVERFLO RI MER RUE Ue cers “FLOW Die

0 1 2 3 4 5 6 7 8. 9 10 "N 12

BLT POINTER [XWD]

SOURCE ADDRESS DESTINATION ADDRESS

17 18 35
fo}

BLKI/ BLKO POINTER, PUSHDOWN POINTER, DATA CHANNEL CONTROL WORD {10wD}

i — WORD COUNT ADDRESS -1

0 - 17 18 35

BYTE POINTER

0 56 Ue) Aare! 17 18 35

BYTE STORAGE
b $ BITS —-| BASIS ee

0 35=P-5=1 35-P 35-P +1 35

FIXED POINT OPERANDS

SI
oF ' BINARY NUMBER (TWOS COMPLEMENT) :

FLOATING POINT OPERANDS

So) «EXCESS 128 EXPONENT FRACTION (TWOS COMPLEMENT)
1- (ONES COMPLEMENT)

01 89
35

LOW ORDER WORD IN DOUBLE LENGTH FLOATING POINT OPERANDS

C3

EXCESS 128 EXPONENT-27 R c Ace 0 | IN POSITIVE FORM LOW ORDER HAL‘ RACTION (TWOS COMPLEMENT)

&
01 89

WORD FORMATS

C4

FAST
REGISTERS

i¢

MEMORY READ
ACCESS (CHART 1)

ADORESS
CALCULATION

ee

E23)

Ee A

Lo |

INSTRUCTION TIMING
FLOW CHART

INSTRUCTIONS THAT USE READ/MODIFY

168

MISCELLANY

DATA FETCH

OTHER IMMEDIATES
OR NO

MEMORY OPERAND

MEMORY OPERAND MEMORY OPERAND FLOATING POINT
READ READ /MODIFY IMMEDIATE

17+ MC) 26+ *(11)
SIF IN USER MODE “IF IN USER MODE

MEMORY READ
ACCESS (CHART 1)

ACCUMULATOR
REQUIRED

MEMORY READ
ACCESS (CHART 1)

ASHC, ROTC, LSHC
FDVL, Div

BLT
INSTRUCTION
CONTINUES

HERE

#1)
* IF IN USER MODE

MEMORY READ
ACCESS (CHART 1)

All Boolean In Memory and Both Modes Except SETZ, SETA, SETCA, SETO
ADDM, ADDB, SUBM, SUBB
HRRM, HRLM, HLRM, HLLM and All Halt Words In Self Mode

* MOVES, MOVNS, MOVMS, MOVSS
ILDB, IDPB (First Time Only)
IBP, BLKI, BLKO, DFN, EXCH
AOS, SOS in all modes

169

MISCELLANY

INSTRUCTION EXECUTION

eas eS

Boolean (except ANOCA, ANDCB, ORCA, ORCB),
Half Words (except HLA, HLAI, HAL, HRLI), MOVE,
MOVS, EXCH, JFCL, JAST, JSP, XCT, UUO

ANDCA, ANDCB, ORCA, ORCB, HLA, HLA,
HRL, HRLI, JSR, JSA, JRA, Test class

MOVN, MOVM, ADD, SUB, AOBJP, ADBJN,
CAM, CAI, SKIP, JUMP, AOJ, AOS, SOJ, SOS

PUSH, PUSHJ, POP, POPJ, DFN

80 + .19 times number of leading Os mod 18

69 (+ .11 if User) + memory write access + 52
If not done + .09 and go to C3

.38 = + .26 if overflow word boundary

61 +.15 per size count Goto Cl

+ .15 par size count \
14 {ris if aad GotoC!

45 — +.15 per position count

95 +.15 per position count

39 Left \ ; ;
1os Right + .15 per shift

6.02 —_+.13 per transition
8.36 (18 transitions for 2.34)

6.34 = + .13 per transition
7.51 (9 transitions for 1.17)

6.39 + .13 per transition
8.21 (14 transitions for 1.82)

Note: Immediate mode multiplication has only half the everage number of transitions

JFFO

BLT

1BP

LOB, DPB First time

ILDB, IDPB First time

1L0B, LOB Second time

IDPB, DPB Second time

Shift group

MUL
Average except MULI

IMUL
Average except IMULI

FMP
Average except FMPRI

DIV, IDIV

FSC

FAD, UFA
Average

FSB

Rounding (except divide) only when actually done

Long mode (except divide)

FDVR, FDV (except FOVL)

FOVL with fest ACs

FOVL without fast ACs

CONO, CONI, CONSO, CONSZ, DATAO, DATA!
CONO, CONI, DATAO, DATAI
CONSO, CONSZ

BLKO, BLKI

13.78

1.52 + .25 per shift to normalize

238 { a a per shift to unnormalize
433 .25 per shift to normalize

Same es FAD + .18

+.96
+.69

12.00

13.28

12.32 (+.11 if User) + memory read access + .89

12. Then wait until 4.50 hes passed since last here

+2.69
+2,90

60 — Then turn into DATAO, DATAI and go to C2

MEMORY TIMING

MOTES:
MEMORY ACCESS TIMES INCLUDE 20 FEET OF
CABLE DELAY.

ALL TIMES £5%

DATA STORE

oe

G5

NO STORE
ACCUMULATOR

a 2

MEMORY WRITE
ACCESS (CHART !)

“SEE MEMORY
TIMING CHART
FOR CYCLE

COMPLETION TIME

NO_STORE SECOND
ACCUMULATOR

?

YES

NO

J7+ BC)

MEMORY WRITE
ACCESS (CHART 1)

170

MISCELLANY C6

‘
5

E
e

E
S
R
)

C
v

B
e
L
I
V
A
H
H
D

ON
OD
DI
S

Z
e
v

we
r.
D

L
S
a
T
s

v
i
g

o
l
e

o
v
7
z

e
e
r

C
e

e
e

r
e
r
e

O
l
e

o
l
e

S
e
r

|
Se

e
e

a
e

e
e

e
e
e

Forte

7:

e
a
e

a
r
e
s

|
r
e
a
e

e
p
e
e

W
o

e
u

a
e

e
e

e
o

N
u
n

i
i
s

Ps

e
e

e
d

e
e

sovle| Ase Ne

Z

o

s

2

eileen

| ape)

ee

ole

epee

ce

ee

ae

oid

S
A
O
L
0
.
/
O
V
I

A
B
O

W
u

A
L

S
u
I
G

=
m

Be:
'

SO
W!

B
O
a
s
s

|
s
a
N
7
I
t
y

I
N
O
D
|

I
o

NO

SE
FA

OO
MS

MT

L
A
I
N
E

z
e
n
e
]

oc
ae
e,

se
n

a
e

op

P
a
w
n
s

w
e
r
o

ar
er
on
d

D
I
G
I

|

T
I
E
N

De
77

[see
Te

p
a
o

|

h
o

p
e
r
m
a

A
L

Te
te
r!

AL

le
e]

A
L

Te
er

L
e
r
.

al
l!

S
P
S
)

SP

7

7
2

P
E
s

a
e
s
.

a
e
:

a

pe

a

a

S
3
S
H
I
L
I
M
S

b
l
e

9
f

r
d

<
-
8

F
A
T
L
I
G

W
I
N
N
G
H
D

9
2
'
S
2

2

S
i
l
@

W
o
r

<
-
f

S
I
B
N
N
E
H
D

L
9
2
7
7
3
S

(S
2-
8f

H
a
)

B
P
I
S
I
O
N
F
S

N
O
l
L
v
.
I
0
7
7
z

S
I
N
A
W
N
O
I
S
S
V

L
I

S
O
I
A
R
G

L
A
O
N
I

[oevice fone more] oe [vm [vm [va [vee] ses] wea] ves | wee | ver [aves [ores [race [ors [ere] ss] w/oa] 755]
pare ecard ray Re READ e £k FRE ER RY WI WO. SL,

——_—_@\— B0WDERY SWITCHES (BCD)

SELECT
SEC ce

ecron [parte [En aie le eae poem ats
DATA DIsk TRACK OISk |\CHANNE! as Bae CHAN

DSK Fee IN PSA ocsie_ | sececr our err] Ga Tmo. NxM PLLEGAL) Ovee lcwre Wo} Busy | DONE
(ROHS) Poese | eeear | eeaoy | Fan” | coeae |e eel ome Bee

SELECT 10'S

BY SIBLE WRITE
PRG La ws INITIAL CHANNEL CONTROL WORD ADDRESS Ee jeorae| Hage SRE [mee | eer ones coven vow ones‘

TAL | RBI Y. SECTOR CTR ————— SECTOR COWWTER (8CD,) ————>
eal REGISTER SELECTED 19'S

DeLay seurcr TRANSPORT FUNCTION NUMBEE OATAR PIA FLAGS PIA ee | i Rees orb ee
roe 1 * READ ALL Ss were Az

aa if Sew SI id Ane NUMBER. |S Q2QO OAT 7» WIE DATA

TT Men a ag ef)

$$ rack (8c) <= =—— SS emaare TD as laarao Taree (ee. ») (eco)

DTC
(F219)

CLEAR ze RESET

Nor NOT NOT, NOT Nor Nor NOT
READ/ WRITE REGISTER K BN \Mk BN |MKORTA\MK REV | ME |Me Eo |MK BN

Ry SAICE | END __| sys [3979 ENO) De72 |B END) SYNC

wey
OLS ee

LOTR RvR
ISABLED Bas FLAG

ee ee eo Ze ae Te
| ee ae eT eee oe | ars fare Fare faire a

ms | [TRE PT | mm CRQ | oer | Nea | Ned [NB [Wal

eC SIONS RIP Ga AS ERE eT GAG: SMe me
D200 2: Bde FLAG PIA
1* 556 3 =(808)

Ocieay
OCIWE

FLAG PIA CATH PIA
5* WRITE EOF 16+ SPACE FILE
6+ SARCE FO _17* SPACE FILE REV

NEXT UNIT

36 SIT WORD

7 CHN : zl

st Chae TER = > | = 0 azncreg ———____=
SD CRC a | ee OER ae
$1 ST CHARACTER. ————— | __ 2 ND CHARFCTER 3 RO CHARACTER ————_—

—™—@§$§$—_ 9 TH CHARACTER. = | = _ 5 CHARACTER | Oo © CHARACTER.

Sa BOA SLI TET eee) GAS AS a

SoS EO CHARA OTEICS mma a FTARCHARACTERN Gee | Po Ge 2 Stead ee Fey Sea
= ST CHARACTER 2ND eee ee ————

ni | Ss Se OEE ETN CI re ae) | ie aa EGUAPACTERS CHARACTER

CHARACTER
COUNTER

aaa
REQ

nae cone ome woanesy EE
piers

[pen eer nn Py)

Cle. | SET
ee FID ere Aid
TEs, _|vesr_| euig EMOTY

! i Ene

cor CONE —
(0410) |\or4

| 1ST POP 8 BYTE (A)

: ORTRO

2NO PDP 8 BYTE (B.

1ST POP 9 BYTE (A

3RO POP 8 BYTE (Cc)

36 B7TT
36 SITS

24D POPS BYTE &

SLNAWNDISSV LI€ AOIATA LNO-NI

@)

ILI

172

MISCELLANY C8 .

eon See meee wane

NBS DI Ud +

a
s
e

TE
ON
RO
N

e
e
p
t
o
N
e
n
t
e
m

e
a
s

e
a
d

iw

Z
Av
g

“I
os

ss
00

1g

S
S
W
U
I
Y
I
Y

OT

V
X

‘o
ue
g

Io
je

oI
pu

y

2k

Fr
Bi

a
ie

ee

e
a
n

e
e

M
o
M

Le
pee

Bes
ys

e
a

a
5

é
(Mee

e
a
e

T
R

|
S
E
R
E
N
E
!

RI
IL

AE
RI

N
L
T

R
E
T
I
R
E
E
S

HA
SS

E
N
O
R
E

S
R
E
Y

R
E
A

av
d

W3
3d

NG

AL
UY
S

re
sr

ec
ne

es
on

ma
ni

es

te
es

Ro
eR
it
ve
rs
ow
it
se
n

co
ta

ne
er

en
er

es
t

vi
d

7
7
9

@
@
e
r
e
r

e
8
8
6

o
e

e
0
7
0

P
e
O
e
8

8

e
e
e

c
e

T
S

A
A
A

R
I
O
R

S
R
s
i
p

a
e

wA
ds
ne

o
r
e

o
O

7
7
8
4
2
8
2
8
6
0
8
4
6

6
€
¢
€
8

|
Av
g

“I
os
ss
00
1g

SN
SU
IY
II
TY

OL

V
y

‘[
eu
eg

10
je
or
1p
uy

Ca
en

s
:

e
k
e

esas
hin}

A
S
T
A
N
A

CU
NR

EN
CR

EN
RN

ED

IBA
VSD

ESS
URR

NSS
SCS

OST
EN

A

ee 6

C
A
S
I
N
O
S

R
O
T
C
 4
30

0¥
.3

8
C
e

e
B

e
S

O
N
S
E
N

RE
CT

S
S
T

MR
RA
NT
RR
LA
L

P
R
R

E
N
E
M
A

BP
SI
O9
4

9S

C9

173

INDICATOR PANELS

(sn
¢g*[)

A
I
O
W
A
W

910D

OT AW
‘Toueg

10}eOTpuy

A
©

©
d
a
i
s

J
H
V
v
i
s
S
a
y

u
s
a
M
O
d

J
I
O
N
I
S

SLIM

+

o S
S
a
u
a
G
V

A
N
O
W
S
W

moe
weet B

A
D

a
E

Ae
ce

Mees
WO

RIEL
OR

PRT
ae

beet
Meee

Se
CRT

oe
ean

ea
OM

Seb eet i
i

Tt
veh

ae
soy

Tk
.

A

L
T
E

A
I
T

C
A

T
T

A

C
I
E
S

T
E
N
S

D
A
T
S

S
E
E
N

IRESRAY
B3d400

ANOWIH

ak
*"

Le
te

ST e
a
e

a
m
e
 | a

e

ut
E
L

L
L
L

S
 S
O
R
E
L

T
R
 R
E
L
L
,

L
I
D

S
S
I
N
C
G
Y

A
N
O
M

IH

C10

Ohne

18

36

72

144

288

576

152

305

611

223

446

893

786

573

147

295

591

183

366

Ohne

17

34

68

137

274

549

099

199

398

796

592

184

368

737

474

949

899

799

599

199

398

797

594

188

376

752

504

009

018

036

073

147

294

589

179

358
717

434

869

Orne

16

33

67

134

268

536

073

147

294

589

179

359

719

438

877

755

511

023

046

093

186

372

744

488

976

953

906

813

627

254

509

018

037

075
151

303

606

213

427

854

709

419

838

676

352

705

411

822

645

WANDUSWNHHO

2

000

000

000

000

000

000

000

000

000
000

174

MISCELLANY

POWERS OF TWO

‘

625
812
906
953
476
738
369
684
342
171
085
542
271
135
567
283
641
820
910

5
25
125
062 5
531 25.
265 625
132 812 5
566 406 25
783 203 125
391 601 562 5
695 800 781 25
847 900 390 625

175

APPENDIX D

ALGORITHMS

All arithmetic operations on full and half words are performed in the 36-bit

parallel adder. There are two sets of summand inputs to the adder, each set

of 36 supplying one input to each adder stage. One set supplies the contents

of AR, its complement, or zero; the other set supplies the contents of BR, its

complement, or zero. Each stage also has a carry input, which is generated

by the next less significant stage. Every stage has two outputs; the carry

already mentioned, and a sum. The 36 sum outputs together form the sum

of the two input words. The least significant stage has a carry input from the

logic for performing twos complement arithmetic and incrementing by one.

The negative of a number is formed at the sum outputs simply by supplying

the complement of the number at one set of inputs and asserting the carry

into stage 35. Adder stage 17 has extra input gating so that 1 can be added

to or subtracted from both halves of AR simultaneously.

The adder produces a sum in the same way that one adds binary numbers

using pencil and paper. Each adder stage has three inputs, two summand bits

and a carry, and two outputs, sum and carry. The sum output of a given

stage is 1 if any one or all three of the inputs are 1. The carry out is | if two

or three of the inputs are 1. Calculations are performed as though the words

represented 36-bit unsigned numbers, ie the signs are treated just like magni-

tude bits. In the absence of a carry into the sign stage, adding two numbets

with the same sign produces a plus sign in the result. The presence of a carry

gives a positive answer when the summands have different signs. The result

has a minus sign when there is a carry into the sign bit and the summands

have the same sign, or the summands have different signs and there is no

carry.

Thus the program can interpret the numbers processed in fixed point

arithmetic as signed numbers with 35 magnitude bits or as unsigned 36-bit

numbers. A computation on signed numbers produces a result which is

correct as an unsigned 36-bit number even if overflow occurs, but the hard-

ware interprets the result as a signed number to detect overflow. Adding

two positive numbers whose sum is greater than or equal to 2°° gives a nega-

tive result, indicating overflow; but that result, which has a | in the sign bit,

is the correct answer interpreted as a 36-bit unsigned number in positive

form. Similarly adding two negatives gives a result which is always correct

as an unsigned number in negative form.

All operations discussed below have two operands, one of which is

supplied to the adder from BR, which acts simply as a buffer and has no

special input gating. MQ has shift gating so it can function as a low order

extension of AR for handling double length operands. All actual computa-

tions take place in the single 36-bit adder, but the sum output can be placed

in either AR or MQ, and all transfers to MQ from AR or BR are made

through the adder. In multiplication MQ holds the multiplier and thus

D1

D2

176

ALGORITHMS

controls the summation of partial products; as the multiplier is shifted out,

the low order word of the product is shifted in. In division MQ supplies the

low order part of the dividend to AR as the quotient is being constructed in

MQ.

In any extended arithmetic operation, the requisite number of steps is

counted in the 9-bit shift counter SC, which has a carry network for this

purpose. SC alse has a 9-bit adder for-use in computations on floating point

exponents and size and position calculations in byte manipulation.

FIXED POINT ALGORITHMS

Fixed point numbers are explained in detail in §1.1. For convenience let us

take the computer representation of the positive number x as +[x] where

the brackets enclose the number in bits 1-35. Similarly the representation

of —x is —[2°° —x] or —[1 —x] depending on whether we are regarding num-
bers as integers or as proper fractions. The most negative number, —235, has

the form —[0], which is equivalent to the unsigned integer 2°.

Addition. There are four cases of addition of two positive 35-bit numbers
x and y.

I. dearay!)

I. (-—x) + (-y)

Il. Near (Gh) x2y .

Vee Siete x<y

The operands are held in AR and BR, but it makes no difference which one

is in which register. The result appears in AR. For convenience in the

exposition we shall regard the numbers as proper fractions; to view them as

integers, simply substitute “2°5” for each occurrence of “1”. Since the twos
complement format allows a representation for —1, either x or y may be 1 in
II, and y may be 1 in IV.

I. If x+y <1 the adder output placed in AR is +[x Tey leo Thee yieeel

the carry out of stage 1 changes the sign. Consequently if the addition of

two positive numbers gives a negative result, it is apparent that the sum

exceeds the capacity of the register. The processor detects the overflow by

checking the sign carries: there is a carry into the sign stage but none out of

it. AR then contains

palin ell

II. Ignoring the carry into the sign bit in the addition of two negatives
would give

EL]
bbs]
cae oa]

If x +y <1 the carry changes the sign and the result is

177 \

FIXED POINT
f ‘

ei

which is the representation of —-(x+y). If x+y >1 there is no carry into

the sign, and its absence in the presence of a carry out indicates overflow.

AR contains

PL PGery = 1)

Ill. Ignoring the carry into the sign in an addition where the signs are

different would give

ar|leal|
malcseyl
Spee pi

Since x > y, it follows that 1+x—y 21. Hence the carry changes the sign

and the result is

Tbe sap

When the operand signs are different, the magnitude of the result cannot

exceed the larger operand magnitude and there can be no overflow. Since

in this case the positive number is at least as large in magnitude as the

negative, there is always a carry into the sign, and this added to the operand

minus sign produces a carry out.

IV. The addition of numbers of differing signs where the negative has the

larger magnitude gives

ate Cl
aUlevil
large ah

Since x <y, then 1 +x —y <1. ‘Hence there are no carries associated with

the sign and no overflow. The above result is the twos complement represen-

tation of x —y, ie -(v —x).

Subtraction. The minuend from AC is in AR, and the subtrahend, which

is either 0,E or the word from location £, is in BR. Subtraction is done

directly by adding the twos complement of BR to AR. The logic supplies

the complement of BR to the adder and a carry into the adder LSB.

Let x be the absolute value of the number in AR, and y the absolute value

of the number in BR. There are four cases.

IG (ay)

I. (G9 9) a

Vipul ape dey Go aGe ay

IV. Fe may (-x)-(-y), x>y

These correspond respectively to the four cases of addition discussed

previously.
Multiplication. The multiplier, 0,£ or the contents of location &, is in

MQ, and the multiplicand from AC is in BR. AR is clear. The 36-step

procedure is as follows.

D3

D4

178

‘ ALGORITHMS

If MQ35 (the multiplier LSB) is 1, subtract BR algebraically from AR, but

put the result in AR shifted one place to the right, with the LSB of the result

going into MQO, and shift MQ right so a bit of the multiplier is dropped from

MQ35. Put the sign of the result in ARO and ARI (as though the shift

followed the subtraction and did not affect the sign but did move it to

AR1). If MQ35 is 0, simply shift AR and MQ right one, with AR35 going

into MQO. tise

In each subsequent step perform only the shift if the bits moved in and

out of MQ35 on the previous step were the same. If they were different, add

or subtract along with the shift: if the shift moved a 0 in and a 1 out, add

BR to AR; if a | in anda O out, subtract BR from AR.

Thus the low order bits of the running sum of partial products are shifted

into MQ as the multiplier is shifted out. At each step the effect of the multi-

plicand in BR on the partial sum in AR is one binary order of magnitude
greater than in the preceding step because the partial sum was shifted right.
Therefore BR can be combined directly with AR. If MQ35 is initially 0,
there is no subtraction until a 1 is shifted into it. Simple shifting then
continues until the next transition (from 1 to 0), following which BR is
added.

The process continues in this way, subtracting at every 0-1 transition,
adding at every 1-0 transition. After 35 steps MQO0-34 contains the low
half of the product magnitude, and MQ35 contains the sign of the multiplier.
At the final step, add or subtract as required but put the result directly into
AR; shift only MQ to move the low magnitude into the correct position and
make MQO equal to the sign of the whole product.

If the original operands were both negative and the result is also negative,
set Overflow; this can occur only when —2* is squared. In IMUL, if the high
word is not null (ie if AR is neither clear nor all 1s), set Overflow; move MQ
to AR for storage of the low word.

To see that this procedure results in a correct product, consider the posi-
tive binary integer

10011101)
BE G> 5x4 35 Ze 40)

where the decimal digits below the binary digits are the powers of 2 corres-
ponding to the bit positions. This number is obviously equal to

100000000
ar 111000
+ 11

Now an n-bit string of 1s whose rightmost bit corresponds to 2¥* is equal to
DE OE or equivalently 2*(2” — 2°), ie 2” — 2° is a string of n 1s and the 2*
shifts the string left k places. Hence

100000000 = 281-78 = 29~28
111000 = 2343-23 = 26-93

de beprea 22802 te 20
100111011 = DPF! = 234 230

In this last representation, each power of 2 that is subtracted corresponds to

179

Na FIXED POINT

a transition from O to | (scanning right to left), whereas each that is added

corresponds to a 1-0 transition. The largest term corresponds to the transi-

tion to the sign bit, which is 0 for a positive number. The multiplication

algorithm interprets the multiplier in this manner, alternately subtracting

and adding the multiplicand to the partial sum in the order-of-magnitude

positions corresponding to the transitions. If a multiplier of the same magni-

tude were negative, it would have the form

1011000101
—*8 76 5°43 2 1.0 *

in which the extra bit at the left represents the sign. The number is now

equivalent to

Beart 28D? st Dee Ds 8 eee

wherein opposite signs correspond to opposite transitions. The algorithm

may thus use exactly the same sequence for a negative multiplier: this time

the subtraction of greatest magnitude is detected by the transition to the

sign bit, which is now 1.

Division. The divisor, 0,£ or the contents of location E, is in BR. In

DIV the high and low halves of the dividend from two accumulators are in

AR and MQ respectively. In IDIV the one-word dividend from AC is in AR.

The two types of division differ mainly in setting up the dividend; in both

cases the algorithm processes a positive dividend to get a positive quotient.

In DIV if the dividend is negative (ARO = 1), make it positive and set the

negative dividend flag. To negate the dividend, move the low word to AR

and the complement of the high word to MQ. Then move the negative of

the low word back to MQ and the complement of the high word back to AR.

Now the double length negative of the original dividend is in AR and MQ

unless MQ is clear; in this event add 1 to AR to give the twos complement

negative of the high word. Once the dividend is in positive form shift MQ

left one place to close the hole between the two halves; in other words drop

the low sign and get the 70-bit magnitude into AR1-35, MQ0-34.

If the IDIV dividend in AR is negative, negate it and set the negative

dividend flag. Move the one word dividend in positive form to MQ and clear

AR. Shift MQ left, as the algorithm operates on a double length dividend in

both types of division although the high part is null in this case.

After the dividend is set up, compare the divisor with it to determine

whether the division can be performed. Subtract the absolute value of the

divisor from the high half of the dividend (if the divisor is positive, subtract

it; if negative, add it). Since the dividend is positive, the result is also

positive if the magnitude of the divisor is less than or equal to the number in

AR. For a fixed fraction, the divisor is subtracted from the actual dividend

and no overflow is allowed. For a fixed integer, AR is clear and the result is

positive only for a zero divisor; the worst possible case is the division of

235 — 1 by 1, whose integral result can be accommodated. (Placing the one

word dividend in MQ effectively multiplies it by 2~°5, making it the frac-

tional part of a two word dividend with the binary point in the middle. The

quotient is then a proper fraction, which is multiplied by 2°° simply by

interpreting it as an integer.) Thus if the result of this initial subtraction is

DS

180

ALGORITHMS

positive, set Overflow and No Divide, and terminate the procedure so the

processor goes on to the next instruction. Dividing by zero is of course

meaningless. The reason for prohibiting a fractional division where the result

would be greater than | is that it is impossible to determine the position of

the binary point in the quotient. So it is up to the programmer.to shift the

dividend to the correct position beforehand. If the result of the initial sub-

traction is negative, the division can be performed and the processor goes

into the division loop.

In division on paper, one subtracts out the divisor the number of times it

goes into the dividend, then shifts the dividend one place to the left (or the

divisor to the right) and again subtracts out. In binary computations the

divisor goes into the dividend either once or not at all. Each subtraction of

the divisor thus generates a single bit of the quotient. If the subtraction

leaves a positive difference, ie if the dividend is larger than the divisor, a | is

entered into the quotient. If the difference is negative, a 0 is entered. To

compensate for subtracting too much, the hardware could add the divisor

back into the dividend before going to the next subtraction step. But the

PDP-10 algorithm instead shifts first and adds the divisor back in at the new

position. It then continues to shift and add putting Os into the quotient

until the result again becomes positive. This procedure generates the same

quotient without ever going back a step.

The hardware procedure is as follows. As each addition or subtraction is

formed in the adder, put the result in AR shifted one place to the left with

AR35 receiving a new bit of the dividend from MQO, and shift MQ left

bringing in a bit of the quotient at MQ35. The bit brought in is the comple-

ment of the sign from the adder: if the divisor does not go into the dividend,

the resulting minus sign (1) produces a 0 quotient bit; if the divisor does go

in, the plus sign gives a 1. Each step loads one bit of the quotient into MQ35,

and the low half of the dividend is shifted out of MQ as the quotient is

shifted in.

The first step is the test subtraction. In each subsequent step, subtract

the absolute value of the divisor if the quotient bit generated in the previous

step is 1, but add it back in if the quotient bit is 0. Since the divisor may

have either sign, subtract it algebraically if its sign differs from the quotient

bit, add it if its sign is the same.

The hardware executes 36 steps to generate 35 magnitude bits. The initial

test step must give a 0, which serves as the sign since we are producing a

positive quotient. In the final step put the result of the addition or subtrac-

tion directly in AR without shifting so the remainder is in the correct
position, but shift MQ left putting the sign from the first step in MQO and

bringing in the last quotient bit. (The bit dropped out of MQO is superfluous;

it was brought into MQ35 when the hole was closed between the dividend

halves.)
To complete the division we must make sure the remainder is correct and

determine the correct signs of the results. Since the operations were per-

formed on positive operands, the remainder should also be positive. A

negative remainder indicates that too much has been subtracted. To correct

this add the absolute value of the divisor back in. If the negative dividend

flag is set, negate AR so the remainder has the sign of the original dividend.

181

FLOATING POINT

Now move the corrected remainder to MQ and move the quotient to AR.

If the negative dividend flag and the divisor sign are of opposite states,

negate AR to produce the correct quotient sign. The correct quotient and

remainder are now in AR and MQ ready for storage.

As an example of the way this algorithm operates, consider a division of

3-bit fixed fractions with a dividend of +.100100 and a divisor of +.101.

By paper computation we obtain the quotient this way.

111
1011100.100

101
10 00
101

101

1

Taking the processor registers to be four bits in length, AR contains 0,100,

MQ has 0.100, and BR has 0.101. Before starting we close the hole changing

MQ to 1.000. The sequence has four steps.

0.100 1.000
—0.101

1.111

ea Lee 0.000

+0.101

0.100

Dex 1.000 0.001

~ 0.101
0.011

j Sore 0.110 0.011

-0.101

0.001
4 0.001 <0.111

The quotient is in MQ at the right, the remainder in AR at the left.

FLOATING POINT ALGORITHMS

§1.1 explains floating point numbers and §2.6 discusses the general charac-

teristics of floating point arithmetic. Exponent computations are done in

the SC adder using the exponents and signs from the floating point operands.

Remember, the sign is that of the whole number, not of the exponent.

_ Although bits 1-8 of a floating point number represent an exponent in the
range —128 to +127, the discussion is entirely in terms of the excess 128

exponents in positive form, ie the set of numbers 0-255. Computations

generally use twos complement operations even though the exponent ina

D7.

182

ALGORITHMS

negative number is a ones complement. The SC sign bit is used to detect

exponent overflow and underflow.

After exponent calculations are complete, operations on the fractions are

done by the fixed point logic in AR, BR and MQ. Bits 1-8 of AR and BR

are filled with null bits, Os in a positive number, Is in a negative. Double

length operands are in AR and MQ with MQ8-35 forming a magnitude

extension of AR. In almost all circumstances the logic treats ARO-35 and

MQ8-35 as a single 64-bit register; in all two-word shifting AR35 is con-

nected to MQ8 and MQO-7 is ignored. Except in division the fixed point

calculation generates a double length fraction, which is shifted arithmetically

(in right shifting the sign goes into AR1; in left shifting the sign is unaffected

and Os enter MQ35). Almost all floating point instructions normalize the

result, thus making use of the low order part even though the instruction

may store only the high order word.

Addition, Subtraction. £,0 or the word from location £ is in BR, and AC

is in AR. For subtraction move the negative of the subtrahend from BR to

AR and move the minuend from AR to BR. This reduces subtraction to

addition, so the rest of the algorithm is the same for both.

The initial objective is to determine the difference between the exponents

and to determine which exponent is the larger. If the signs of the operands

differ, add the exponents into SC. If the signs are the same, subtract the BR

exponent from the AR exponent by adding the twos complement. Let x

and y be the AR and BR exponents in positive form. The table below shows

the calculations as a function of the operand signs, and the sign of the result

in SC as a function both of the operand signs and the relative values of x

and y.

AR+, BR+ AR+, BR- AR-, BR+ AR-, BR-

stalexe| +[x] =| (9.n)5) 68] —(2555-%1

mes6a aW295:= y¥] +[y] t+ y])

—(256-5x yl =(255 +x = yi] =[255o0 V1) —[(256 il

SG SG SCC ese CS She C=

Key xy 30 i ae Sy SES oe ay x<y x>y

As can be seen from the above, if AR already contains the number with the

smaller exponent, the SC and AR signs differ. Hence if the SC and AR signs

are the same, switch BR and AR so the number with the smaller exponent

can be shifted. If the exponents are equal, the signs may or may not be the

same but it matters not whether the transfer takes place.

To control the shifting we must now get the negative of the difference

between the exponents. Let d be |x —y|. There are four cases as a function

of the SC sign and whether the AR and BR signs are equal. The second

column lists the present contents of SC, the third tells what must be done to

arrive at —[256 —d] in SC.

SC+, ARO = BRO +[d] Negate SC

SC+, ARO # BRO +[d—-1] Complement SC

183

FLOATING POINT

SC-, ARO = BRO 5 Oma Do nothing

SC-—, ARO + BRO (255 —dl Add 1 to SC

If d < 64 (indicated by a negative SC with a O in either SC1 or SC2) nullify

AR1-8 and shift AR and MQ right d places so its bits correctly match the

BR bits in order of magnitude. If d > 64 clear AR for its contents are of

no significance.

Now move the larger exponent from BR to SC in positive form, nullify

BR1-8, and add BR and AR into AR as fixed fractions. Finally enter the

normalizing sequence.
This sequence first tests for a zero result. If AR and MQ8~-35 are clear,

bypass the rest of the procedure. If the fractional result has overflowed into

AR8 (indicated by ARO # AR8 or AR8 = | and AR9-35 = 0), shift right

and increase the exponent by one. The number is now normalized.

Complement the exponent in SC. If the instruction is not UFA and the

number is not normalized go into the normalizing loop. In each step shift

the double length fraction left and add 1 to the negative exponent

(decreasing its magnitude by 1). Terminate the loop when the fraction is

normalized, indicated by the sign and the MSB of the fraction being different

(ARO # ARQ) or the magnitude being % (AR9 = 1 and AR10—35 = 0).

If the instruction specifies rounding, adjust the high fraction so it is

rounded and is in twos complement form if negative. The rounding is away

from zero. For a positive result the high fraction must be increased if the

low fraction is greater than half the value of the high fraction LSB. Ina

negative result the high fraction is a ones complement, which is one greater

in magnitude than the twos complement. Hence it is already rounded and

should be decreased in magnitude if the low fraction is < *%LSB. In either

case add 2~*7 into AR if MQ8 is 1 unless MQ9-35 is clear in a negative

number. A | in MQ§8 indicates a low fraction >%4LSB ina positive number,

< %LSB in a negative number. The condition that MQ9-35 not be zero in

a negative number is the case where the low fraction is exactly %LSB. If the

high fraction is actually changed, renormalize it. A single normalizing shift

is all that is required and it occurs in only two cases: a right shift when

1-—2°?7 is rounded, a left shift when —% is changed to a correct twos

complement.

Once the number has been normalized (and rounded if necessary) the

exponent is in negative form. Thus if the SC sign bit is 0, set Overflow and

Floating Overflow. If SC1 is also 0, the sign bit must have been changed by

decreasing the exponent, so also set Floating Underflow (the maximum

possible exponent overflow is 128 giving an SC contents of 7773, and this

can occur only in division). Insert the exponent in correct form into AR1-8.

The result is now ready to store from AR unless the instruction is in long

mode. To ready the double length result subtract 27 from the positive expo-

nent in SC. Save the high word in MQ, and move the low word to AR, but

only if the decreased exponent is still positive. If the sign is 1, the true

exponent of the low word is less than —128, so clear AR. (Note that this

condition is also true if the low exponent is > 127, which can occur only if

the high exponent is > 154.) If the low word is nonzero, shift AR right

one place to put the fraction in bits 9-35 (remember that all shift operations

D9

D10

184

ALGORITHMS

use MQ8-35), clear ARO so the low word has a positive sign even if the

double length fraction is negative, and insert the low exponent in positive

form in bits 1-8. Finally switch AR and MQ so the high and low words are

in correct position for storage. :
Scaling. The 9-bit signed scale factor from bits 18 and 28-35 of E is in

SC, and AC is in AR and BR. If the floating point number being scaled is

positive, simply add the sign and exponent from BRO-8 to SC; if the number

is negative, add the complement of BRO-8 to SC. Let x be the exponent in

positive form and let y be the absolute value of the scale factor. There are

only two cases,

+[x] sto

+[y] 2504

+[xt+y] see |

and in either the result is in positive form in SC.

Now enter the normalizing sequence described under floating addition.

Only left shifting can occur bringing Os in from MQ. The result can be zero,

and exponent overflow or underflow can occur; but there is no rounding,

and at the end the one-word result is in AR ready for storage.
Multiplication. £,0 or the word from location £ is in BR, and AC is in

AR. Place the AR exponent in positive form in SC, and add the positive

form of the BR exponent to it. Since both are in excess-128 code, subtract

128. Save the result in the floating exponent register FE so SC can be used

to control the multiplication of the fractions.
Nullify the exponent parts of AR and BR. Move the multiplier from BR

to MQ and the multiplicand from AR to BR. Clear AR. Now multiply the

fractions by the same procedure given for fixed point multiplication with

the following differences:

@ There are only 28 steps instead of 36.

@ The shift register extension of AR for the construction of the product is

MQ8-35. As the multiplier is shifted out, bits of the product come in

at MQ8.

@ In the final step place the adder output directly into AR but do not shift

MQ — the low fraction is in MQ8-—34, the correct position for normalization.

Clear MQ35, move the exponent back to SC, and enter the normalizing

sequence described under floating addition. If the operands are normalized,

at most one left shift is needed to normalize the result.

Division. The divisor, £,0 or the contents of location £, is in BR. The

dividend from AC is in AR. In long mode the low half of the dividend from

the second accumulator is in MQ; otherwise MQ is clear.

If the dividend is negative, make it positive and set the negative dividend

flag. Except in long mode, negate the dividend simply by negating AR. For

long mode follow the procedure given for DIV in the second paragraph of

the fixed division algorithm. With a floating point operand the left MQ shift

puts the low fraction in MQ8-34.
Place the AR exponent in positive form in SC. Subtract the magnitude of

the BR exponent from it by adding the negative form of the exponent (ones

complement) plus 1. Since the excess-128 factors cancel in the subtraction,

add 128. Save the result in the floating exponent register FE so SC can be

185

FLOATING POINT

used to control the division of the fractions.

Nullify the exponent parts of AR and BR. Subtract the absolute value of

the divisor from the high half of the dividend. If the result is positive,

indicating the divisor is less than or equal to the dividend, shift AR and MQ

right and increase the exponent in SC by |. Save the adjusted exponent in

FE. The shift divides by 2, so if the operands are normalized, the dividend

must now be less than the divisor.

Now divide the fractions by the same procedure given for fixed point

fractional division with the following differences:

@ Since the dividend has already been adjusted, the test in the first step

stops the division only if the divisor is zero, or is unnormalized and less than

the dividend. A normalized divisor cannot cause the quotient to overflow.

If the result of the initial subtraction is positive, terminate the procedure

and set Floating Overflow as well as Overflow and No Divide.

® Instead of 36 steps there are only 29 if the instruction specifies rounding,

otherwise 28.

@ The shift register extension of AR is MQ8-35. As quotient bits are

brought in at MQ35, dividend bits are supplied to AR35 from MQ8. The

shifting clears MQO-7.

@ The MQ shift in the final step places a 27-bit quotient fraction in MQ9-35

or a 28-bit fraction in MQ8-35.

@ As in the fixed point algorithm generate the correct signed remainder, put

it in MQ, and move the quotient to AR but leave it positive.

If the instruction specifies rounding, shift AR right placing the 27-bit

fraction in the correct position, and if the bit shifted out of AR35 is 1, add

it back into AR35 to round the positive quotient. If the quotient is zero

bypass the rest of the procedure. The reaminder will also be zero except in

an FDVL where the double length dividend is unnormalized and its high

fraction is zero.
Complement the exponent in SC. If the instruction uses normalized

operands the initial dividend adjustment guarantees that the quotient will be

normalized. If it is not, shift AR left (bringing Os into AR35) until a 1

appears in ARQ, each time increasing the negative exponent by | (decreasing

its magnitude).

Since the exponent is in negative form, if SCO is 0, set Overflow and

Floating Overflow. If SCI is also 0, the sign bit must have been changed by

decreasing the exponent, so also set Floating Underflow. Insert the exponent

in correct form into ARI-8. If the negative dividend flag and the divisor
sign (BRO) are of opposite states, negate AR to produce the correct quotient

sign.

The quotient is now ready for storage from AR and the remaining opera-

tions are performed only for long mode. Save the quotient in BR and bring

the high half of the original dividend from AC to AR. Put the dividend

exponent in SC. Decrease its magnitude by 26 if the dividend was shifted

right at the beginning to allow the division to be performed; otherwise

decrease it by 27. Move the remainder to AR and insert the exponent in it

provided the remainder is not zero and the exponent is within the proper

range, —128 to 127 (the test is that the sign resulting from the exponent

calculation is the same as the sign of the remainder). -If the exponent is

Dil

D12

186

ALGORITHMS

outside that range’ clear AR; the assumption is that the remainder is of no

significance (ge the exponent. is too small). Move the remainder with its

correct exponent from AR to MQ and put the quotient back in AR. The

two words are now ready for storage.

Double Precision Division. The software routine that performs double

precision floating point division and the algorithm it utilizes are given at

the end of §2.11. FDVL performs the division

A/b = q+i\r27"/b

where q and r are the quotient and remainder. In a double precision

division the divisor is of the form

Beebe aD!

Using the expansion

2 3

l = tf -248-44.] (vy? < x?)

x+y x Dees Go

and letting x = b and y = d27*’ gives

rae: +27 29-54 39-81 Ag (+2)fi-2 a sg ag
B b b b? b3

Multiplying out and gathering like terms gives

A l d d? eo Oa Od) 2 ee aa) le ar aga) 2 OP aia e aS 2 | qd) = qd)

where the first two terms on the right are those in the. equation at the

bottom of page 2-67.

The ratio of adjacent terms is

hee 1 ais —=d2 reel

iB b

In an alternating convergent series, the error due to truncation is smaller

than the first term dropped. Therefore

d2 =ely)

\Error| < ee

Since the maximum value of d is less than 1 and the minimum value of b

(normalized) is %,

lEVror|: <= ce

Book 2 ©

Assembling
the

Source Program

MACRO-10 Assembler

SOs Oe Gye (On) cei Se SEBS SINS ico) CO mCoN Col (Co) 19) CoN MICO URS UhON SOMMNON (NOE Iho) KO

191

CONTENTS

CHAPTER 1
INTRODUCTION

MACRO~10 Language - Statements

Labels

Operators

Operands

Comments

Symbols

Symbolic Addresses

Symbolic Operators

Symbolic Operands

The Symbol Table

Direct Assignment Statements

Deleted Symbols

Numbers

Binary Shifting

Left Arrow Shifting

Floating-Point Decimal Numbers

Fixed-Point Decimal Numbers

Arithmetic and Logical Operations

Evaluating Expressions

Numeric Terms

Address Assignments

Setting and Referencing the Location Counter

Indirect Addressing

Indexing

Literals

Multiline Literals

Instruction Formats

Primary Instruction Format

Input/Output Instruction Format

Communication With Monitors

Operating Procedures

Page

BOs ote NOE NO IND) dN EROMENGIAND JisKD TEND: NOT ROMs INDUENO. C ROLE NIE NOsRO MNO Row URDRaROr ROGeND Mahou Kom ROW ERO eno oho Ore gOr Cr ge Cn Onn Ora Orsi Cri (Only Se LEO EG) (CD! COCO! Ga COM GON CO wed) HINO TARO OIL RON ROMURO WL ROT RO RGN IETED ostinac (estan Seetra ypc eae

. _

SON Ona Red CONTIN

. —

Ovi NON FnION Onis ie ee CO RO.

—

192

CONTENTS (Cont)

CHAPTER 2
MACRO-10 ASSEMBLER STATEMENTS - PSEUDO-OPS

Address Mode: Relocatable or Absolute

Relocation Before Execution - PHASE and DEPHASE Statements

Entering Data

RADIX Statements

Entering Data Under the Prevailing Radix

DEC and OCT Statements

Changing the Local Radix for a Single Numeric Term

RADIX50 Statement

EXP Statement

Z Statement

Input Data Word Formatting
}

BYTE Statement

POINT Statement - Handling Bytes

IOWD Statement: Formatting I/O Transfer Words

XWD Statement: Entering Two Half-Words of Data

Text Input

ASCII, ASCIZ, and SIXBIT Statements

Reserving Storage

Reserving a Single Location

BLOCK Statements

Conditional Assembly

Assembler Processing Statements

END Statements

PASS2 Statements

LIT Statements
VAR Statements

PURGE Statements

Listing Control Statements

Assembler Control Statements

REPEAT Statements

OPDEF Statements

Page

2-1

2-3

2=3

2-3

2-4

2-5

2-5

2-6

2-6

2-6

2-7

2-7

2-8

2-9

2-9

2-10

2-10

2-11

2-11

2-11

2-12

2-13

2-13

2-14

2-14

2-14

2-14

2-15

2-17

2-17

2-18

Ci) KOO COD) CO SCO CO) (CO) NN OD GD FF WN

COs OS eo. ON Oe 10. AON Oy ROP ROL NOR OL UNO] iN) Uh

—i

\

193

CONTENTS (Cont)

SYN Statements

Permanent Symbols

Extended Instruction Statements

Linking Subroutines

EXTERN Statements

INTERN Statements

ENTRY Statements

HISEG Statements

CHAPTER 3

MACROS

Definition of Macros

Macro Calls

Macro Format

Created Symbols

Concatenation

Indefinite Repeat

Nesting and Redefinition

ASCII Interpretation

CHAPTER 4
ERROR DETECTION

Teletype Error Messages

CHAPTER 5
RELOCATION

CHAPTER 6
ASSEMBLY OUTPUT

Assembly Listing

Binary Program Output

Relocatable Binary Programs - LINK Format

LINK Formats for the Block Types

Absolute Binary Programs

RIM10B Format

RIM10 Format

RIM Format

END Statements

6-1

6-1

6-2

6-3

6-4

6-4

6-5

6-6

6-6

6-1

7-1

194

CONTENTS (Cont)

CHAPTER 7
PROGRAMMING EXAMPLES

APPENDIX A
OP CODES, PSEUDO-OPS, AND MONITOR I/O COMMANDS

APPENDIX B
SUMMARY OF PSEUDO-OPS

APPENDIX C
SUMMARY OF CHARACTER INTERPRETATIONS

APPENDIX D
ASSEMBLER EVALUATION OF STATEMENTS AND EXPRESSIONS

APPENDIX E
TEXT CODES

APPENDIX F
RADIX 50 REPRESENTATION

APPENDIX G
SUMMARY OF RULES FOR DEFINING AND CALLING MACROS

APPENDIX H
OPERATING INSTRUCTIONS

ILLUSTRATIONS

General RIM10B Format

RIM10B Loader

‘Sample Program, CLOG

Example of Nested Macro

Two Byte Unpacking Subroutines

IRPC Example

TABLES

Error Codes

Page

6-7

7=2

7-3

195

CHAPTER 1

INTRODUCTION

MACRO-10 is the symbolic assembly program for the PDP-10, and’ operates in a minimum of 5K of core

nemory in all PDP-10 systems. MACRO-10 is a two-pass assembler. It is completely device indepen-

dent, allowing the user to select standard peripheral devices for input and output files. For example,

a Teletype can be used for input of the symbolic source program, DECtape for output of the assembled

binary object program, and a line printer can be used to output the program listing.

This assembler performs many useful and unique functions, making machine language programming

easier, faster, and more efficient. Basically, the assembler processes the PDP-10 programmer's source

program statements by translating mnemonic operation codes to the binary codes needed in machine in-

structions, relating symbols to numeric values, assigning relocatable or absolute core addresses for pro-

gram instructions and data, and preparing an output listing of the program which includes notification

of any errors detected during the assembly process.

MACRO-10 also contains powerful macro capabilities which allow the programmer to create new lang-

uage elements, thus expanding and adapting the assembler to perform specialized functions for each

unique programming job.

1.1 MACRO-10 LANGUAGE - STATEMENTS

MACRO-10 programs are usually prepared on a Teletype, with the aid of a text editing program, as a

sequence of statements. Each statement is normally written on a single line and terminated by a car-

riage return-line feed sequence. MACRO-10 statements are virtually format free; that is, elements of

a statement are not placed in numbered columns with rigidly controlled spacing between elements, as

in punched-card oriented assemblers.

There are four types of elements in a MACRO-10 statement which are separated by specific characters.

These elements are identified by the order of appearance in the statement, and by the separating, or

delimiting, character which follows or precedes the element.

1-1

196

Statements are written in the general form:

label: operator operand, operand; comments (carriage return)

The assembler interprets and processes these statements, generating one or more binary instructions or

data words, or performing an assembly process. A statement must contain at least one of these element:

and may contain all four types. Some statements are written with only one operand; but others may hav

many. To continue a statement on the following line, the control (CTRL) left arrow (~), echoed as te;

is used before the carriage return-line feed sequency (} | or 2). Examples of program statements are

given in Chapter 7, Figures 7-1 and 7-3.

1.1.1 Labels

A label is the symbolic name, created by the source programmer to identify the statement. If present,

the label is written first in a statement, and is terminated by a colon (:).

1.1.2 Operators

An operator may be one of the 366 mnemonic machine instruction codes (see PDP-10 System Reference

Manual), a command to Monitor, or a pseudo-operation code which directs assembly processing. These

assembly pseudo-op codes are described in this manual, and listed with all other assembler defined

operators in Appendix A.

Programmers may also create pseudo-ops to extend the power of the assembly language.

An operator may be a macro name, which calls a user-defined macro instruction. Like pseudo-ops,

macros direct assembly processing; but, because of their unique power to handle repetitions and to ex-

tend and adapt the assembly language, macros are considered separately (see Chapter 3). Operators

are terminated with a space or tab.

1.1.3 Operands

Operands are usually the symbolic addresses of the data to be accessed when an instruction is executed,

or the input data or arguments of a pseudo-op or macro instruction. In each case, the interpretation of

operands in a statement depends on the statement operator. Operands are separated by commas, and

terminated by a semicolon (;) or by a carriage return-line feed.

197

1.1.4 Comments

The programmer may add notes to a statement following a semicolon. Such comments do not normally

affect assembly processing or program execution, but are useful in the program listing for later analysis

or debugging. The use of the following special characters should be avoided in comments: <> [].

1.2 SYMBOLS

The programmer may create symbols to use as statement labels, as operators, and as operands. A sym-

bol contains from one to six characters from the following set:

The 26 letters, A- Z
Ten digits, 0-9
Three special characters: $ (Dollar Sign)

% (Percent)
. (Period)

The first character in a symbol must not be a digit. If the first character is a period, it must not be

followed by a digit. Spaces must not be embedded in symbols. A symbol may actually have more than

six characters, but only the first six are meaningful to MACRO-10.

MACRO-10 accepts programs written using both upper and lower case letters and symbols. (e.g., pro-

grams written using the Teletype Model 37). Lower case letters are treated as upper case in symbols;

additional special characters, and lower case letters elsewhere, are taken without change.

1.2.1 Symbolic Addresses

A symbol used as a label to specify a symbolic address must appear first in the statement and must be

immediately followed by a colon (:). When used in this way, a symbol is said to be defined. A de-

fined symbol can reference an instruction or data word at any point in the program. A symbol can be

defined as a label only once. If a programmer attempts to define a symbol as a label again, the second

or successive attempt is ignored and an error is indicated. The assembler recognizes only the first

definition. These are legal symbolic addresses:

ADDR

eTOTAL

SSUM:
ABC: DEF: (Both Labels are legal)

1-3

198

The following are illegal:

TABC: (First character must not be a digit.)
LAB : (Colon must immediately follow label.)

1.2.2 Symbolic Operators

Symbols used as operators must be predefined by the assembler or by the programmer. If a statement

has no label, the operator may appear first in the statement, and must be terminated by a space, tab,

or carriage return. The following are examples of legal operators:

MOVE (A mnemonic machine instruction operator .)
LOC (An assembler pseudo-op.)
ZIP (Legal only if defined by the user.)

1.2.3 Symbolic Operands”

Symbols used as operands must have a value defined by the user. These may be symbolic references to

previously defined labels where the arguments to be used by this instruction are to be found, or the

values of symbolic operands may be constants or character strings. If the first operand references an

accumulator, it must be followed by a comma.

TOTAL: ADD AC1,5TAG)

The first operand, ACI, specifies an accumulator register, determined by the value given to the sym-

bol ACI by the user. The second operand references a memory location, whose name, or symbolic

address is TAG. If the user has equated ACI to 17, and the assembler has assigned TAG to the binary
address, 000537, then the assembler inserts 17 in the accumulator field (bits 9 - 12) and 000537 in the

address field (bits 18 - 35) of this instruction. If an accumulator is not specified, but the operator re-

quires one, accumulator 0 is assumed by default. If an accumulator is specifed by the value >17g, the

four least significant bits are used.

1.2.4 The Symbol Table

The assembler processor symbols in source program statements by referencing its symbol table, which

contains all defined symbols, along with the binary value assigned to each symbol.

1-4

199

Initially, the symbol table contains the mnemonic, op codes of the machine instructions , the Monitor

1/O command mnemonics, and the assembler pseudo-op codes, as listed in Appendix A. As the source

program is processed, symbols defined in the source program, as well as new symbols defined by

MACRO-10 for use by this program, are added to the symbol table.

1.2.4.1 Direct Assignment Statements - The programmer inserts new symbols with their assigned values

directly into the symbol table by using a direct assignment statement of the form,

symbol=value }

where the value may be a number or expression. For example,

ALPHA= 52
BETA= 17)

A direct assignment statement may also be used to give a new symbol the same value as a previously

defined symbol:

BETA= 17

GAMMA= BETA

The new symbol, GAMMA, is entered into the symbol table with the value 17.

The value assigned to a'symbol may be changed:

ALPHA= 7)

changes the value assigned in the first example from 5 to 7.

Direct assignment statements do not generate instructions or data in the object program. These state-

ments are used to assign values so that symbols can be conveniently used in other statements.

1.2.5 Deleted Symbols

Sometimes a programmer may want to define a symbol in MACRO but not want to have that symbol

typed out by DDT. In such a case, the programmer should define that symbol with a double equal

sign:

FLAG== 269

1-5

200

FLAG will be assigned the value 200 and will be

a. Fully available in MACRO.

b. Available for type-in with DDT (assuming that symbols were loaded for the program con-
taining FLAG).

c. Unavailable for type-out by DDT.

This is equivalent to defining FLAG by:

FLAG= 280

and then typing

FLAGSK

to DDT

If a symbol is defined with == and declared internal, then the == will be ignored.

1.3 NUMBERS

Numbers used in source program statements may be signed or unsigned, and are interpreted by the
assembler according to the radix specified by the programmer, where

2< radix < 10

The programmer may use an assembler pseudo-op, RADIX, to set the radix for the numbers which follow.
. If the programmer does not use a RADIX statement, the assembler assumes a radix of 8 (octal).

The radix may be changed for a single numeric term, by using the qualifier t followed by a letter, D
(for decimal), O (for octal), B (for binary), or F (for fixed-point decimal fractions). Thus,

1D10 is stored as 1010
1010 is stored as 1000
1B10 is stored as 9910

The qualifier tL is used for bit position determination of a numeric value. Ln generates an octal
value equal to the number of 0 bits to the left of the leftmost 1, if the numeric value n were stored in
a computer word.

1-6

201

Expression Resultant Value

44, zero bits

tLO 44 0000000000. . . .0000000000

41, zero bits

TLS 4] 0000000000. . . .0000000101

T= 0 | TUVVV11007.... 010070011111

1.3.1 Binary Shifting

A number may be logically shifted left or right by following it with the letter B, followed by a number,

n, representing the bit position in which the right-hand bit of the number should be placed. Bmay be

any bit position 0 -35 decimal; if B is not used, B35 is assumed; n is taken as modulo 256 decimal .

Thus, the number tD10 is stored as 000000 000012; but tD10B32 is shifted left three binary positions

and stored as 000000 000120; and tD10B4 is shifted left 31 positions, so that its rightmost bit is in bit

4 and stored as 240000 000000.

1
.

Binary shifting is a logical operation, rather than an arithmetic one.

The following are legal binary shifts:

1B2 400000 000000

1B17 000001 000000

1B35 000000 000001

-1B35 777777 777777 (see explanation below)

ea 000000 777777
lat 000000 000001

Note that the following expressions are equivalent:

10B32 = tO10B32 = 10B42 - 10 = 10B< t D <42-10>>= 10B<t D42-tD10>

The unary operators preceding a value are interpreted first by the assembler before the binary shift. A

leading plus sign has no effect, but a leading minus sign causes the assembler to shift and then to store

the 2's complement.

Binary shifting may operate on numeric terms, as defined in Section T2367

202 Xe

1.3.2 Left Arrow Shifting

If two expressions are combined with the operator "~", i.e. <m>~ <n>, the 36 bit value of expression

m is shifted V bits (where V is the value of expression n) in the direction of the arrow (left) if V is pos-

itive or against the arrow if V is negative. The effective magnitude of V is that of the address of an LSH

instruction.

1.3.3 Floating-Point Decimal Numbers

If a string of digits contains a decimal point, it is evaluated as a floating-point decimal number, and

the digits are taken radix 10. For example, the statement,

17+} is stored as 205420 000000.

Floating-point decimal numbers may also be written, as in FORTRAN, with the number followed by the
letter E, followed by a signed exponent representing a power of 10. The following examples are valid:

NUM 1s 17-2F-4)

NUM2: 3.6€5E23
NIM3: -567.%25F33)

1.3.4 Fixed-Point Decimal Numbers

As shown in Section 1.3, tD followed bya numeric term, is used to enter decimal intergers.

Fixed-point decimal numbers (mixed numbers) are preceded by tF followed by a number (not a numeric

term, defined below) which normally contains a decimal point. The assembler forms these fixed-point

numbers in two 36-bit registers, the integer part in the first and the fractional part in the second. The

value is then stored in one storage word in the object program; the integer part to the left of the assumed

binary point, the fractional part to the right.

The binary shift (B) operator is used to position the assumed point. Thenumber 1tF123.45B8 is formed in

two registers:

000000 000173 (the integer part)
346314 631462 (the fraction part, left-justified)

The B operator sets the assumed point after bit 8, so the integer part is placed in bits 0-8, and the

fraction part in bits 9-35 of the storage word. In this case, the integer part is truncated from the left

to fit the 9-bit integer field. The fraction part is moved into the 27-bit field following the assumed

point and is truncated on the right. The result is,

173346 314631

t

(assumed point)

If a B shift operator does not appear in a fixed-point number, the point is assumed to follow bit 35, and

the fractional part is lost.

1-8

203

Fixed-point numbers are assumed to be positive unless a minus sign precedes the qualifier:

000000 000173 ions
000173 346314 1F123-452317

346314 631462 1F123-454-1

777777 777604 Seah Seca
777604 431463 Tita ono!

=1F123-2458-1
431463 146316

Negative fixed-point numbers, such as the example above, are assembled as if they were positive num

bers, complemented, and then logically shifted.

1.3.5 Arithmetic and Logical Operations

Numbers and defined symbols may be combined using arithmetic and logical operators. The following

arithmetical and logical operators may be used.

Operator Meaning

+ Add

- Subtract
% Multiply
He Divide

: & AND
! Inclusive OR

The assembler computes the 36-bit value of a series of numbers and defined symbols connected by

arithmetic and logical operators, truncating from the left, if necessary. The following examples

show how these arithmetic and logical operators are written in statements.

R= 654+X11-2)
MULT AC1+7sRHO73 12
MOVF A+3,R=TA-52

Combinations of numbers and defined symbols using arithmetical and logical operators are called ex-

pressions.

1.3.6 Evaluating Expressions

When combining elements of an expression, the assembler first performs unary operations (leading + or

then binary shifts. The logical operations are then-done from left to right, followed by multiplications
a

and divisions, from left to right. Division always truncates the fractional part. Finally, additions and

subtractions are performed, left to right. All arithmetic operations are performed modulo 235.

For example, in the statement:

TAG: TKO 351+4+Nh&Cp

The first operand field is evaluated first; the comma terminating this operand indicates that this is an

accumulator. In the second operand field, the logical AND is performed first, the result is added to

one, and the sum is placed in the memory address field of the machine instruction.

To change the normal order of operations, angle brackets may be used to delimit expressions and indi-

cate the order of computation. Angle brackets must always be used in pairs.

Expressions may be nested to any level, with each expression enclosed in a pair of angle brackets. The

innermost expression is evaluated first, the outermost is evaluated last. The following are legal expres-

sions:

A+B 75°
<<O -D+h -29>%<4-41]-X>>+4+]

1.3.7 Numeric Terms

A numeric term may be a digit, a string of digits, or an expression enclosed in angle brackets. The

assembler reduces numeric terms to a single 36-bit value. This is particularly useful when specifying

operations such as. local radix changes and binary shifts, which require single values.

For example, the tD operator changes the local radix to decimal for the numeric term that follows it.

The number, 2349: may be represented by

D223 .
OF th <5#*P4+19>

orth <TRN47+THREF >

205

but 2319 may not be written,

tD1@OO-77

because the tD operator affects only the numeric term which follows it, and in this example the second

term (77) is taken under the prevailing radix, which is normally octal.

The B shift operator is preceded by a numeric term (the number fo be shifted) and is followed by another

term (the bit position of the assumed point). The following are legal: ‘

TF167B17

1B10911B8

56685

<MARK + SIGN>B<PT-XXV>

A bracketed numeric term may be preceded by a + or a - sign.

1.4 ADDRESS ASSIGNMENTS

As source statements are processed, the assembler assigns consecutive memory addresses to the instruc-

tion and data words of the object program. This is done by incrementing the location counter each time

a memory location is assigned. A statement which generates a single object program storage word in-

crements the location counter by one. Another statement may generate six storage words, incrementing

the location counter by six.

The mnemonic instruction and Monitor command* statements generate a single storage word. However,

direct assignment statements and some assembler pseudo-ops do not generate storage words, and do

not affect the location counter. Other pseudo-ops and macros may generate many words in the object

program.

1.4.1 Setting and Referencing the Location Counter

The MACRO-10 programmer may set the location counter by using the pseudo-ops, LOC and RELOC,

which are described in Chapter 2. He may reference the location counter directly by using the symbol,

point (.). For example, he can transfer to the second previously assigned storage word by writing:

JRSTLAHOD

*The terms Monitor command (as used here) and programmed operator are synonymous.

eit

206

1.4.2 Indirect Addressing

The character @ prefixing an operand causes the assembler to set bit 13 in the instruction word, indica-

ting an indirect address. For an explanation of indirect addressing and effective address calculation,

see the PDP-10 System Reference Manual, DEC-10-HGAA-D (page 1-7).

1.4.3 Indexing

If indexing is used to increment the address field, the address of the index register used is entered in pa-

‘rentheses, as the last part of the memory reference operand. This is normally a symbolic name defined

by a direct assignment statement, or an octal number in the range 1-17, specifying 1 of the 15 index

registers. However, the address of the index register may\be any legal expression or expression element.

This is a symbolic, indirect, indexed, memory reference:

A: ADD 4s0NUYC17))

NOTE

The parentheses cause the value of the enclosed ex-
pression to be interpreted as a 36-bit word with its two
halves interchanged, e.g., (17) is effectively

000017000000,

1.4.4 Literals

In a MACRO-10 statement, a symbolic data reference may be replaced by a direct representation of

the data enclosed in square brackets. This direct representation is called a literal. The assembler

. stores the bracketed data in its literal table, assigns an address to the first word of the data and inserts

that address in the machine instruction.

A literal may be any term, symbol, expression or statement, but it must generate data. Statements

which do not generate data, i.e., some pseudo-ops, such as RADIX, and direct assignment statements,

may not be written as literals. Literals may be nested, up to 18 levels.

Here is a simple example. Byte instructions must reference a byte pointer word, like this:

LDB 4,BP) |
BP: POINT 165A4+3514)

(POINT is a speudo-op which sets up a byte pointer word.) A literal can be used to insert the POINT _

statement directly. (The use of literals is also shown in Chapter 7, Figure 7-3.)

LDB 4>CPOINT 105A+35141)

1.4.4.1 Multiline Literals - MACRO optionally allows multiline literals. The following is legal:

GETCHR: SOSG IBUrt+e2 3ANY CHARS LEFT?

PUSHJ P>CIN No 3NOs READ SOME IN

POP series 3NO UNUSUAL CONDITIONS

STATZ Ns 740020 sCHECK FOR ERRORS

JRST (CMOVEI Es CSIXBIT /ZINPUT ERRORZ]

JRST ERRPNT] s3PUBLISH ERROR MESSAGE

JRST. ENDFILI 3END OF FILE HANDLER

ILDB AC>IBUF+1 sPICKUP NEXT CHAR

ROR + (Ris 3TRA 134

Two new pseudo-operations have been added to control whether or not this feature is available. Use of

these pseudo-ops is required since

MOVE AC» CSIXBIT/TEXT/Z

is legal in MACRO-10, even though the closing right bracket (J) of the literal has been omitted. In

normal mode, MACRO allows such an unterminated literal. However, the pseudo-op

MLON

causes the assembler to consider all code following a left bracket as part of a literal, until such time

as the assembler processes a matching right bracket. Thus, carriage-return, line-feed no longer ends

a literal, but rather the programmer must insert a right bracket. The pseudo-op

MLOFF

places MACRO back into the (initial) compatibility mode in which literals may occupy only a single

line.

The symbol . (current location) is not changed by the use of literals:

It retains the value it had before the literal was entered.

1.5 INSTRUCTION FORMATS

There are two types of machine instruction word formats: primary and input/output.

208

The 366 PDP-10 machine instructions are fully described in the PDP-10 System Reference Manual and

listed alphabetically in Appendix A of this manual. Monitor I/O commands, or programmed operators,

have the same formats. (See Monitor manuals.) —

The primary instruction statements may have two operands: (1) an accumulator address and (2) a memory

address. A memory address may be modified by indexing and indirect addressing.

1.5.1 Primary Instruction Format

After processing primary instruction statements, the assembler produces machine instructions in the

general 36-bit word format shown below:

i} a 12 13.14 17 18 35

a ee ee | ee

Se OK A re, Ss — eves AS Y
INSTRUCTION INDIRECT ADDRESS

PART BIT PART

ACCUMULATOR INDEX 9-006 REGISTER Pee

In general, the mnemonic operation code, or operator, in the symbolic statement is translated fo its

binary equivalent and placed in bits 0-8 of the machine instruction. The address operand is evaluated

and placed in the address part (bits 18-35) of the machine instruction. The assembler assigns sequen-

tial binary addresses to each statement as it is processed by means of the location counter. Labels are

given the current value of the location counter and are stored in the assembler's symbol table, where

the corresponding binary addresses can be found if another instruction uses the same symbol as an ad-

dress reference.

The 16 accumulators are specified by writing them (symbolically or numerically) as operands in the

statement, followed by a comma. The indirect address bit is set to 1 when the character @ prefixes a

memory reference. Indexing is specified by writing the index register used in parentheses immediately

following the memory reference. (All PDP-10 accumulators, except accumulator 0, may be used as

index registers.) Actually, expressions enclosed in parentheses (in the index register position) are

evaluated as 36-bit quantities; their halves are exchanged, and then each half is added into the cor-

responding half of the binary word being assembled. For example, the statements

MOVSI AC>¢1.0) $MOVE 1-@ TO AC)
MOVSIT ACs¢SIXBIT /DSK/)

are equivalent to

MOVSI AC+2@1400 $MOVE 1-0 T
MOVSI ACs446353 aes

To illustrate this general view of assembler processing, here is a typical symbolic instruction. Assume

that AC17, TEMP and XR are defined symbols, with values of 17, 100, and 3, respectively.

LABEL: ADD AC175@TEMP CXR) sSTATEMENT EXAMPLE 32

This is processed by the assembler and stored as a binary machine instruction like this:

aes 12 13 14 17 18 35

OF M1 AOA 1 tt SOuSO) ofr ss sfifo Ome 1}o 0 <0'<0)2.0)8 0/50) (Of 0: 10fM0> 210i OL O80" x0, 0 |

Noe ———— bs NE

INSTRUCTION INDIRECT ADORESS
PART BIT PART

ACCUMULATOR INDEX
REGISTER 10-0062

The mnemonic instruction code, ADD, has been translated to its octal equivalent, 270, and stored in

bits 0-8. The first operand specifies accumulator 17. The effective memory address will be found at

execution time by adding the contents of index register 3 to the value of TEMP, then taking this value

as the address of the word whose address points to the word to be added to ACI7.

A comment, STATEMENT EXAMPLE, follows a semicolon. Such comments do not affect the program in

any way, but are printed in the output listing.

#:
1.5.2 Input/Output Instruction Format

In the eight PDP-10 I/O statements, the first operand is either a peripheral device number or a device

mnemonic (see PDP-10 User's Handbook for complete list). The second operand is a memory address.

For example,

READ: DATAI PTRs@NUM(4) 2

requests that data be read in from a paper-tape reader, to be stored at the indirect, indexed, address

given.

11'S)

210

The format for I/O instruction words is shown below:

° 2.3 9 10 12.13 14_ 17 18 35

a Pai AS ~ =
DEVICE INDIRECT ADDRESS

SELECTION BIT PART

1/0 INSTRUCTION INDEX ;
INSTRUCTION PART REGISTER 10-0063

1.6 COMMUNICATION WITH MONITORS

Programs assembled with MACRO-10 which operate under executive control of a Monitor must use

Monitor facilities for device independent I/O services. This is done by means of programmed operators

(operation codes 040 through 077) such as CALL, INIT, LOOKUP, IN, OUT, and CLOSE.

Additional Monitor commands are available to allow the user program to exercise control over central

processor trapping, to modify its memory allocation, and other services, which are described in the

Monitor programmer's manuals.

Monitor commands are listed in Appendix A.

1.7 OPERATING PROCEDURES

Commands for loading and executing MACRO-10 are contained in the PDP-10 System User's Guide

(DEC-10-NGCC-D).

211 ©

CHAPTER 2

MACRO-10 ASSEMBLER
STATEMENTS - PSEUDO-OPS

Assembler statements or pseudo-ops direct the assembler to perform certain assembler processing opera-

tions, such as converting data to binary under a selected radix, or listing selected parts of the assembled

_ object program. In this chapter, these assembler processing operations are fully described.

NOTE

The pseudo-op name must follow the rules for construct
ing a symbol (refer to paragraph 1.2) and must be termi-
nated by a character other than those listed in paragraph
1.2 as valid symbolic characters. (Normally, a space or
tab is used as a terminator.)

2.1 ADDRESS MODE: RELOCATABLE OR ABSOLUTE

MACRO-10 normally assembles programs with relocatable binary addresses, so that the program can be

loaded anywhere in memory for execution as a function of what has been previously loaded. When

desired, the assembler will also assign absolute location addresses, either for the entire program or for

selected parts. Two pseudo-ops control the address mode: RELOC and LOC.

RELOC N>2

This statement sets the location counter ton, which may be a number or an expression, and causes the

assembler to assign relocatable addresses to the instructions and data which follow. Since most re-

locatable programs start with the location counter set to 0; the implicit statement,

RELOC (3)

begins all programs, and need not be written by the programmer who wants his program assembled with

- relocatable addresses .

Loc N?

This statement sets the location counter ton, a number or an expression, and causes the assembler to

assign absolute addresses, beginning with n, to the instructions and data which follow. If the entire

program is to be assigned absolute locations, a LOC statement must precede all instructions and data.

/

2-1

212

If n is not specified

(Los })

zero is assumed initially.

If only a part of the program is to be assembled in absolute locations, the LOC statement is inserted at

the point where the assembler begins assigning absolute locations. For example, the statement,

LOC 202)

causes the assembler to begin assigning absolute addresses, and the next machine instruction or data

word is stored at location 200, .

To change the address mode back to relocatable, an explicit RELOC statement is required. If the pro-

grammer wants the assembler to continue assigning relocatable addresses sequentially, he writes,

RELOC)

To switch back to the next sequential absolute assignment, he writes,

Loc }

Thus, the programmer is not required to insert a location counter value in either a LOC or RELOC

statement, and unless he does, both the relocatable coding and the absolute coding will be assigned

sequential addresses. This is shown in the following skeleton coding. The single quote mark is used

here, and in MACRO-10 listings, to identify relocatable addresses.

\ \
Location Counter Program

QBOOBOD' ADD 15X 3RELOC @ IS IMPLICIT.

DOOOTA' LOC 1900 $CHANGES TO ABSOLUTE» STARTING
901000 SUB 5,TOT s3WITH 091000.

901034 RELOC 3SETS LOCATION COUNTER TO 74.
OBOOT4' - ADD 2>5XAT

Q9QGB75' LOC 3SWITCHES LOCATION COUNTER
901034 EXP A-X+7 3BACK TO ABSOLUTE SEQUENCE.

When operating in the relocatable mode, the assembler determines whether each location in the object

program is relocatable or absolute, using an algorithm described in Chapter 5.

\

-

213

2.1.1 Relocation Before Execution - PHASE and DEPHASE Statements

Part of a program can be moved into other locations for execution. This feature is often used to re-

locate a frequently used subroutine, or iterative loop, into fast memory (accumulators 0-175) just prior

to execution.

To use this feature, the subroutine is assembled at sequential relocatable or absolute addresses along

with the rest of the program, but the first statement before the subroutine contains the assembler opera-

tor, PHASE, followed by the address of the first location of the block into which the subroutine is to be

moved prior to execution. All address assignments in the subroutine are in relation to the argument of

the PHASE statement. The subroutine is tenmitared by a DEPHASE statement, which requires no oper-

ands, and which restores the location counter.

In the following example, which is the central loop in a matrix inversion, a block transfer instruction

moves the subroutine LOOP into accumulators 11-16.

MOVE CXWD LOGrAsLGOP)

Relocatable BLT LOOP+4
Address JRST LOG?

——~ Loopx: PHASE 11
LOOP: MOVN A CA)

FMP MPYR

Absolute FADM A CY)
Address SOJGE* Xs) 453

URST MAIN ;
DEPHASE

The label LOOP represents accumulator 11, and the point in the SOJGE instruction represents accumu-

lator 14.

2.2 ENTERING DATA

2.2.1 RADIX Statements

When the assembler encounters a numerical value in a statement, it converts the number to a binary

representation reflecting the radix indicated by the programmer. The statement,

RADIX N>

214

where n is a decimal number, 2 <n < 10, sets the radix to n for all numerical values that follow, unless

another RADIX statement changes the prevailing radix or a local radix change occurs (see below).

For example, if the programmer wants the assembler to interpret his numbers as decimal quantities,

then the prevailing radix must be set to decimal before he uses decimal numbers.

RADIX 10)

The statement, RADIX 2, sets the prevailing radix to binary.

The implicit statement, RADIX 8, begins every program; if the programmer wants to enter octal numbers,

this statement is not necessary.

2.2.2. Entering Data Under the Prevailing Radix

Data is entered under the prevailing radix by typing the data, followed by a carriage return:

7654322345672

Data may be labeled and contain expressions:

LAB: 456+A+B/<C+D>)

Data may also be entered by first using a direct assignment statement to place a symbol with an assign-

ed value in the symbol table, and then using the symbol to insert the assigned value in the object

program. For example, the direct assignment statements,

A=2 2
= 57 ~

cause two entries in the symbol table. The following statement enters the sum of the assigned values in

the object program at symbolic address REX.

REX: A+B3 REX contains 000000 000007

The radix can also be changed locally, that is, for a single statement or a single value, after which

the prevailing radix is automatically restored, as described in Section 1.3. 2

215

2.2.3 DEC and OCT Statements

To change to a local radix for a single statement, the programmer writes:

DEC NsNsNoee -N2

where all of the numbers and expressions are to be interpreted as decimal] numbers. The numbers or

expressions following the operator are separated by commas, and each will generate a word of storage.

OCT NoNsNo--eN2

Changes the local radix to octal for this statement only, and generates a word of memory for each

number or expression.

The statement,

DEC 1024-553.141636-03E-2633)

generates five decimal words of data.

2.2.4 Changing the Local Radix for a Single Numeric Term

To change the radix for a single number or expression, the numeric term is prefixed with tD tO, 1B,

or tF, as explained in Chapter 1. If an expression is used, it must be enclosed in angle brackets,

TD <A+B-C/200>

These prefixes may generate a word, or part of an instruction word. The statement,

TOTAL2:MOVE 1tD10>ABZ)

causes the contents of ABZ to be moved to accumulator 12,.

When the assembler encounters a numeric term, it forms the binary representation in a 36-bit register

under the prevailing or local radix. If the quantity is a part of an instruction, it is truncated to fit

in the required field.

For example, the accumulator field must have a final value in the range 0-17... In the statement,

MOVE tD6@5ABZ 2

216

the assembler first interprets the accumulator address in a 36-bit register, forming the integer

000000000074: but takes only the rightmost four bits and places them in the accumulator field of the

instruction, which results in the selection of accumulator 14.

2.2.5 RADIX50 Statement

Another radix changing statement is available, but it is used primarily in systems programming. This

is RADIX50 n, sym} which is used by the assembler, PDP-10 Loader, DDT, and other systems programs

to pack symbolic expressions into 32 bits and add a 4-bit code field n in bits 0-3. This is explained in

Appendix F of this manual. (The mnemonic SQUOZE may be used in place of RADIX50.)

2.2.6 EXP Statement

Several numbers and expressions may be entered by using the EXP statement:

EXP X»4.s 1D65sHALF»B+362-A 2

which generates one word for each expression; five words were generated for the above example.

2.2.7. Z Statement

A zero word can be entered by using the operator, Z.

LABEL: Zp

generates a full word of all zeros at LABEL. If operands ‘follow the Z, the assembler forms a primary

machine instruction, with the operator field and other unknown fields zeroed. In the statement,

ZB 5p

the assembler finds an accumulator field, but no address field, and generates this machine instruction:

000140 000000.

217

2.3 INPUT DATA WORD FORMATTING

2.3.1 BYTE Statement

To conserve memory, it is useful to store data in less than full 36-bit words. Bytes of any length,

from 1 to 36 bits, may be entered by using a BYTE statement.

BYTE (N) XsXaX)

The first operand (n) is the byte size in bits. It is a decimal number in the range 1-36, and must be

enclosed in parentheses. The operands following are separated by commas, and are the data to be

stored. If an operand is an expression, it is evaluated and, if necessary, truncated from the left to the

specified byte size. Bytes are packed into words, starting at bit 0, and the words are assigned sequent-

ial storage locations. If, during the packing of a word, a byte is too large to fit into the remaining

bits, the unused bits are zeroed and the byte is stored left-justified in the next sequential location.

In the following statement, three 12-bit bytes are entered:

LARET.: ~ BYTE (Gl 29:Sisal Tota.

This assembles at LABEL as, 0005 0177 0316, where N=316.

The byte size may be altered by inserting a new byte size in parentheses immediately following any

operand. Notice that the parentheses serve as delimiters, so commas must not be written when a new

byte size is inserted. The following are legal:

BYTE €695¢614)NT(3)65255)

where 5 is entered in a 6-bit byte, NT in the following 14-bit byte, 6 in the following 3-bit byte,

followed by 2 and 5 in 3-bit bytes. A BYTE statement can be used to reserve null fields of any byte

size. If two consecutive delimiters are found, a null field is generated.

BYTE» <C lhl 5D

When the assembler finds two delimiters, it assembles a null byte. In this case, 000000 000005.

To enter ASCII characters in a byte, the character is enclosed in quotation marks .

BYTE (C7) YN

Text handling pseudo-ops are discussed in Section 2.3.4. An example of the use of the BYTE statement

is given in Chapter 7, Figure 7-3.

2-7

218

2.3.2 POINT Statement - Handling Bytes

Five machine instructions are available for byte manipulation. These instructions reference a byte

pointer word, which is generated by the assembler from a POINT statement of the form,

LABEL: POINT s, address, b) (5 and b are decimal)

where the first operand s is a decimal number indicating the byte size, the second operand is the

address of the memory location which contains the byte, and the third operand, b, is the bit position

in the word of the right-hand bit of the byte (if b is not specified, the bit position is the nonexistent

bit to the left of the bit 0). The address specified in the second operand may be indirect and indexed.

If the byte size is not specified, MACRO-10 assumes 36 bits.

In the following example, an LDB (load a byte from a memory location into an accumulator) and an

ILDB instruction are used, along with three assembler statements. The ILDB instruction "increments"

AC to look like AB, then does a load byte; the effect of the two instructions is the same.

QB000B B590008 BVOHOO AA: BYTE €6)5
000001 369600 980000" AB: POINT 62AA35

Q0O0082 440690 880000" AC: POINT 62AA ;

Q00083 135140 909001" START: LDB 32AB

QQ0004 134140 888002" ILDB 32AC

The first statement enters :the quantity 5 in a 6-bit byte at symbolic address AA which is 0. The

second statement is for reference by the load byte instruction. When the LDB is executed, the machine

goes to AB for the byte size, its address, and bit position. In this case, it finds that the byte size is

6 bits, the byte is located in the word AA, and the right-hand bit of the byte is in bit 5. The byte is

then loaded into accumulator 3, where’ it looks like this: 000000 000005.

The other byte manipulation mnemonic instructions reference the byte pointer word in similar ways.

The deposit byte (DPB) instruction takes a byte from an accumulator and deposits it, in the position

specified by the pointer word, in a memory word.

The increment byte pointer (IBP) instruction increments the bit position indicator (the third operand in

the referenced POINT word) by the byte size. This is useful when loading or depositing a string of

bytes, using the same byte pointer word.

219

The increment and load byte (ILDB) and increment and deposit byte (IDPB) instructions increment the

byte pointer word by the byte size before loading or depositing.

An example of the use of the POINT statement is given in Chapter 7, Figure 7-3.

2.3.3 IOWD Statement: Formatting I/O Transfer Words

The assembler generates I/O transfer words in a special format for use in BLKI and BLKO and all four

push-down instructions. The general statement is,

IOWD NsM)

where two operands, which may be numbers or expressions, follow the IOWD operator. This statement

generates one data word. The left half of the assembled word contains the 2's complement of the first

operand n, and the right half-word contains the value of the second operand m, minus one. For

example,

IOWD 6,1D256)

assembles as 777772 000377.

2.3.4 XWD Statement: Entering Two Half-Words of Data

The XWD statement enters two half-words in a single storage word. It is written in the form,

XWD LHWsRHW 2

where the first operand is a symbol or expression specifying the left half-word, and the second operand

specifies the right half-wrod. Both are formed in 36-bit registers and the low order 18-bits are placed

in the half-words. Three examples follow:

XWD ABD
XWD SUM+2,DES+5)
XWD START»END)

XWD statements are used to set up pointer words for block trar.sfer instructions. Block transfer pointer

words contain two 18-bit addresses: the left half is the starting location of the block to be moved, and

the right half is the first location of the destination.

2-9

220

2.3.5 Text Input

The assembler translates text written in full 7-bit ASCII or. 6-bit compressed ASCII. It will also format ;

7-bit ASCII with a null character at the end of text, if desired. These codes are listed in Appendix E.

In all three text modes, the printing symbols in the code set are translated to their binary representation.

In 7-bit ASCII, five control characters are also accepted:

Horizontal Tab

Line Feed

Vertical Tab

Form Feed

Carriage Return

To translate and store a single word containing as many as five 7-bit-ASCII characters, right-justified,

the input characters are simply enclosed in quotation marks.

"AXE") is stored as

0 0000000 0000000 1000001 1011000 1000101

0 «null null A xX E

Notice that characters are right-justified, and bit 0, which is not used, is set to zero.

|

2.3.5.1 ASCII, ASCIZ, and SIXBIT Statements - To enter one or more words of text characters, the

operators ASCII, SIXBIT, and ASCIZ are used. The delimiter for the string of text characters is the first

nonblank character following the character that terminates the operator (refer to the note on page 2-1).

The binary codes are left-justified. Unused character positions are set to zero (null). Text is terminated

by repeating the initial delimiter. The statement,

ASCII “AXE?

assembles as, ; .

1000001 1011000 1000101 0000000 0000000 0

A X E null null O

The operator ASCIZ (ASCII Zero) guarantees a null character at the end of text. If the number of

characters is a multiple of five, another all zero word is added. For example,

ASCIZ/"AXE"'/ BD

221

assembles as,

0100010 1000001 1011000 1000101 0100010 0

u" A X E i

followed by another word of zeros.

) 0000000 0000000 0000000 0000000 0000000 0

null

When the full 7-bit ASCII code set is not required, the 64-character 6-bit subset may be entered, using

the SIXBIT operator. Six characters are left-justified in sequential storage words. Format of the SIXBIT

statement is the same as for ASCII statements. To derive SIXBIT code: |

a. Convert lower case ASCII characters to upper case characters.

b. Add 40, to the value of the character.

c. Truncate the result to the rightmost six bits.

2.3.6 Reserving Storage :

The programmer can reserve single locations, or blocks of many locations for use during execution of

his program.

2.3.6.1 Reserving a Single Location - The number sign (#) , suffixing a symbol in an operand field,

is used to reserve a single location. The symbol is defined, entered in the assembler's symbol table,

and can be referenced elsewhere in the program without the number sign. For example,

LAB: ADD 3,TEMP#)

reserves a location called TEMP at the end of the program, which may be used to store a value entered

at some other point in the program. This feature is useful for storing scalars, and other quantities which

may change during execution.

2.3.6.2 BLOCK Statements - To reserve a block of locations, the BLOCK operator is used. It is

followed by a single operand, which may be a number or an expression, indicating the number of words

to be reserved. The assembler increments the location counter by the value of the operand. For

222

example,

MATRIX: BLOCK N*M

reserves a block of N*M words starting at MATRIX for an array whose dimensions are Mand N.

2.4 CONDITIONAL ASSEMBLY

Parts of a program may be assembled, or not assembled, on an optional basis depending on conditions

defined by an assembler IF statement. The general form is,

IF Ns <ceecccerceevcee >

where the coding within angle brackets is assembled only if the first operand, n, meets the statement

requirement .

The IF statement operators and their conditions are listed below:

Operator Assemble angle-bracketed coding IF:

ila} ine eAeheicies n=0, or blank
IFG Ns <ee-> n>0

IFGE Ns <see> n =0, orn >0
PRM cate EB
TRLEAINS: <evere > n=0, orn <0

IFN No <eee> n =0

Dislies Se <lereiei>
encountered during pass 1 Capea Taal ‘
encountered during pass 2

The following conditional statements operate on character strings. Arguments are interpreted as 7-bit

ASCII character strings, and the assembler makes a logical comparison, character-by-character to

determine if the condition is met.

The coding within the third set of angle brackets is assembled if the character strings enclosed by the

first two sets of angle brackets:

IFIDN <A-Z> <A=ZS5<-..> (1) are identical
IFDIF <A-Z> <A-X>s<«+-> (2) are different

These statements, IFIDN and IFDIF, are usually used in macro expansions (see Chapter 3) where one or

both arguments are dummy variables.

223

In the following conditional statements, assembly depends on whether or not a symbol has been defined.

The coding enclosed in angle brackets is assembled if,

IFDEF SYMBOL» <---> this symbol is defined.
IFNDEF SYMBOL» <...> this symbol is not defined.

The last pair of conditional statements is followed by a single bracketed character string, which is

either blank or not blank, and which is followed by conditional coding in brackets .

The coding enclosed in the second set of angle brackets is assembled if,

DIB <elerse)>3!<e ele) > the first operand is blank .
IFNB <+ee>s<eeeeee > the first operand is not blank.

A blank field is either an empty field or a field containing only the ASCII characters space (40,) or

tab (11,).

2.5 ASSEMBLER PROCESSING STATEMENTS

These statements direct the assembler to perform various kinds of processing .

2.5.1 END Statements

The END statement must be the last statement in every program. A single operand may follow the END

operator to specify the address of the first instruction to be executed. Normally this operand is given

only in the main program; since subprograms are called from the main program, they need not specify

a starting address.

END START)

When the assembler first encounters an END statement, it terminates pass 1 and begins pass 2. The

END also terminates pass 2, after which the assembler automatically assembles all previously defined,

literals starting at the current location .*

The following processing operations can be performed at any point in the program.

*The END statement is also used to specify a transfer word in some output file formats. (See

Section 6.2.2.4.)

224

2.5.2 PASS2 Statements

PASS2)

_ This statement switches the assembler to pass 2 processing for the remaining coding. Coding preceding

this statement will have been processed by pass 1 only. This is used primarily for debugging, such as

testing macros defined in the pass 1 portion.

The two assembly operators, LIT and VAR, are used to control assembly allocation of storage.

2.5.3 LIT Statements

LIT)

This statement causes literals that have been previously defined to be assembled, starting at the current

location. Ifn literals have been défined, the next free storage location will be at location counter

plus n. Literals defined after this statement are not affected.

2.5.4. VAR Statements

VAR 2

This statement causes symbols which have been defined by suffixing with the # sign in previous state-

ments to be assembled as block statements. This has no effect on subsequent symbol definitions of the

same type.

If the LIT and VAR statements do not appear in the program, all literals and variables are stored at the

end of the program.

2.5.5 PURGE Statements

The PURGE statement is used to delete defined symbols. Its general form is:

PURGE symbol, symbol, symbol

where each operand is a user-created label, operator, or macro call which is to be deleted from the

assembler's tables. The PURGE statement is normally used at the end of programs to conserve storage.

Purged symbol table space is reused by the assembler.

2-14

225

If the programmer uses the same symbol for both a macro call and/or OPDEF and for a label, a PURGE

statement deletes the macro call or OPDEF. A repeat of the symbol in the PURGE statement also

purges the label. For example, the following statement purges both:

PURGE SOLV>SOLV),

The first SOLV purges the macro call; the second SOLV purges the label .

2.5.6 Listing Control Statements

As the source program statements are processed during pass 2, the program listing is normally printed on .

a line printer or a Teletype, depending on the listing file device specified. A sample listing is shown

in Figure 7-1.

From left to right, the standard columns contain the location counter, the instruction or data is octal

(divided into two 6-digit columns for easier reading), and the symbolic instruction or data, followed

by comments. Relocatable object-code addresses are suffixed by a single quote mark ('), which may

occur in either the left or right half.

A line printer listing always begins at the top of a page, and up to 55 lines are printed on each page.

Consecutive page numbers are printed in the upper right-hand corner of each page.

Listing is suppressed within macro expansions, so that only the macro call and any succeeding lines that

generate object program coding are listed.

These standard listing operations can be augmented and modified by using the following listing control

statements .

TITLE NAME) The single operand may contain up to 60 characters
which will be printed on the top of each page. The
first six characters of the title appear in the assemb|-
ed program as the program name. If no title is given,
the assembler inserts ". MAIN". The program name
given in the TITLE statement is used when debugging
with DDT to gain access to the program's symbol]

table.

SUBTTL. SUBTITLE) The single operand may contain up to 40 characters.
It is printed as the second line at the top of each

page. If the subtitle is changed by another SUBTTL
statement, the new subtitle appears in the second
line of the following page.

PAGE)

XLIST)

LIST)

LALLD

XALL)

NOS YM 2

TAPE)

226

This statement causes the assembler to skip to the
top of the next page. (A form feed character in
the input text has the same effect.)

This statement causes the assembler to stop listing
the assembled program. The listing printout actually
starts at the beginning of pass 2 operations. There-
fore, to suppress all program listing, XLIST must be
the first statement in the program. If only a part of
the program listing is to be suppressed, XLIST is in-
serted at any point to stop listing from that point.

Normally used following an XLIST statement to re-
sume listing at a particular point in the program.
The LIST function is implicitly contained in the
END statement .

This statement causes the assembler to list everything
that is processed including all text, macro expansions,
list control codes, and repeats, all of which are sup-
pressed in the standard listing.

Normally used following a LALL statement to resume
standard listing with all text, macro expansions, list
control codes and repeats suppressed.

The assembler normally prints out the symbol table
at the end of the program, but the NOSYM statement
suppresses the symbol table printout .

This pseudo-op causes the assembler to begin assem-
bling the program contained in the next source file
in the MACRO command string. For example,

-R MACRO
*DSK:BINAME ,LPT: «TTY:,DSK:MORE
PARAM=6
TAPE
1Z

would set the symbol PARAM equal to 6 and then
assemble the remainder of the program from the
source file DSK: MORE. Since MACRO is a 2-
pass assembler, the TTY: file would probably be
repeated for pass 2:

END OF PASS 1
PARAM=6
TAPE
1Z

Note that all text after the TAPE pseudo-op is
ignored.

2-16

227

PRINTX MESSAGE} This statement, when encountered, causes the single

~ operand following the PRINTX operator to be typed
out on the TTY. This statement is frequently used
to print out conditional information. PRINTX state-
ments are also used in very long assemblies to report
the progress of the assembler through pass 1.

The operand is treated as a comment and will be
output on the error message media. It is not counted
as an error, but if error messages are suppressed,
PRINTX messages are also suppressed.

REMARK COMMENTS) The REMARK operator is used for statements which
contain only comments. Such statements may also
be started with a semi-colon.

2.5.7 Assembler Control! Statements

2.5.7.1 REPEAT Statements — The statement

REPRAT No. <sce>

causes the assembler to repeat the coding enclosed in’angle brackets n times. If more than one instruc-

tion or data word is to be repeated, each is delimited by a carriage return. For example,

ADDX: REPEAT 35 <ADD 6+X(4))

ADDI 41>)

assembles as,

ADDX: ADD 62X¢4)

ADDI 421

ADD 62X(4)

ADDI 4.1

ADD 62X(¢4)

ADDI 4-1

Notice that the label of a REPEAT statement is placed on the first line of the assembled coding. REPEAT

statements may be nested to any level. The following simplified example shows how a nested REPEAT

statement is interpreted.

REPEAT 3.5<A)
REPEAT 2>

C>>)
D>?)

228

assembles as,

4 .-—————

NOTE

Brackets indicate repetition.

Tt

ea |

OQ) DQ DB Gi Qe@ 0D OQ Go! > -

2.5.7.2 OPDEF Statements - The programmer can define his own operators using an OPDEF statement,

which is written in the form:

OPDEF SYM CSTATEMENT J)

where the first operand is defined as an operator, whose function is defined by the second operand,

which is enclosed in square brackets. The second operand is evaluated as a statement, and the result

is stored in a 36-bit word. For example,

.OPDEF CAL1 CUSRUUOJ

defines CALI as an operator, with the value 030000 000000. CALI may now be used as a statement

operator,

A30140. 401234 CALI] 351234

which is equivalent to,

930) 40 001234 Z 3251234¢(30000)

When MACRO-10 encounters a user-defined operator, it assembles a single object-program storage

word in the format of a primary instruction word (see Chapter 1). The defined 36-bit value is modified

by accumulator, indirect, memory address and index fields as specified by the user-defined operator.

229

For example, j

OPDEF CAL [MOVE 12@SYM(2)])
CAL 1>BOL¢2))

The CAL statement is equivalent to:

MOVE 22@SYM+BOL(4))

In this modification the accumulator fields are added, the indirect bits are logically ORed, the memory

address fields are added, and the index register addresses are added.

2.5.7.3 SYN Statements - The statement

SYN symbol , symbol

defines the second operand as synonomous with the first operand, which must have been previously de-

fined. Either operand may be a symbol or a macro name. If the first operand is a symbol, the second

is defined as a symbol with the same value. If the first is a macro name, the second becomes a macro

name which operates identically. If the first is a machine, assembler, or user-defined operator, the

second will be interpreted in the same manner. If the first operand in a SYN statement has been pre-

viously defined as both a label and as an operator, the second operand is synonomous with the label .

The following are legal SYN statements:

SYN KsX) 31F K=5>s X=5'

SYN FAD>ADD 2

SYN END» XEND 2

2.5.7.4 Permanent Symbols - Redefinition of permanent symbols (e.g., device names like DIS) is

permitted. Macro takes the newly defined value, but also flags the line with a "Q" warning message.

2.5.7.5 Extended Instruction Statements - For programming convenience, some extended operation

codes are provided in the MACRO-10 Assembler. Primarily, these are used to replace those PDP-10

instructions where the combination of instruction mnemonic and accumulator field is used to denote a

single instruction. For example:

JRST 4>

2-19

230

is equivalent to a halt instruction. Additional, they are used to replace certain commonly used I/O

instruction-device number combinations.

The extended instruction statements are exactly like the primary instruction statements or I/O instruc-

tion statements , except that they may not have an accumulator field or device field.

The operator field must have one of the following extended mnemonics:

Equivalent
Extended Machine Meaning
Instructions Instructions

JRST Jump and enable the PI (priority interrupt) system

JRST 4 Halt

JRST Jump and reset flags

JFCL Jump on overflow and clear

JFCL Jump on CRYO and clear

JRC Jump on CRY1 and clear

JFCL 65 Jump on CRYO or CRY1 and clear

“ORGL sls Jump on floating overflow

DATAI @ Read the console switches

2.5.8 Linking Subroutines

Programs usually consist of subroutines which contain references to symbols in external programs. Since

these subroutines may be assembled separately, the loader must be able to identify "global" symbols.

For a given subroutine, a global symbol is either a symbol defined internally and available for reference

by other subroutines, or a symbol used internally but defined in another subroutine. Symbols defined

within a subroutine, but available to others, are considered internal. Symbols which are externally

defined are considered external .

These linkages between internal and external symbols are set up by declaring global symbols using the

operators EXTERN, INTERN, or ENTRY.

2-20

231

2.5.8.1 EXTERN Statements - The EXTERN statement identifies symbols which are defined elsewhere.

The statement,

EXTERN SQRT» CUBE»sTYPE 2

declares three symbols to be external. External symbols must not be defined within the current subrou-

tine. These external references may be used only as an address or in an expression that is to be used as

an address. For example, the square root routine declared above might be called by the statement,

PUSHJ P»SQRT)

External symbols may be used in the same manner as any other relocatable symbol . Examples:

EXTERN A

200300 MHADH3 MOVE 62At3

AADHO3 AHAHAH XwWDdD A+35A

TUITE We TEAL FETE B= A-7

OPDEF Q@CXWD B+35A-5])

PAS SI Ua Ol

There are three restrictions for the use of external symbols:

a. &xternals may not be used in LOC and RELOC statements .

b. The use of more than one external in an expression is not permitted. Thus, A-B (where A

and B are both external) is illegal.

c. An internal symbol may not be set equal to an external symbol .

2.5.8.2 INTERN Statements - To make internal program symbols available to other programs as ex~

ternal symbols, the operators INTERN or ENTRY are used. These statements have no effect on the

actual assembly of the program, but will make a list of symbol equivalences available to other programs

at load time. The statement,

INTERN MATRIX 2

makes the subroutine MATRIX available to other programs. An internal symbol! must be defined within

the program as a label, variable, or by direct assignment.

2.5.8.3 ENTRY Statements - Some subroutines have common usage, and it is convenient to place

them ina library. In order to be called by other programs, these library subroutines must contain the

statement,
:

-

ENTRY NAME 2D

2-21

232

where "name" is the symbolic name of the entry point of the library subroutine.

ENTRY is equivalent to INTERN except for the following additional feature. All names ina list

following ENTRY are defined as internal symbols and are placed ina list at the beginning of the

library of subroutines. If the loader is in library search mode, a subroutine will be loaded if the pro-

gram to be executed contains an undefined global symbol which matches a name on the library ENTRY

list.

If the MATRIX subroutine mentioned before is a library subroutine, it must contain the statement,

ENTRY MATRIX)

Since library subroutines are external to programs using them, the calling program must list them in

EXTERN statements.

2.5.9 HISEG Statements

HISEG

The HISEG pseudo-op statement generates information that directs the Loader to load the current program

into the high segment if the system has re-entrant (two-segment) capability. (Refer to "Block Type 3

Load Into High Segment" in paragraph 6.2.1.1 for additional information.) This pseudo-op may appear

anywhere in the source program, but it is recommended that it be placed near the beginning to avoid

confusion.

2-22

233

CHAPTER 3

MACROS

When writing a program, certain coding sequences are offen used several times with only the arguments

changed. If so, it is convenient if the entire sequence can be generated by a single statement. To do

this, the coding sequence is defined with dummy arguments as a macro instruction. A single statement

referring to the macro by name, along with a list of real arguments, generates the correct sequence.

3.1 DEFINITION OF MACROS

The first statement of a macro definition must consist of the operator DEFINE followed by the symbolic

name of the macro. The name must be constructed by the rules for construction symbols. The macro

name may be followed by a string of dummy arguments enclosed in parentheses. The dummy arguments

are separated by commas and may be any symbols that are convenient~-single letters are sufficient. A

comment may follow the dummy argument list.

The character sequence, which constitutes the body of the macro, is delimited by angle brackets. The

body of the macro normally consists of a group of complete statements.

For example, this macro computes the length of a vector:

DEFINE VMAG ¢(A>B) sROUTINE FOR THE LENGTH OF A VECTOR

<MOVE 025A 3GET THE FIRST COMPONENT

FMP @ sSQUARE IT
MOVE 1,5A+1 3GET THE SECOND COMPONENT

FMP 151 sSQUARE IT

FAD 1 sADD THE SQUARE OF THE SECOND

MOVE 12A+2 3GET THE THIRD COMPONENT

FMP 11 sSQUARE IT

FAD 1 3ADD THE SQUARE OF THE THIRD

JSR FSQRT 3USE THE FLOATING SQUARE ROOT ROUTINE

MOVEM B sSTORE THE LENGTH>

234

3.2 MACRO CALLS

A macro may be called by any statement containing the macro name followed by a list of arguments.

The arguments are separated by commas and may be enclosed with parentheses. If parentheses are used

(indicated by an open parenthesis following the macro name), the argument string is ended by a closed

parenthesis. If there are n dummy arguments in the macro definition, all arguments beyond the first n,

if any, are ignored. If parentheses are omitted, the argument string ends when all the dummy arguments

of the macro definitions have been ‘assigned, or when a carriage return or semicolon delimits an argu-

ment.

The arguments must be written in the order in which they are to be substituted for dummy arguments.

That is, the first argument is substituted for each appearance of the first dummy argument; the second

argument is substituted for each appearance of the second dummy argument, etc. For example the

appearance of the statement:

VMAG VECTs LENGTH

in-a program generates the instruction sequence defined above for the macro VMAG. The character

string VECT is substituted for each occurrence in the coding of the dummy argument A, and the

character string LENGTH is substituted for the single occurrence of B in the coding.

Statements with a macro call may have label fields. The value of the label is the location of the first

instruction generated.

CAUTION

MACRO arguments are terminated only by COMMA,
CARRIAGE RETURN, SEMICOLON or CLOSE PAREN-
THESIS (when the entire argument string was started
with an open parenthesis). These characters may not be
included in arguments unless < >are used. Specifically,
spaces or tabs do not terminate arguments; they will be
treated as part of the argument itself.

3.3. MACRO FORMAT

a. Arguments must be separated by commas. However, arguments may also contain commas.
For example:

DEFINE JEQ(A3B;C)
<MOVE [A]

CAMN B

JRST C>

3-2

235

If the data in location B is equal to A (a literal), the program jumps to C. If A is to be the in-
struction ADD2,X, the calling macro instruction would be written:

JEQ <ADD2sX>Bs INSTX

The angle brackets surrounding the argument are removed, and the proper coding is generated.

The general rule is: If an argument contains commas, semicolons, or any other argument de-
limiters, the argument must be enclosed in angle brackets.

b. A macro need not have arguments. The instruction:

DATAO PTPsPUNSBUF (4)

which causes the contents of PUNBUF, indexed by register 4, to be punched on paper tape, may

be generated by the macro:

DEF INE PUNCH
<DATAO PTP»>»PUNBUF (4) >

The calling macro instruction could be written:

PUNCH

PUNCH calls for the DATAO instruction contained in the body of the macro.

c. The macro name, followed by a list of arguments, may appear anywhere in a statement.

The string within the angle brackets of the macro definition exactly replaces the macro name

and argument string. For example:

DEFINE L(AsB)<3*<B-At1>>

gives an expression for the number of items in a table where three words are used to store each

item. A is the address of the first item, and B is the address of the last item. To load an index

register with the table length, the macro can be called as follows:

MOVE I X»LCFIRST»LAST)

3.4. CREATED SYMBOLS

When a macro is called, it is often convenient to generate symbols without explicitly stating them in the

call, for example, symbols for labels within the macro body. If it is not necessary to refer to these

labels from outside the macro, there is no reason to be concerned as to what the labels are. Neverthe-

less, different symbols must be used for the labels each time the macro is called. Created symbols are

used for this purpose.

3-3

236

Each time a macro that requires a created symbol is called, a symbol is generated and inserted into the

macro. These generated symbols are of the form ..hijk, that is, two decimal points followed by four

digits. The user is advised not to use symbols starting with two points. The first created symbol is

. 0001, the next is ..0002, etc.

If a dummy symbol in a definition statement is preceded by a percent sign (%), it is considered to be a

created symbol. When a macro is called, all missing arguments that are of the form %X are replaced

by created symbols. However, if there are sufficient arguments in the calling list that some of the ar-

guments are in a position to be assigned to the dymmy arguments of the form %X, the percent sign is

overruled and the stated argument is assigned in the normal manner.

Null arguments are not considered fo be the same as missing arguments. For example, suppose a macro

has been defined with the dummy string:

(A»ZB22C)

If the macro were called with the argument string:

'(OPD>) or OPD>>,

the second argument would be considered to have been declared as a null string. This would override

the % prefixed to the second dummy argument and would subsitute the null string for each appearance

of the second dummy argument in the statement. However, the third argument is missing. A label

would be created for each occurrence of %C. For example:

DEFINE TYPECA ZB)

<JSR TYPEOUT

JRST 2B
SIXBIT/A/

7B 3 >

This macro types the text string substituted for A on the console Teletype. TYPEOUT is an output rou-

tine. Labeling the location following the text is appropriate since A may be text of indefinite length.

A created symbol is appropriate for this label since the programmer would not normally reference this

location. This macro might be called by:

TYPE HELLO

which would result in typing HELLO when the assembled macro is executed. If the call had been:
”

3-4

237

TYPE HELLO»BX

the effect would be the same. However, BX would be substituted for %B, overruling the effect of the

percent sign.

3.5 CONCATENATION

The apostrophe character or single quote (') is defined as the concatenation operator and may

not be used otherwise inside a macro definition. (Outside a macro definition, it is ignored except as a

character in textual data.) A macro argument need not be a complete symbol. Rather, it may be a

string of characters which form a complete symbol when joined to characters already contained in the

macro definition. This joining, called concatenation, is performed by the assembler when the program-

mer writes an apostrophe between the strings to be so joined. As an example, the macro:

DEFINE JCA>B,C)

<JUMP'A BsC>

When called, the argument A is suffixed to JUMP to form a single symbol. If the call were:

J CLEs3sX+1)

the generated code would be:

JUMPLE 3+2X+1

The concatenation operator (') may be used in nested macros. However, the assembler removes the

operator when it performs concatenation in first level macros, but does not remove the operator during

\

concatenation in the second or deeper levels.
,)

3.6 INDEFINITE REPEAT

It is often convenient to be able to repeat a macro one or more times for a single call, each repetition

substituting successive arguments in the call statement for specified arguments in the macro. This may

be done by use of the indefinite repeat operator, IRP. The operator IRP is followed by a dummy argu-

ment, which may be enclosed in parentheses. This argument must also be contained in the DEFINE

statement's list. This argument is broken into subarguments. When the macro is called, the range of

the IRP is assembled once for each subargument, the successive subarguments being substituted for each

appearance of the dummy argument within the range of the IRP. For example, the single argument:

238

<ALPHA » BETA» GAMMA >

consists of the subarguments ALPHA, BETA, and GAMMA. The macro definition:

DEFINE DOEACH(CA)>;

<IRP A
<A>>

and the call:

DOEACH<ALPHAsRETA>GAMMA >

produce the following coding:

ALPHA

BETA

GAMMA

An opening angle bracket must follow the argument of the IRP statement to delimit the range of the IRP.

A closing angle bracket must terminate the range of the IRP. IRPC is like IRP except it takes only one

character at a time; each character is a complete argument. An example of a program that uses an IRPC

is given in Chapter 7, Figure 7-4.

It is sometimes desirable to stop processing an indefinite repeat depending on conditions given by the

assembler. This is done by the operator STOPI. When the STOPI is encountered, the macro processor

finishes expanding the range of the IRP for the present argument and terminates the repeat action. An

example:

DEFINE CONVERT (A)

<IRP A<IFE K-A>»<STOPI

CONV1 A>>>

Assume that the value of K is 3; then the call:

CONVERT <@5/1525354355657>

generates:

<IRP
IFE K-@><STOPI
CONV1 @>
IFE K-1.+<STOPI
CONV1 1>
IFE K-25<STOPI
CONV1 2>
IFE K-3,+<STOPI
CONV1 3>

3-6

239

i

The assembly condition is not met for the first three ergunene of the macro. Therefore, the STOPI code

is not encountered until the fourth argument, which is the number 3. When the condition is met, the

STOPI code is processed which prevents further scanning of the arguments. However, the action con-

tinues for the current argument and generates CONV 1 Byte. , a call for the macro CONV (defined

elsewhere) with an argument of 3.

3.7 NESTING AND REDEFINITION

Macros may be nested; that is, macros may be defined within other macros. For ease of discussion,

levels may be assigned to these nested macros. The outermost macros, i.e., those defined directly to

the macro processor, may be called first level macros. Macros defined within first level macros may be

called second level macros; macros defined within second level macros may be called third level

macros; etc.

At the beginning of processing, first level macros are known to the macro processor and may be called

in the normal manner. However, second and higher level macros are not yet defined. When a first

level macro containing second and higher level macros is called, all its second level macros become

defined to the processor. Thereafter, the level of definition is irrelevant, and macros may be called

in the normal manner. Of course, if these second level macros contain third’ level macros, the third

level macros are not defined until the second level macros containing them have been called.

When a macro of level n contains a macro of level nt+1, calling the macro results in generating the

body of the macro into the user's program in the normal manner until the DEFINE statement is encoun-

tered. The level n+] macro is then defined to the macro processor; it does not appear in the user's pro-

gram. When the definition is complete, the macro processor resumes generating the macro body into

the user's program until, or unless, the entire macro has been generated.

If a macro name which has been previously defined appears within another definition statement, the

macro is redefined, and the original definition is eliminated.

The first example of a macro calculation of the length of a vector may be rewritten to illustrate both

nesting and redefinition.

DEFINE VMAG (A>sB22C)

<DEFINE VMAG (D>E)

<JSP ese wVIE

EXP DsE>

VMAG (A>B)

3-7

240

JRST ZG
VL: HRRZ 25 (SJ)

MOVE (2)

FMP @

MOVE 151¢2)

FMP 151

FAD 1

MOVE 1,2¢2)

EMP Tod @

FAD 1

JSR FSORT
MOVEM @1 (SJ)

IRSitmee CS ID

20 3 >

The procedure to find the length of a vector has been written as a closed subroutine. It need only ap-

pear once in a user's program. , From then on it can be called as a subroutine by the JSP.instruction.

The first time the macro VMAG is called, the subroutine calling sequence is generated followed im-

mediately by the subroutine itself. Before generating the subroutine, the macro processor encounters

a DEFINE statement containing the name VMAG. This new macro is defined and takes the place of the

original macro VMAG. Henceforth, when VMAG is called, only the calling sequence is generated.

However, the original definition of VMAG is not removed until after the expansion is complete.

Another example of a nested macro is given in Chapter 7, Figure 7-2.

3.7.1 ASCII Interpretation

If the reverse slash (\\) is used as the first character in a macro call , the value of the following sym-

bol is converted to a 7-bit ASCII character in the current radix. If the call is

MAC \A

and if A=500 (in the current radix), this generates the three ASCII characters "500".

3-8

241

CHAPTER 4

ERROR DETECTION

MACRO-10 makes many error checks as it processes source language statements. If an apparent error is

detected, the assembler prints a single letter code in the left-hand margin of the program listing, on

the same line as the statement in question.

The programmer should examine each error indication to determine whether or not correction is required.

At the end of the listing, the assembler prints a total of errors found; this is printed even if no listing is

requested.

Each error code indicates a general class of errors. These errors, however, are all caused by illegal

usage of the MACRO-10 language, as described in the preceding three chapters of this manual.

TABLE 4-1
ERROR CODES

Error Code Meaning Explanation

A Argument error in pseudo-op This is a broad class of errors which may be
caused by an improper argument in a pseudo-op.

D Multiply-defined symbolic This statement contains a tag which refers to a

reference error multiply-defined symbol. It is assembled with
the first value defined.

a External symbol error Improper usage of an external symbo!. Example:

EXT: EXTERN TXT>BRT>EXT

EXT CANNOT BE BOTH AN EXTERNAL

AND INTERNAL SYMBOL.

L Literal error . A literal is improper. A literal must generate 1

to 18 words.

EXP CSIXBIT //1; NO CODE GENERATED.

4-]

242

TABLE 4-1 (Cont)

ERROR CODES

\

Error Code Meaning Explanation

M Multiply-defined symbol A symbol is defined more than once. The symbol
retains its first definition, and the error message
M is typed out during pass 1.

If this fype of error occurs during pass 2, it is a
phase error (see below).

If a symbol is first defined as a *-sign suffixed
tag, and later as a label, it retains the label
definition.

Examples:

A: ADD 33X35

A: MOVE »C3 M ERROR

A: ADD 32,X#3

X: MOVE »Cs X IS ASSIGNED THE CURRENT

VALUE OF THE LOCATION
COUNTER-

Multiple appearances of the TITLE pseudo-op
(which generates both a title line and program
name) are flagged as "M" (Multiple definition)
errors.

N Number error A number is improperly entered.

Examples:

1F13-.3338 (Exceeds range)
tD15BZ (Number must fol-

low B shift operator .)
But *D15B<Z> is legal if Z is de-

fined.

If a number contains meaningless letters or special
characters, a Q error is given.

0) Operation code undefined The operation field of this statement is undefined.

It is assembled with a numeric code of 0.

P Phase error A symbol is assigned a value as a label during

pass 2 different from that which it received during

pass 1. In general, the assembler should gener-
ate the same number of program locations in pass
1 and pass 2, and any discrepancy causes a

Error Code

u

243

TABLE 4-1 (Cont)
ERROR CODES

Meaning

Phase error (cont)

Questionable

Relocation error

Symbol format error

Undefined symbol

Value previously undefined

Explanation

phase error. For example, if an assembly condi-

tional, IF1, generates three instructions, a phase

error results unless another conditional, such as

IF2, generates three program locations during

pass 2.

This is a broad class of possible errors in which

the assembler finds ambiguous language .

Example:

ADD »TOTAL SUMs

SUM IS NOT NEEDED AND IS TREATED
AS A COMMENT.

LOC or RELOC are used improperly.

Example:

LOCAs WHERE A IS NOT DEF INED-

Usually caused by inclusion of illegal special
characters.

Example: SY?2M: ADD 3X3

A symbol is undefined.

A symbol used to control the assembler is unde-
fined prior to the point at which it is first used.
Causes error message in pass |.

Error messages during pass 1 consist of two lines. The most recently used label is printed on the first

line, followed by +n, where n is the (decimal) number of lines of coding between the labeled statement

and the statement containing an error. The second line of the error message is a copy of the erroneous

line of coding, with a letter code in the left-hand margin to indicate the typé of error. If more than

one type of error occurs on the same line, more than one letter is printed; but if the same type of error

occurs more than once in the same line, a single letter code is printed.

During pass 2, as the listing is printed out, lines containing errors are marked by letter codes, anda

total of errors found is printed at the end of the listing.

4-3

4.1 TELETYPE ERROR MESSAGES

244

The following error messages may be typed out on the Teletype by MACRO. Those preceded by a

question mark are treated as fatal errors when running under Batch Processor (the run is terminated by

BATCH.)

END OF PASS 1

LOAD THE NEXT FILE

?COMMAND ERROR

?NO END STATEMENT

ENCOUNTERED ON INPUT FILE

2CANNOT ENTER FILE XXX

?CANNOT FIND FILE XXX

?INSUFFICIENT CORE

?-PDP OVERFLOWs TRY/P

“2 INPUT ERROR ON DEVICE DEV

?DATA ERROR ON DEVICE DEV

?DEV NOT AVAILABLE

?THERE ARE N ERRORS

Manual loading is required to start pass 2 when the
input is paper tape or cards.

Manual loading is required if the next file is on
paper tape or cards.

Error in MACRO command string.

PASS 1 cannot be completed because the source pro-
gram is not terminated by an END statement.

This is the total number of errors detected by
MACRO during assembly. These are the errors
marked by letter codes on the listing. Under BATCH,

if there are one or more errors the run is terminated.

245

CHAPTER 5

RELOCATION

The MACRO-10 assembler will create a relocatable object program. This program may be loaded into

any part of memory as a function of what has been previously loaded. To accomplish this, the address

field of some instructions must have a relocation constant added to it. This relocation constant, added

at load time by the PDP-10 Loader, equals the difference between the memory location an instruction

is actually loaded into and the location it is assembled into. If a program is loaded into cells begin-

ning at location 1400., the relocation constant k would be 1400,.

Not all instructions must be modified by the relocation constant. Consider the two instructions:

MOVEI 253--3

MOVETI 251

The first is used in address manipulation and must be modified; the second probably should not. To ac-

complish the relocation, the actual expression forming an address is evaluated and marked for modifi-

cation by the Linking Loader. Integer elements are absolute and not modified. Point elements (.) are

relocatable and are always modified.* Symbolic elements may be either absolute or relocatable. Ifa

symbol is defined by a direct assignment statement, it may be relocatable or absolute depending on the

expression following the equal sign (=). If a symbol is defined as a macro, it is replaced by the string

and the string itself is evaluated. If it is defined as a label or a variable (#), it is relocatable. *

Finally, references to literals are relocatable. *

To evaluate the relocatability of an expression, consider what happens at load time. A constant, k,

must be added to each relocatable element and the expression evaluated. Consider the expression:

KX - At2*B-34C + D

*Except under the LOC code or a PHASE code which specifies absolute addressing.

5-1

246

where A,B,C, and D are relocatable. Assume k is the relocation constant. Adding this to each reloca-

table term we get:

Xp = (At+K)+2*(B+K)-3*(C+K)+(D+K)

This expression may be rearranged to separate the ks, yielding:

Xp = At+2*B-3%C+D+K
/

This expression is suitable for relocation since it involves the addition of a single k. In general, if the

expression can be rearranged to result in the addition of

D*K The expression is legal and fixed.
1*K The expression is legal and relocatable.
N*K Where n is any positive or negative integer other than 0 or 1,

the expression is illegal.

Finally, if the expression involves k to any power other than 1, the expression is illegal. This leads to

the following conventions:

Only two values of relocatability for a complete expression are allowed, k and 0.

top {2} An element may not be divided by a relocatable element.

c. Two relocatable elements may not be multiplied together.

d. Relocatable elements may not be combined by the Boolean operators.

If any of these rules are broken, the expression is illegal and the assembled code is flagged.

If A,C, and B are relocatable symbols, then:

A+B-C is relocatable

A-C is Fixed

A+2 is relocatable =

2*A-B js relocatable

2eA-B is illegal

A storage word may be relocatable in the left half as well as the right half. For example:

XWD A>B

247

CHAPTER 6

ASSEMBLY OUTPUT

There are two MACRO-10 outputs, a binary program and a program listing. The listing is controlled by

the listing control pseudo-ops, which were described in Chapter 2.

6.1 ASSEMBLY LISTING

All MACRO-10 programs begin with an implicit LIST statement. From left to right, the columns on a

listing page contain:

a. The 6-digit address of each storage word in the binary program. These are normally sequen-
tial location counter assignments. In the case of a block statement, only the address of the first
word allocated is listed.

b. The assembled instruction and data words, shown in two columns for easier reading, the 6-
digit left half-word and the 6-digit right half-word. An apostrophe following either half-word
indicates that the word is relocatable. ©

c. The source program statement, as written by the programmer, followed by comments, if any.

If an error is detected during assembly of a statement, an error code is printed on that statement's line,

near the left edge of the page. If multiple errors of the same type occur in a particular statement, the

error code is printed only once; but if several errors, each of a different type, occur in a statement,

an error code is printed for each error. The total number of errors is printed at the end of the listing.

The program break is also printed at the end of the listing. This is the highest relocatable location

assembled, plus one. This is the first location available for the next program or for patching.

6.2 BINARY PROGRAM OUTPUT

The assembler produces binary program output in four formats. The choice depends on whether the pro- :

gram is relocatable or absolute, and on the loading procedure to be used to load the program for execu-

tion.

6-1

248

6.2.1 Relocatable Binary Programs - LINK Format

Most binary programs are output in LINK format. Like the RELOC statement, the LINK format output is

implicit and is automatically produced for all relocatable MACRO-10 programs unless another format

(RIM, RIM10, RIM10B) is explicitly requested. The LINK format is the only format that may be used

with the Linking Loader.

The Linking Loader loads subprograms into memory, properly relocating each one and adjusting addresses

to compensate for the relocation. It also links external and internal symbols to provide communication

between independently assembled subprograms. Finally, the Linking Loader loads subroutines in

library search mode.

Data for the Linking Loader is formatted in blocks. All blocks have an identical format. The first word

of a LINK block consists of two halves. The left half is a code for the block type, and the right half

is a count of the number of data words in the block. The data words are grouped in sub-blocks of 18

items. Each 18-word sub-block is preceded by a relocation word. This relocation word consists of

18 2-bit bytes. Each byte corresponds to one word in the sub-block, and contains relocation informa-

tion regarding that word.

If the byte value is:

0 no relocation occurs

1 the right half is relocated

the left half is relocated

both halves are relocated

These relocation words are not included in the count; they always appear before each sub-block of 18
~~ e .

words or less to insure proper relocation.

All relocatable programs may be stored in LINK format, including programs on paper tape, DECtape,

magnetic tape, punched cards, and disks. This format is totally independent of logical divisions in the

input medium. It is also independent of the block type.

6-2

249

6.2.1.1 LINK Formats for the Block Types

Block Type 1 Relocatable or Absolute Programs and Data

WORD 1 _ The location of the first data word in the block
WORD 2 A contiguous block of program or data words

WORD N (N must be less than 2000,000 octal)

Block Type 2 Symbols

Consists of word pairs

1ST WORD Bits 0-3 code bits
1ST WORD Bits 4-35 radix 50 representation of symbol

(see below)

ND WORD Data (value or pointer)

CODE @4: Global (internal) definition

2ND WORD Bits 0-35 value of symbol
CODE 10: Local definition

OS Bits 0-35 value of symbol

CODE 69: Chained global requests:
2ND WORD Bits 0-17 = 0
2ND WORD Bits 18-35 pointer to first word of chain requiring

definition (see Loader Manual)

Global symbol additive request: (see Loader Manual)
CODE 60: é BitO=1
2ND WORD © BAG
BIT 1 Subtract value before addition

BIT 2 * Swap halves before addition

BIT 3 Rotate left 5 before addition
Bune 2) Replace left half with result in storage

BIT 10 Replace right half with result in storage

ae Replace index field with result in storage

snag ee Replace accumulator field with result in storage

Pointer to word requiring addition

Block Type 3 Load Into High Segment

When block type 3 is present in a relocatable binary program, the Loader loads the program into the high

segment if the system has re-entrant (two-segment) capability. When used, block type 3 appears imme-

diately after any entry blocks (type 4). This block type transmits no additional data.

Block Type 4 Entry Block

This block contains a list of radix 50 symbols, each of which may contain a 0 or 1 in the high-order

code bit. Each represents a series of logical AND conditions. If all the globals in any series are re-

quested, the following program is loaded. Otherwise, all input is ignored until the next end block.

This block must be the first block in a program.

250

Block Type 5 End Block

This is the last block ina program. It contains one word which is the program break, that is, the loca-

tion of the first free register above the program. (Note: This word is relocatable.) It is the relocation

constant for the following program loaded.

Block Type 6 Name Block

The first word of this block is the program name (RADIX 50). It must appear before any type 2 blocks.

The second word, if it appears, defines the length of common.

Block Type 7 Starting Address

The first word of this block is the starting address of the program. The starting address for a relocatable

program may be relocated by means of the relocation bits.

Block Type 10 Internal Request

Each data word is one request. The left half is the pointer to the program. The right half is the value.

Either quantity may be relocatable.

6.2.2 Absolute Binary Programs

Three output formats are available for absolute (non-relocatable) binary programs. These are requested

by the RIM, RIM10 and RIMIOB statements.

6.2.2.1 RIMIOB Format - If a program is assembled into absolute locations (not relocatable), a

RIM10B statement following the LOC statement at the beginning of the source program causes the as-

sembler to write out the object program in TIMIOB format. This format is designed for use with the

PDP-10 hardware readin feature.

The program is punched out during pass 2, starting at the location specified in the LOC statement. If

the first two statements in the program are:

LOC 1000)
RIM1OB)

the assembler assembles the program with absolute addresses starting at 1000, and punches out the pro-

gram in RIM1OB format, also starting at location 1000. The programmer may reset the location counter

during assembly of his program, but only one RIMIOB statement is needed to punch out the entire pro-

gram.

251

In RIMIOB format, (see Figures 6-1 and 6-2) the assembler punches out the RIM10B Loader, (Figure 6-2)

followed by the program in 17-word (or less) data blocks, each block separated by blank tape. The

assembler inserts an I/O transfer word (IOWD) preceding each data block, and also inserts a 36-bit

checksum following each data block as shown in Figure 6-1. The word count in the IOWD includes

only the data words in the block, and the checksum is the simple 36-bit added checksum of the IOWD

and the data words.

Data blocks may contain less than 17 words. If the assembler assigns a non-consecutive location, the

current data block is terminated, and an IOWD containing the next location is inserted, starting a new

data block.

The transfer block consists of two words. The first word of the transfer block is an instruction obtained

from the END statement (See Section 6.2.2.4.) and is executed when the transfer block is read. The
}

second is a dummy word to stop the reader. /

6.2.2.2 RIMI10 Format - Binary programs in RIM10 format are absolute, unblocked, and not check-

summed. When the RIMI10 statement follows a LOC statement in a program, the assembler punches out

each storage word in the object program, starting at the absolute address specified in the LOC state-

ment.

In order to use the Read-in-Mode switch with format, the programmer must begin with the statement:

IOWD NsFIRST)

where n is the length of the program including the transfer instruction at the end, and FIRST is the first

memory location to be occupied. The last location must be a transfer instruction to begin the program,

such as:

JRST 45G0)

For example, if a program with RIM1O output has its first location at START and its last location at

FINISH, the programmer may write:

IOWD FINISH-START+1>START 2

252

NOTE

In cases where the location counter is increased but
no binary output occurs (such as with BLOCK, LOC n,
and LIT pseudo-ops), MACRO inserts a zero word into
the binary output file for each location skipped by the
location counter.

6.2.2.3 RIM Format - This format, which is primarily used in PDP-6 systems, consists of a series of

‘paired words. The first word of each pair is a paper-tape read instruction giving the core memory ad-

dress of the second word. The second word is the data word.

DATAI PTR»LOC

DATA WORD

The last pair of words is a transfer block. The first word is an instruction obtained from the END state-

ment (See Section 6.2.2.4) and is executed when the transfer block is read. The second word is a

dummy word to stop the reader.

The loader that reads this format is:

LOC 20

CONO PTR» 6@
A: CONSO PTR»21@

Von = ves!

DATAI PTR>»B

CONSO PTR;19

URS gical

Bs 14)

JRST A

This loader is normally toggled into memory and started at location 20.

6.2.2.4 END Statements - When the programmer wants output in either RIM or RIM10B format, he may

insert an instruction or starting address as the first word in the two-word transfer block by writing the

instruction or address as an argument to the END statement. The second word of the transfer block is

zero. In RIMIO assemblies, this argument is ignored.

If bits 0 through 8 of the instruction are zero, MACRO will insert the instruction JRST 4, 0, causing a

halt when executed. The END statements

END SA } OR END JRST SAD

6-6

253

will start automatically at address SA.

Some other examples:

Ist Transfer Block Word

END XCT@1234

END Z4>5SA

END

RIM 198

LOADER

YUM
1OWD Xy, ADDR,

1st BLOCK
OF

PROGRAM DATA

| creer |

TL
LOWD Xp, ADDR,

nth BLocK
OF

PROGRAM DATA

Re cebe Cee el

MMU MW
JRST ot past stant

Figure 6-1

6-7

XCT@1234

JRST 45SA

JRST 450

BLANK TAPE (6 FRAMES)

X1$ 17108 NUMBER OF WORDS IN
1st DATA BLOCK

ADDR\=ADDRESS OF
tst DATA BLOCK

1OwWD IS INCLUDED
IN CHECKSUM

BLANK TAPE (6 FRAMES)

BLANK TAPE (6 FRAMES)

TRANSFER BLOCK

10-0060

General RIM10B Format

254

SHER

STi:

RD:

A:

TBE1 s

TBL2

ADR :

CKSM=ADR+1

XWD -1650
CONO PTR»60
HRRI A»sRD+1
CONSO PTR>10
JRST

DATAI PTR» @TBL1-RD+1(¢A)

XCT TBL1-RBD+1 (6A)

xCT TBL2-RD+1 (A)

SOJA A;

CAME CKSMsADR

ADD CKSMs1 CADR)

SKIPL CKSMsADR

JRST 45ST

AOBJN ADR>RD

JRST ST1l

Figure 6-2 RIMI0B Loader

255

CHAPTER 7

PROGRAMMING EXAMPLES

A MACRO-10 routine for calculating the logarithm of a complex argument is shown in Figure 7-1. The

routine begins with an ENTRY statement, identifying this library routine as CLOG (Complex Logarithm

Function), and uses three external routines, ALOG, ATAN2 and CABS.

The second example, shown in Figure 7-2, contains a nested macro, SBL, and uses conditional assembly

statements, which cause PIXTART and PIXOPT to be generated as either internal or external symbols,

depending on the value of SBLSW. In the example, both are externals.

The third example, Figure 7-3, shows two ways of writing a byte unpacking subroutine. Both UNPACK

and UNPAX use literals to set up pointer words, and load the bytes in accumulators 0 and 1. The call-

ing sequence for UNPACK actually contains the bytes to be unpacked. For UNPAX, the calling

sequence contains the address of the bytes, thus, UNPAX must refer to them indirectly.

The fourth example, Figure 7-4, demonstrates the use of the IRPC (indefinite repeat character) pseudo-

op. A macro call, HEX, is made with the arguments ANS, a symbol name, and F, a hexadecimal

number. The processing of the macro causes the symbol, ANS, to be assigned the converted value of

the hexadecimal number, F. In this example the hexadecimal "digits", listed in ascending order, are:

0,1,2,3,4,5,6,7,8,9,A,B,C,D,E and F.

NOTE

Each complete program (see Figures 7-1 and 7-4) must

have an END statement. All other statements may be
used at the programmer's discretion; however, a TITLE

statement is recommended for documentation and de-

bugging purposes.

7-1

CLOG

000000
000001
n0en02

000003
000004
000005
900006
000007
000010
000011
000012
000013
On0014
OQ0A1S
900016

THERE ARE NO ER

PROGRAM BREAK I

CLOG MACROX3H
SYMBOL T

SK CORE USED

MACROX>

000000

201436
200450
200410
266700
900000
266700
000000
250000
266700
gon0aa
na0nna
200040
200000
267716

RORS

S 9An017

ABLE

000000
900006'
000011"
000001
BA0010
900004"
900000'
900011
O@0016

256

3THIS ROUTINE CALCULATES THE LOGARITHM OF A COMPLEX ARGUMENT

H 13:46 7-APR-67 PAGE

TITLE CLOG
SUBTTL APRIL~71967

|
3COMPLEX LOGARITHM FUNCTION

3 Z = X+1*Y WITH THE FOLLOWING A

3LOG(Z) = LOGCABSF(Z)) + 1*THETA
$WHERE ABSF(Z) = SORTCX12 + Yr)
3AND THETA IS THE COMPLEX ANGLE

3THE ROUTINE IS CALLED IN THE FO
; JSA Q-CLOG
3 EXP ARG
3THE REAL PART OF THE ANSWER. 1S
3AND THE IMAGINARY PART IS RETUR

CLOG
ALOGsATAN2 CARS

oo000
ooanar
990010
000011
00016

Q84000 CLOG: @
enonen MOVEI C» @(1)
009001 MOVE Ds1(C)
990000 MOVE C.¢C)
00000 JSA 1,CABS
ooo01n EXP G
anaes JSA Q>AL0G
900000 EXP A
000010 EXCH AsC |
o00000 JSA Q,ATAN2
000011 EXP D |
oonane EXP A
oooano MOVE BsA .
900010 MOVE AsC
gagan1 JRA A21(Q)

: END

13:46 7-APR-67 PAGE 2

EXT |
EXT f |

EXT
INT

LGORITHM

ATANCY/X)

LLOWING MANNER:

RETURNED IN ACCUMULATOR A
NED IN ACCUMULATOR B

SENTRY TO COMPLEX LOG ROUTINE
$GET ADDRESS OF COMPLEX ARGUMENT
$GET IMAGINARY PART OF ARGUMENT
3GET REAL PART OF ARGUMENT
$CALCULATE MAGNITUDE OF Z
3ADDRESS OF COMPLEX ARGUMENT
3CALCULATE LOG(ABSF(Z))
3ADDRESS FOR LOG ROUTINE
3SWAP ANSWER WITH REAL PART
$CALCULATE ANGLE AS ATANCY/X)
$ADDRESS OF Y
3ADDRESS OF C
$PUT THETA IN IMAGINARY PART
$RESTORE REAL PART
SEXIT

Figure 7-1 Sample Program, oe

7-2

257

LALL
@20001 PSBLSW=1

DEFINE SBLR (A)<IRP A»<SBL A>>
DEFINE SBL (A)< —

IFE SBLSW-PSBLSW»s<INTERN: A>
IFN SBLSW-PSBLSWs <EXTERN A>>

020003 SBLSW=3
SBLR <PIXSTART»PIXOPT>? IRP
SBL PIXSTARTt

IFE SBLSW-PSBLSW,<INTERN PIXSTART>
IFN SBLSW-PSBLSW.s <EXTERN PIXSTART>t

SBL PIXOPTt
IFE SBLSW-PSBLSW.<INTERN PIXOPT>
IFN SBLSW-PSBLSW>s <EXTERN PIXOPT>?t

T

3GENERATES PIXSTART AND PIXOPT AS EXTERNALS

Figure 7-2 Example of Nested Macro

1

3

10

JSP 17sUNPACK

BYTE (€3)AC15)B(18)C

UNPACK: LDB @,CPOINT 359(17)52] sPICK UP A

LDB 1/CPOINT 1559¢17)517] sPICK UP B

HRRZ 220017) sPICK: UP C

ORES) tee EC Si/ 9) 3RETURN

JSP 17sUNPAX

EXP CBYTE (3)AC15)B(18)C]

UNPAX: LDB @»CPOINT 32@0(17)>52] 3PICK UP A

LDB 1s5CPOINT 155@0¢€17)>5 17] sPICK UP B

HRRZ 23@0(17) sPICK UP C

JIRST -1Lei7)

Figure 7-3 Two Byte Unpacking Subroutines

- 258

“MAIN MACRO-V34 15:23 2@4-MAR-69 PAGE 1

LALL

DEFINE HEX (NsX)<
N=
IRPC.X><IFGE "X'=-"A"s <N=N*1D1 64"X"-"A"41D10>

IFLE ''X™="9"", <N=N&TD1 64" X"-" OM" >>>

HEX ANS>Ft
900080 ANS=0

IRPC
000017 IFGE "F"-"A", <ANS=ANS*1D164"F"-"A'"41D1Q9>

IFLE "'F'-"'9'', <ANS=ANS*1D1 64"F'"-"Q"">
Tt

HEX ANS.1@t
028009 ANS=0

IRPC

IFGE "1"'-""A"'; <ANS=ANS*1D164"1'"-"A"+1D1Q0>

OBOOO1 IFLE “1"=-''9"'; <ANS=ANS *1D16+"1'"-"Q">

IF GE "O"-""A™ 5 <ANS=ANS *tD164"O"-"A"+1D10>

OOOB20 IFLE "Q"-"9'!, <ANS=ANS**D1 6+"QO"'-"Q"'>
t

HEX ANS» 9ABCDEF t

DOBBOHOD ANS=0

IRPC

IFGE "9"'-"A'™; <ANS=ANS*1D16+"9"-"A''+tD1Q>

060011 IFLE "9" =-""9'; <ANS=ANS*1D1 64" 9"=-"Q'"'>

000232 IFGE "A'"=-"A'"'; <ANS=ANS*tD1 6+"A"-"A"'+1D1Q>

IFLE "A'-"'9", <ANS=ANS*1D16+"A"="Q''>
084653 IFGE "B'-"A''s <ANS=ANS*1D16+"B"-"A'"+tD10>

IFLE "B''-"'9'', <ANS=ANS*1D164"B"-"Q"'>
115274 IFGE "C"-"A'', <ANS=ANS*¥1D164"C"-"A"+1D1Q0>

IFLE "Ct'-"'9'', <ANS=ANS *1D1 6"C"'-""Q"'>
OB00GB2 325715 IFGE "D''-"A"s <ANS=ANS*1D16+"D''-"A"+1D10>

: IFLE "D'"=-"9"; <ANS=ANS*1tD16+"D"-"Q"'>

OBOBAE 536336 IFGE "E"=-"A"; <ANS=ANS*1D16+"E"-"A'+1D1Q>

IFLE "E'"-''9'", <ANS=ANS*1D164"E'"=-"Q"'>
001152 T46757 IFGE "F'"-"A'"; <ANS=ANS*1D1 64+"F"-"A''+tD1Q0>

IFLE "F'=-"9", <ANS=ANS*¥1tD16+"F'-"Q"'>

END

NO ERRORS DETECTED

PROGRAM BREAK IS @80000

Figure 7-4 _IRPC Example

APPENDIX A

OP CODES, PSEUDO-OPS, AND

MONITOR I/O COMMANDS

This appendix contains a complete list of assembler defined operators including

machine instruction mnemonic codes, assembler pseudo-ops, Monitor programmed

operators, and FORTRAN programmed operators. These programmed operators, or

user utilized operation codes are called UUO's in the list.

The notes are used to specify which pseudo-ops generate data, and which do not.

Pseudo-ops which generate data may be used within literals, and in address

operand fields.

The initial values given by MACRO-10 to I/O instructions and FORTRAN UUO's for

which the octal op code is not shown, are also given in the notes. These may

be useful in checking listings.

ASSEMBLER PSEUDO-OPS AND MONITOR COMMANDS

ASCII, pseudo-op, generates data

ASCIZ, pseudo-op, generates data
BLOCK, pseudo-op, no data generated
BYTE, pseudo-op, generates data
CALL, $48, Monitor UUO

CALLI, $47, Monitor UUO

CLOSE, $78, Monitor UUO

DATA., 28, FORTRAN UUO

DEC, pseudo-op, generates data
DEC., §33, FORTRAN UUO
DEFINE, pseudo-op, no data generated
DEPHASE, pseudo-op, no data generated

ENC., $34, FORTRAN UUO

END, pseudo-op, no data generated
ENTER, $77, Monitor UUO
ENTRY, pseudo-op, no data generated
EXP, pseudo-op, generates data

EXTERN, pseudo-op, no data generated
FIN.,; #21, FORTRAN UUO

GETSTS, $62, Monitor UUO

HISEG, pseudo-op, no data generated

IFl, conditional pseudo-op
IF2, conditional pseudo-op
IFB, conditional pseudo-op
IFDEF, conditional pseudo-op
IFDIF, conditional pseudo-op
IFE, conditional pseudo-op
IFG, conditional pseudo-op
IFGE, conditional pseudo-op

IFIDN, conditional pseudo-op
IFL, conditional pseudo-op
IFLE, conditional pseudo-op
IFN, conditional pseudo-op
IFNB, conditional pseudo-op
IFNDEF, conditional pseudo-op
IN, $56, Monitor UUO
IN., 916, FORTRAN UUO

INBUF, #64, Monitor UUO

INF., $26, FORTRAN UUO

INIT, $41, Monitor UUO
INPUT, $66, Monitor UUO
INTERN, pseudo-op, no data generated
IOWD, pseudo-op, generates data
IRP, pseudo-op, no data generated
IRPC, pseudo-op, no data generated
LALL, pseudo-op, no data generated
LIST, pseudo-op, no data generated
LIT, pseudo-op, no data generated
LOC, pseudo-op, no data generated
LOOKUP, #76, Monitor UUO
MLOFF, pseudo-op, no data generated
MLON, pseudo-op, no data generated

MTAPE, #72, Monitor UUO

MTOP., $24, FORTRAN UUO

NLI., 931, FORTRAN UUO

NLO., 932, FORTRAN UUO

NOSYM, pseudo-op, no data generated
OCT, pseudo-op, generates data
OPDEF, pseudo-op, no data generated

OPEN, $58, Monitor UUO
OUT, £57, Monitor UUO
OUT., $17, FORTRAN UUO

OUTBUF, $65, Monitor UUO

OUTF., $27, FORTRAN UUO

OUTPUT, $67, Monitor UUO
PAGE, pseudo-op, no data generated
PASS2, pseudo-op, no data generated
PHASE, pseudo-op, no data generated
POINT, pseudo-op, generates data
PRINTX, pseudo-op, no data generated

PURGE, pseudo-op, no data generated
RADIX, pseudo-op, no data generated
RADIX5#{, pseudo-op, generates data
RELEAS, 71, Monitor UUO

RELOC, pseudo-op, no data generated
REMARK, pseudo-op, no data generated

RENAME, 955, Monitor UUO

REPEAT, pseudo-op, no data generated
RERED., $38, FORTRAN UUO

RESET., $15, FORTRAN UUO

RIM, pseudo-op, no data generated
RIM1#, pseudo-op, no data generated
RIM19B, pseudo-op, no data generated

RTB., $22, FORTRAN UUO

SETSTS, $68, Monitor UUO

SIXBIT, pseudo-op, generates data

SLIST., §25, FORTRAN UUO

SQUOZE, same as RADIX5§#

STATO, $61, Monitor UUO

STATUS, #62, Monitor UUO

STATZ, $63, Monitor UUO
STOPI, pseudo-op, no data generated

SUBTTL, pseudo-op, no data generated

SYN, pseudo-op, no data generated
TAPE, pseudo-op, no data generated
TITLE, pseudo-op, no data generated
TTCALL, $51, Monitor UUO

UGETF, %73, Monitor UUO
UJEN, 188, Monitor UUO

USETI, #74, Monitor UUO

USETO, $75, Monitor UUO
VAR, pseudo-op, generates data
WTB., $23, FORTRAN UUO

XALL, pseudo-op, no data generated

XLIST, pseudo-op, no data generated

XWD, pseudo-op, generates data
Z, pseudo-op, generates data

ADD
ADDB

ADDI
ADDM
AND

ANDB

ANDCA
ANDCAB
ANDCATI

ANDCAM

ANDCB
ANDCBB

ANDCBI

ANDCBM
ANDCM

ANDCMB
ANDCMI
ANDCMM
ANDI

ANDM

AOBJN
AOBJP

AOJ
AOJA

AOQJE

AOJG
.AOJGE
AOJL
AOJLE

AOUN

AOS
AOSA

AOSE

AOSG
AOSGE

AOSL

AOSLE
AOSN

ASH

ASHC

BLKI

BLKO
BLT
CAI
CAIA

CAIE
CAIG
CAIGE

CAMGE
CAML

CAMLE
CAMN
CLEAR

CLEARB

CLEARI
CLEARM
CONTI

CONO

CONSO

CONSZ

DATAT

DATAO
DFN

DIV

DIVB
DIVI
DIVM
DPB

EQV
EQVB

EQVI

EQVM
EXCH

FAD
FADB
FADL
FADM

FADR

FADRB

FADRI

FADRM

FDV
FDVB

FDVL
FDVM
FDVR

FDVRB

FDVRI

FDVRM
FMP
FMPB
FMPL
FMPM

FMPR

FMPRB
FMPRI

FMPRM
FSB

FSBB

FSBL
FSBM

FSBR
FSBRB

SiS
pepe
313
316
400

403
401
402
7-24
7-20

7-34
71=30
7-04
7-14
Se

234
237
235
236
137

444
447
445
446
250

140
143
141
142
144

147
145
146
170
173

171
in
174
177
175

176
160
163
161
162

164
167
165
166
150

153
151
152
154
157

260

MACHINE MNEMONICS AND OCTAL CODES

155
156
132
254-4,
500

530

Seth
532
3)8)3}
501

502
520
yak
522
523

503
510
Sydbal
512
513

544
574
SLD
576
577

545
546
564
565
566

567
547
554
Sys H)
556

Syv/
504
534
535
536

333}7/
505
506
524
525

526
Det
507
514
515

516
Sh
540
570
571

HRREM 572
HRRES 573

HRRI 541
HRRM 542
HRRO 560

HRROI 561

HRROM 562

HRROS 563

HRRS = 543
HRRZ 550

HRRZI 551

HRRZM 552

HRRZS 553

IBP 133
IDIV 230

IDIVB 233

DEVE | 237!

IDIVM 232
IDPB 136
ILDB 134

IMUL 220
IMULB 223

IMULI 221

IMULM 222

-IOR 434

IORB 437
TORI 435

IORM 436
JCRY 255-6,
JCRYf 255-4,

JCRY1 255-2,
JEN 254-12,
JFCL 255
JFFO 243
JFOV 255-1,

gov 255-10,
JRA 267
JRST 254
JRSTF 254-2,
JSA 266

JSP 265
JSR 264
JUMP 320
JUMPA 324
JUMPE 322

JUMPG 327
JUMPGE 325
JUMPL 321
JUMPLE 323
JUMPN 326

LDB 135
LSH 242
LSHC 246
MOVE 200
MOVEI 201

MOVEM
MOVES
MOVM

MOVMI
MOVMM

MOVMS
MOVN
MOVNI

MOVNM

MOVNS

MOVS
MOVSI

MOVSM

MOVSS
MUL

MULB
MULI
MULM
OR |
ORB

ORCA
ORCAB

ORCAIL
ORCAM
ORCB

ORCBB
ORCBI
ORCBM |
ORCM ©
ORCMB

ORCMI

ORCMM

ORI

ORM
POP

POPJ

PUSH
PUSHJ |

ROT
ROTC

RSW

SETA
SETAB
SETAI
SETAM

SETCA
SETCAB
SETCAI
SETCAM
SETCM

SETCMB

SETCMI
SETCMM
SETM
SETMB

202

203

214
215

216.

217
210
zal
PAP

213

204
205
206
207
224

227
225
226
434
437

454
457
455
456
470

473
471
472
464
467

465
466
435
436
262

263

261
260
241
245

7-04
424
427
425
426

450
453
451
452
460

463
461
462
414
417

SETMI

SETMM
SETO
SETOB
SETOI

SETOM
SETZ

SETZB
SETZI

SETZM

SKIP
SKIPA

SKIPE

SKIPG
SKIPGE

SKIPL

SKIPLE
SKIPN
Sod

SOJA

SOJE

SOJG

SOJGE
SOJL
SOJLE

SOJN
SOs
SOSA
SOSE

SOSG

SOSGE

SOSL

SOSLE

SOSN
SUB

SUBB

SUBI
SUBM

TDC
TDCA

TDCE

TDCN
TDN

TDNA
TDNE

TDNN
TDO
TDOA

TDOE
TDON

TDZ

TDZA

TDZE
TDZN
TLC

415
416
474
477
475

476
400
403
401
402

330
334
332
337
335

S5H
333
336
360
364

362
367
365
361
363

366
370
374
372
S77

375
371
S18
376
274

Biz

275
276
650
654

652
656
610
614
612

616
670
674
672
676

630
634
632
626
641

TLCA

TLCE

TLCN
TLN

TLNA

TLNE

TLNN
TLO
TLOA

TLOE

TLON

TLZ

TLZA
TLZE
TLZN

TRC
TRCA
TRCE
TRCN

TRN

TRNA

TRNE

TRNN
TRO
TROA

TROE

TRON

TRZ
TRZA

TRZE

TRZN

TSC

TSCA

TSCE
TSCN

TSN

TSNA
TSNE

TSNN

TSO

TSOA
TSOE

TSON
TSZ
TSZA

TSZE

TSZN
UFA

XCT

XOR

XORB

XORI
XORM

645
643
647
601
605

603
607
661
665
663

667
621
625
623
627

640
644
642
646
600

604
602
606
660
664

662
666
620
624
622

626
651
655
653
657

611

615
613
617
671

675
673
677
631
635

633
637
130

256
430

433
431
432

ASCII

ASC IZ

BLOCK

BYTE

DEC

DEF INE

DEPH4SE

END

ENTRY

EXP

EXTERN

Conditional Assembly Statements

IF 1

IF2

IFB

IFDEF

IFDIF

IFE

IFG

IFGE

iF IDN

UB

IFLE

IFN

IF NB

261

APPENDIX B

SUMMARY OF PSEUDO-OPS

Seven-bit ASCII text.

Seven-bit ASCII test, with null character guaranteed at end.

Reserves block of storage cells.

Input bytes of length 1-36 bits.

Input decimal numbers.

defines macro

Terminates PHASE relocation mode.

Last statement of the program.

Enters subroutine library.

Input expressions.

Identifies external symbols.

Assemble if:

Encountered during pass 1

Encountered during pass 2

Blank

Defined

Different

Zero

Positive

Zero, or positive

Identical

Negative

Zero, or negative

Non-zero-

Not blank

Format Operator

ANDCAB

ANDCAI

ANDCAM

ANDCB

ANDCBB

ANDCBI

ANDCBM

ANDCM

ANDCMB

ANDCMI

ANDCMM

ANDI

ANDM

AOBJN

AOB JP

AOJ

AQJA

AQJE

AOJG

AOQJGE

AOJL

AOJLE

AOJN

AOS

AOSA

AOSE

‘AOSG

AOSGE

262

Page

A-2

Type Notes

263

Assemble variables suffixed witht

Stop expanded listing

Stop listing

Input two 18-bit half words

Input zero word

265

APPENDIX C

SUMMARY OF CHARACTER INTERPRETATIONS

The characters listed below have special meaning in the contexts indicated. These interpretations do

not apply when these characters appear in text strings, or in comments.

Character Meaning Example

: Colon. Immediately follows all LABEL: 25

labels.

a5 Semi-colon. Precedes all comments. sTHIS IS A COMMENT

E Point. Has current value of the loca- JRST -+5 JUMP FORWARD

tion counter. FIVE LOCATIONS

i 2 Comma. General operand or argument DEC 102526

delimiter EXP A + Bs C - D

Accumulator field delimiter MOVEI 15TAG

References accumulator 0. The MOVEI »TAG

comma is optional.

Delimits macro arguments. MACRO (AsB2C)

! Inclusive OR Logical Operators

AND

Multiplication

Division Arithmetic Operators

Add (+A outputs the value of A)

Subtract

Ist character In ASCII, ASCIZ and SIXBIT test ASCII/STRING/S

of text string strings, the first non-blank’ character ;

is the delimiter.

B Follows number to be shifted and pre- 7B2

cedes binary shift count.

E Exponent. Precedes decimal exponent F22-1E5 EXPONENT

in floating-point numbers. ° SS Se

)

266

Parentheses. Use to enclose

index fields.

Enclose the byte size in BYTE

statements.

Enclose the dummy argument
string in macro DEFINE state-
ments.

Angle’brackets. In an expression,
enclose a numeric quantity.

In conditional assembly statements
contain a single argument, and the
conditional coding.

In REPEAT statements, contain

coding to be repeated.

In macors, enclose the macro de-
finition

Square brackets. Delimits literals.

In OPDEF statement, contain

new operator.

Equal sign, direct assignment

Quotation marks enclose 7-bit
ASCII text, from one to five

characters.

Number sign. Defines a symbol
used asatag. Variable.

Apostrophe or single quote. Cate-
nation character, used only within
macro definitions.

Reverse slash. If used as the first

character in a macro call, the value
“of the following symbol is converted
to an ASCII symbol in the current
radix.

Control left arrow. Line continua-

tion.

Left arrow. N*M shifr n left (or
right) n times.

C-2

ADD AC1>5X (¢7)

MOVET As(SIXBIT/ABC/)

BYTE: €6)* 5° 8» 7

DEFINE MAC ¢CA>B3C)

<A-B+S@@0/C>

IFl>s <MOVE ACOs» TAX>

REREAT 33 <SUB 17s TAGS

DEFINE PUNCH

<DATAO PTPs PUN3UF (¢4)>

ADD S»sCTMOVEI 35TAX]

OPDEF CAL [MOVE]

SYM=6

SYM-A+B*D

"ABCDE"

ADD 35TAG#

DEFINE MAC CA3BsC)3

<JUMP'A Bs C>

MAC \ A IF A=5@0, THIS
GENERATES THREE 7-BIT
ASCII CHARACTERS.

ASCII/S00/

1900-3=1000

100+3=10

267

APPENDIX D

ASSEMBLER EVALUATION OF
STATEMENTS AND EXPRESSIONS

Order of Statement Evaluation:

The following table shows the order in which the assembler searches each statement field.

Label field Operator field Operand fields

Machine Operator
Assembler Operator

Assembler operator
Symbol

1. Symbol suffixed by colon. 1. Number 1. Number

If colon not found no 2. Macro/OPDEF 2. Symbol

label is present. 3. Machine operator 3. Macro/OPDEF

4. 4,
5). Die

Notice that a single symbol could be used as a label, an operator, or an operand, depending upon

where it is used.

The assembler checks the operator field for a number, first, and if found, assumes that no operator is

present. Likewise, if a symbol is not a macro, OPDEF, machine operator or assembler operator, the |

assembler will search the symbol table. If a defined symbol is found, no operator is present.

If a defined operator appears in an operand field, it must generate at least one word of data. State-

ments which do not generate data may not be used as part of operand expressions. If a statement used

in an operand expression generates more than one word of data, only the first word generated is mean-

ingful .

Order of Expression Evaluation: - (Unary operator)
Dia N@eatBy etiiey stile
B Shift, + Shift
Logical operators
Multiply/Divide
Add/, Subtract

At each level, operations are performed left to right.

D-1

e
e
s

e
e
 mI

269

APPENDIX E

TEXT CODES

QA™M™mUAF PSE

Opt es ee os 3 —-7-o SF QrOQA20 TA

SS ACEC Both LON

0 P
1 Q
2 R
3 S
4 T
5 U
6 Vv
7 W

- sO €CO

~—~" NM X
u

iN earl cra Nee Gt

*MACRO-10 also accepts five of the 32 control codes in 7-bit ASCII:

Horizontal Tab 011 Vertical Tab 013
liineskeed 012 Peer ised 014 Carriage Return 015

E-1

270

APPENDIX F

RADIX 50 REPRESENTATION

Radix 50g representation is used to condense 6 character sixbit symbols into 32 bits. Let each charac-

ter of a symbol be subscripted in descending order from left to right; that is, let the symbols be of the

form

Lgbslalgloly

If C,, denotes the 6-bit code for L,, the radix 50g representation is generated by the following:

CCC Oe Ree Mee ear Reece gy hae Ca aS E

where all numbers are octal.

The code numbers corresponding to the characters are:

Code (Octal) Characters

00 Null character
01-12 0-9
13-44 A-Z
45 :
46 $
47 %

271

APPENDIX G

SUMMARY OF RULES FOR
DEFINING AND CALLING MACROS

Assembler Interpretation:

MACRO-10 assembles macros by direct and immediate character substitutions. Whenever a macro call

is encountered, in any field, the character substitution is made, the characters are processed, and the

assembler continues its scan with the character following the delimiter of the last argument, except

when it is delimited by a semicolon. Macros can appear any number of times on a line.

Character handling:

a. Blanks: A macro symbol is delimited by a blank or tab and the character following the
delimiter is the start of the argument string, even if it is also a blank or a tab. Other than the
delimiter, blanks and tabs are treated as standard characters in the argument string.

b. Brackets: Angle brackets are only significant in the argument fields if the first character
of any field is a left angle bracket. In this case, no terminator or parenthesis tests are made
between it and its matching right bracket. The matching brackets are removed from the string
but the scan continues until a standard delimiter is found. —

c. Parentheses: Parentheses serve only to terminate an argument scan. They are only signifi-
cant when the first character following the blank or tab delimiter is a left parenthesis. In this
case, it is removed and if its matching right parenthesis is encountered prior to the normal
termination of the argument scan, it is removed and the scan discontinued.

d. Commas: When a comma is encountered in an argument scan, it acts as the delimiter of
the current argument. If it delimits the last argument, the character following it will be the

first scanned after the substitution is processed.

e. Semicolons: When a semicolon is encountered in an argument scan, the scan is discon-
tinued. If some arguments have not been satisfied, the remainder is considered to be null. It
is saved, however, and will be the first character scanned after the substitution is made, nor-

mally acting as a comment flag.

f. Carriage return: A carriage return, except when pre-empted by angle brackets (see b
above) will terminate the scan similar to the semicolon. This can be circumvented, if desired,

by the control left arrow key described elsewnere.

272

4

g. Back-slash: If the first character of any argument is a back-slash, it must be directly
followed by a numeric term. The value of the numeric term is broken down into a string of
ASCII digits of the current radix, just the reverse of a fixed-point number computation. The
value is considered to be a 36-bit positive number having a value of 0 to 777777 777777.
Leading zeros are suppressed except in the case of 0, in which case the result is one ASCII 0.
The ASCII string is substituted and the’scan continued in the normal manner (no implied term-
inafor).

The default listing mode is XALL, in which case the initial macro call and all lines within its range

which produce binary code are listed. The pseudo-op LALL will cause all lines to be listed. Substitu-

ted arguments are bracketed by t's by the assembler.

Concatenation:

The rules for concatenation are as follows:

a. Within the outer level of angle bracket nesting one apostrophe is removed from each string
of apostrophes. Thus, if a single apostrophe is encountered, it is removed; if a pair are en-
countered, one is removed and one left, etc.

b. Within nested brackets, all single apostrophes are passed on to the macro processor.

Outside of macro definitions, single apostrophes are ignored except when in text strings. Therefore,

MO"'VEI is the equivalent of MOVEI. In any event, apostrophes will appear on the listing.

273

APPENDIX H

OPERATING INSTRUCTIONS

Requirements

Monitor

Minimum Core: 6K

Additional Core: Automatically requests additional core assignments from the time-sharing

monitor as needed

Equipment: One input device (source program input); two output devices (machine
language program output and listing output). If the listing output is to
be used as input to the Cross Reference (CREF) program, it must be written

on either DECtape, magnetic tape, or disk.

Initialization

.R MACRO 2 Loads the Macro-10 Assembler into core.

x The Assembler is ready to receive a command.

274

Commands

General Command Format

objprog-dev:filename. ext ,list-dev:filename .ext*source-dev:filename.ext,
betters source-n 2

objprog-dev: The device on which the object program is to be
written.

MTAn: (magnetic tape)

DTAn: (DECtape)
PTP: (paper tape punch)
DSK: (disk)

list-dev: The device on which the assembly listing is to be
written.

MTAn (magnetic tape) Must be one of
DTAn: (DECtape) these if input
DSK: (disk) to CREF.*
LPT: (Line printer)
ENE (Teletype)
PTP: (paper tape punch)

source-dev: The device(s) from which the source-program input
to assembly is to be read.

MTAn: (magnetic tape)
CDR: (card reader)

DTAn: — (DECtape)
DSK: (disk)

PTR: (paper tape reader)
Tayi (Teletype)

If more than one file is to be assembled from a mag-

netic tape, card reader, or paper tape reader, dev:

is followed by a comma for each file beyond the
first.

Input via the Teletype is terminated by typing
CTRL Z (tZ) to enter pass 1; the entries must be

retyped at the beginning of pass 2.

filename.ext (DSK: and DTAn: only)

The filename and filename extension of the object
program file, the listing file, and the source file(s).

= The object program and listing devices are separated
from the source device by the left arrow symbol.

*If /C switch is given, but no list-dev: is specified, DSK:CREF.TMP is assumed.

Disk File Command Format

DSK:filename.ext [proj ,prog]

[proj ,prog]

275

Project-programmer number assigned to the disk area
to be searched for the source file(s) if other than the
user's project-programmer number.

The standard protection* is assigned to any disk file

specified as output.

NOTE

If object coding output is not desired (as in the case where
a program is being scanned for source language errors) ,

objprog-dev: is omitted. If an assembly listing is not de-

sired, list-dev: is omitted.

Examples

+R MACRO 2

+DTA3 :OBUPRG» LPT : «CDR: 2

END OF PASS 1)

THERE ARE 2 ERRORS?)
PROGRAM BREAK IS @@25372
5K CORE USED)

«TCD

Assemble one source program file from the card
reader; write the object code on DTA3 and call the
file OBJPRG; write the assembly listing on the line
printer.

The source program cards must be manually re-fed
for pass 2.

Number of source errors. Size of object program.
Core used by assembler.

Return to the Monitor.

SR SE RE FSET SE

.«R MACROD
AMTA3 $2MTA2?<MTA1 2392
THERE ARE NO ERRORS 2
PROGRAM BREAK IS 9035522
6K CORE USED)

%*>sLPT?©DTA1:FILE1sFILE22FILES2
THERE ARE NO ERRORS?
PROGRAM BREAK IS'‘@01927)
6K CORE USED 3

Assemble the next three source files located at the
present position of MTA1; write the object program
on MTA3; write the listing on MTA2 for later print-
ing.

}

Assemble the source files named FILE], FILE2, and

FILES from DTA1; produce no object coding; write
the listing on the line printer.

*Standard protection (055) designates that the owner is permitted to read or write, or change the

protection of, the file while others are permitted only to read the file.

JMP R3 Enter the

Ras AOS G2 source

Ge oe y statements

1Z)

END OF PASS 1)
JMP—R!)

MAIN MACRO 19:14

0) 7 QQOQOBG OBOBGGGH BHOGVH1'

Rs AOS G

00001 350809 900002"

G: JFCL?

*e©DSK:FILE1 *MACL14312])

THERE ARE NO ERRORS?
PROGRAM BREAK IS 900544)
SK CORE USED >

410)

+R MACRO

4MTA1 TTY:©TTY?

OQOOB2 255008. BOOBOO

END)

THERE IS 1 ERROR)

PROGRAM BREAK IS 900003)

«MAIN

e

R

MACRO 10:14

SYMBOL TABLED
@00002'>)
000001")

5K CORE USED?

#103

276

Scan the source program called FILE].MAC, loca-
ted in area 14, 12 on the disk, for source language
errors; produce no object coding or assembly listing;
print all error diagnostics on the Teletype.

Return to the Monitor.

Assemble a source file from the Teletype; write the
object code program on MTAI and print the assem-
bly listing on the Teletype.

Terminate input.

Re-enter Teletype input.

Re-enter the first statement.

20-DEC-67 PAGE1) Page heading.

JMP R> First assembled.

Re-enter secand.

metal 2 Second assembled.

Re-enter third.

G: JFCL) Third assembled.

Re-enter fourth.

END
Fourth assembled.

20-DEC-67 PAGE 2) Typeout of symbol table.

Return to the Monitor.

H-4

Switches : 277

Switches are used to specify such options as:

a. Magnetic tape control

b. Macro call expansion

c. Listing suppression

d. Pushdown list expansion

e. Cross-reference file output.

All switches are preceded by a slash (/) (or enclosed in parentheses) and usually occur prior to the left

arrow.

Table 3-1
Macro=10 Switch Options

Advance magnetic tape reel by one file.

Backspace magnetic tape reel by one file.

Produce listing file in a format acceptable as input to CREF; unless the
file is named, CREF.TMP is assigned as the filename; if no extension is

given, .TMP is assigned; if no list-dev: is specified, DSK: is assumed.

List macro expansions (same function as LALL pseudo-op).

Reinstate listing (used after list suppression by XLIST pseudo-op or S

switch).

Suppress error printouts on the Teletype.

Increase the size of the pushdown list. This switch may appear as many

times as desired (pushdown list is initially set to a size of 8010 locations;

each /P increases its size by 8010).

Suppress Q (questionable) error indications on the listing; Q messages

indicate assumptions made during pass 1.

Suppress listing (same function as XLIST pseudo-op).

Skip to the logical end of the magnetic tape.

Rewind the magnetic tape.

Suppress all macro expansions (same function as XALL pseudo-op).

Zero the DECtape directory.

NOTE

Switches A through C and T, W, X, and Z must immediately
follow the device or file to which the individual switch refers. _

H-5

278

Examples

+R MACRO?)
Assemble one source file from the paper tape reader;

*xMTA1:2:2DTA3:/C«PTR? ¢
Es : write the object code on MTAI; write the assembly

listing on DTA in cross-reference format and call
the file CREF. TMP.

END OF PASS 1) The paper tape must be refed by the operator for
pass 2.

THERE ARE 3 ERRORS) End-of-assembly messages.

PROGRAM BREAK IS 900401)

5K CORE USED?

" 4DTA2:ASSEMB-ONE/Z»LPT: Rewind MTA4 and assemble the first two source files
“MTA42/Ws) on it; write the object code on DTA2, after zeroing

the directory, and call the file ASSEM.ONE; write

THERE ARE NO ERRORS? the assembly listing on the line printer.
PROGRAM BREAK IS 985231)

6K CORE USED)

Rewind MTA1 and MTA3 and assemble files 1, 4,

AMTA1 3/Ws LPT 3©MTAS? and 3 (in that order) from MTA3. Print the assembly

/Ws(AA)s (BB) 2 listing on the line printer. Write the object code

THERE IS 1 ERROR? on MTAT.
PROGRAM BREAK IS @00655)

5K CORE USED)

tC Return to the Monitor.

Diagnostic Messages

Table 3-2

Macro-10 Diagnostic Messages

Message Meaning

?CANNOT ENTER FILE
filename .ext

?CANNOT FIND filename. ext

?COMMAND ERROR

?DATA ERROR ON-DEVICE dev:

DTA or DSK directory is full; file cannot be entered.

The file cannot be found on the device specified.

The last command string is in error.

Output error has occurred on the device.

HL

279

Table 3-2 (Cont)
Macro-10 Diagnostic Messages

END OF PASS]

? IMPROPER INPUT DATA

?INPUT ERROR ON DEVICE dev:

?INSUFFICIENT CORE

nK CORE USED

LOAD THE NEXT FILE

?2NO END STATEMENT
ENCOUNTERED ON INPUT FILE

?dev: NOT AVAILABLE

?PDP OVERFLOW, TRY/P

PROGRAM BREAK IS nnnnn

THERE ARE NO ERRORS
?THERE ARE n ERRORS

? THERE IS 7 ERROR

This message is issued prior to pass 2 whenever the
input source file is on a medium which must be man-
ually re-entered by the operator (PTR:, CDR:, TTY:).
When this message appears, the operator must re-feed
the tape or cards or retype the entries.

The input data is not in the proper format.

Data cannot be read.

An insufficient amount of core is available for assembly.

Amount of core used for this assembly.

Manual loading is required for the next card or paper
tape file.

The END statement is missing at the end of the source
"program file.

The device is assigned to another user or does not exist.

A pushdown list overflow has occurred.

The highest relative location occupied by the object
program produced.

Number of source language errors found.

Error Detection

MACRO-10 makes many error checks as it processes source language statements. If an apparent error

is detected, the assembler prints a single letter code in the left-hand margin of the program listing, on

the same line as the statement in question.

The programmer should examine each error indication to determine whether or not correction is re-

quired. At the end of the listing, the assembler prints a total of errors found; this is printed even if

no listing is requested .

Each error code indicates a general class of errors. These errors, however, are all caused by illegal

usage of the MACRO-10 language.

280

Table 3-3
Macro=10 Error Codes

This is a broad class of errors which may be caused
by an improper argument in a pseudo-op.

Argument error in pseudo-op

This statement contains a tag which refers to a
multiply-defined symbol. It is assembled with the
first value defined.

Multiply-defined symbolic .
reference error _

Improper usage of an external symbol. Example:
EXT: EXTERN TXT, BRT, EXT

EXT cannot be both an external and internal
symbol.

External symbol error

Literal error A literal is improper. A literal must generate 1 to
18 words.
Example:

EXP [SIXBIT //]; no code generated.

A symbol is defined more than once. The symbol
retains its first definition, and the error message M

is typed out during pass 1.

Multiply-defined symbol

If this type of error occurs during pass 2, it is a
phase error (see below).

If a symbol is first defined as a #=sign suffixed tag,
and later as a label, it retains the label definition.
Examples:

A: ADD 3,X;

A: MOVE ,C; M error

A: ADD3,Xé;
X: MOVE ,C; X is assigned the current value

of the location counter.

Multiple appearances of the TITLE pseudo-op (which
generates both a title line and program name) are
flagged as "M" (Multiple definition) errors.

Number error A number is improperly entered.
Examples:

tF13.33E38 (Exceeds range)
t DI5BZ (Number must follow

B shift operator.)
But, tD15B<Z> is illegal if Z is defined.

If a number contains meaningless letters or special
characters, a Q error is given.

Operation code undefined The operation field of this statement is undefined.
It is assembled with a numeric code of 0.

H-8

281

Table 3-3 (Cont)
Macro-10 Error Codes

Phase error A symbol is assigned a value as a label during pass
2 different from that which it received during pass 1.
In general, the assembler should generate the same
number of program locations in pass 1 and pass 2,
and any discrepancy causes a phase error. For ex-
ample, if an assembly conditional, IF1, generates
three instructions, a phase error results unless
another conditional, such as IF2, generates three
program locations during pass 2.

This is a broad class of possible errors in which the
assembler finds ambiguous language.
Example:

ADD ,TOTAL SUM;
SUM is not needed and is treated as a
comment.

LOC or RELOC are used improperly.
Example:

LOCA; where A is not defined.

Questionable

Relocation error

Usually caused by inclusion of illegal special
characters.
Example:

SY ?M: ADD 3,X;

Symbol format error

Undefined symbol A symbol is undefined.

A symbol used to control the assembler is undefined
prior to the point at which it is first used. Causes
error message in’ pass 1.

Value previously undefined

Monitor Commands

Assembly of Macro source program files can be performed by use of the COMPILE, LOAD, EXECUTE,

and DEBUG commands. See Table 9-1, Time=Sharing Monitor Commands, in Chapter 9 of this manual

for details.

Book 3.

Communicating
with the
Monitor

284

_ Time-Sharing Monitors

287

FOREWORD

This manual covers the use of the Time Sharing Monitors, which include the

Multiprogramming non-disk Monitor and the Multiprogramming disk Monitor

(formerly known as 10/40) and the Swapping Monitor (formerly known as 10/50).

The Single-User Monitor (formerly known as 10/20, 10/30) is covered in the

manual Single User Monitor Systems.

289

CONTENTS

CHAPTER 1 INTRODUCTION-MONITOR CAPABILITIES

Reentrant User-Programming Capability

Monitor Functions

Job Scheduling

Use of Swapping Space and Physical Core

User Facilities

Segments

Files

Comparison of Segments and Files

CHAPTER 2 MONITOR COMMANDS

Bre db

Aedl cI

Console and Job Control

Monitor Mode and User Mode

Command Interpreter and Command Format

Command Names

Arguments

Login Check

Job Number Check

Core Storage Check

Delayed Command Execution

Completion-of-Command Signal

System Access Control Commands

Facility Allocation Commands

Source File Preparation Commands

File Manipulation Commands

Extended Command Forms

Compile Switches

Processor Switches

Page

290

CONTENTS (Cont) ,

Loader Switches

Temporary Files

Run Control Commands

Additional Information on SAVE and SSAVE

Background Job Control Commands

Job Termination Commands

System Timing Commands

System Administration Commands

Monitor Diagnostic Messages

CHAPTER 3 LOADING USER PROGRAMS

Sica: Memory Protection and Relocation

User's Core Storage

Job Data Area

Loading Relocatable Binary Files

CHAPTER 4 USER PROGRAMMING

4.1 User Mode

Programmed Operators (UUO's)

Operation Codes 001-034

Operation Codes 040-077, and 000

Operation Codes 100-127

Illegal Operation Codes

Program Control

Starting

Stopping

Trapping

Timing Control

291

CONTENTS (Cont)

Identification

Direct User I/O

Segment Handling

Input/Output Programming

File

Initialization

Data Transmission

Status Checking and Setting

Terminating a File (CLOSE)

Synchronization of Buffered I/0

Relinguishing A Device (RELEASE)

Core Control

CALL AC, [SIXBIT/CORE/]

CALL: AC, [SIXBIT/SETUWP/]

CHAPTER 5 DEVICE DEPENDENT FUNCTIONS

By al

Bysiedk

Dreevee,

Teletype

Data Modes

DDT Submode

Special Programmed Operator Service

Special Status Bits

Paper Tape Input from the Teletype

Paper Tape Reader

Data Modes

Paper Tape Punch

Data Modes

Special Programmed Operator Service

Line Printer

292

CONTENTS (Cont)

Data Modes

Special Programmed Operator Service

Card Reader

Data Modes

Card Punch

Data Modes

Special Programmed Operator Service

DECtape

Data Modes

DECtape Block Format

DECtape Directory Format

DECtape File Format

Special Programmed Operator Service

Special Status Bits

Important Considerations

Magnetic Tape

Data Modes

Magnetic Tape Format

_Special Programmed Operator Service

9-Channel Magtape

Special Status Bits

Disk

Data Modes

Structure of Files on Disk

User Programming for the Disk

Incremental Plotter

Data Modes

Display with Light Pen

293

CONTENTS (Cont)

5.11.1 Data Modes

5.11.2 Background

5.11.3 Display UUO's

5.12 CALL ACISIXBIT/DEVCHR/]Jor CALLI AC, 4

APPENDIX 1 DECtape Compatibility Between DEC Computers

APPENDIX 2 Size of Multiprogramming Non-disk Monitor

APPENDIX 3 Size of Swapping Monitor

APPENDIX 4 Writing Reentrant User Programs

LIST OF ILLUSTRATIONS

di Core Management

Sok User's Core Area

B=2 Loading User Core Area

4-1 User's Ring of Buffers

4-2 Detailed Diagram of Individual Buffer

4-3 File Protection Key |

LIST OF TABLES

2-1 Monitor Command to Gain Access to the System

2-2 Monitor Commands to Allocate Facilities

2-3 Monitor Commands to Prepare Source Files

2-4 Monitor Command Diagnostic Messages

Al-1

A2-1

A3-1

A4-1

294

LIST OF TABLES (Cont)

Monitor Commands to Manipulate Files

Monitor Commands to Call, Load, and Control
Programs

Monitor Commands to Control Background Jobs

Monitor Command to Terminate Jobs

Monitor Commands for System Timing

Monitor Commands for System Administration

Time-Sharing Monitor Diagnostic Messages

Job Data Area Locations,

Monitor Operation Codes

CALL and CALLI Monitor Operations

Buffered Data Modes

Unbuffered Data Modes

File Status

Device Summary

PDP-10 Card Codes

DECtape Programmed Operators

MTAPE Functions

Magnetic Tape Special Status Bits

295

CHAPTER 1

INTRODUCTION - MONITOR CAPABILITIES

This book discusses the commands, program loading pro-

cedures, and user programming facilities available under the

PDP-10 Time-Sharing Monitors - three multiprogramming, time-

sharing systems designed to allow many independent user programs

to share the facilities of a single PDP-10 computer. Many users

can access the computer at the same time from consoles located at

the computer site, at nearby offices or laboratories, or at

remote points connected by telephone lines.

Operating concurrently under Monitor control, users may

access available I/O devices and system software to compile,

assemble, and execute their programs, or may have this sequence

performed automatically for many jobs by using the batch control

processor (BATCH). Real-time jobs can operate either as indepen-

dent user programs or as fully integrated Monitor subroutines.

The Multiprogramming non-disk Monitor (formerly called

the 10/40 Monitor) is a multiprogramming, time-sharing system

which includes I/O control of all devices attached to the system,

run-time selection of I/O devices, job-to-job transition, job

save and restore features, and dynamic debugging facilities. All

of these features are incorporated with concurrent real-time

processing, batch processing, and time sharing. The Multiprogram-—

ming disk Monitor adds a comprehensive file system with both

sequential and random access of shared, named files to the

Multiprogramming non-disk system. The Swapping Monitor (formerly

called the 10/50 Monitor) has all the features of the Multi-

programming disk system and, in addition, swaps programs between

del

296

high-speed disk and core, thereby increasing the number of users

that can be accommodated simultaneously. f

ie Ab Reentrant User-Programming Capability

The number of users that can be handled by a given size

time-sharing configuration is further increased by adding a

reentrant user-programming capability to the system. This means

that a sequence of instructions may be entered by more than one

user process at a time. A single copy of a reentrant program may

be shared by a number of users at the same time, thereby increas-

ing system economy. All the versions of the Time-sharing Monitor

normally include this reentrant capability but it may be deleted

on systems lacking the dual relocation KT10A hardware eoaiiont

In a non-reentrant system, the one relocation register

hardware requires that a user area be a single continuous segment

of logical and physical core. Each user has a separate copy of a

program even though a large part of it is the same as for other

users. In a reentrant system, the two relocation register hard-

ware allows a user area to be divided into’ two logical segments

which may occupy mea cont iGdode areas in physical core. The

Monitor allows one of the segments of each user area to be the

same aS one or more other users, so that only one physical copy

of a shared segment need exist no matter how many users are using

it. The Monitor normally invokes hardware write-protection for

shared segments to guarantee that they are not accidentally

modified.

In the PDP-10 Swapping Monitor, the reentrant capability

causes the following system resources to be used more efficiently:

a) core memory, since only one copy of a shared segment

exists for the entire system (Figure 1-1 illustrates this efficient

1=2

297

use of core memory),

b) swapping storage, since many users share the single

copy of the shared segment kept in swapping Seoreces

c) swapping I/O channel, since a shared segment is read

into core only once and is not written back onto swapping storage

unless modified, and 7

d) file storage I/O channel, since a shared segment

exists on the faster swapping storage after it has been read into

core the first time from the storage device instead of being

retrieved from file storage on each usage as necessary in the

non-reentrant system.

a NON-REENTRANT SYSTEM REENTRANT SYSTEM

FORTRAN USER 1:

FORTRAN COMPILER

COBOL USER 1

1 I
FREE CORE

FORTRAN USER 2

COBOL COMPILER

FORTRAN USER 3

FORTRAN USER 4

COBOL USER 2

i]

FREE CORE !
I

pe A

Figure 1-1

Core Management

J=3

298

2 MONITOR FUNCTIONS

The Time-Sharing Monitors act as the interface between

the user and the computer so that all users are protected from

one another and appear to have most resources available to them-

selves. The Monitors schedule multiple-user time sharing of the

speeei: allocate available sharable resources to user programs,

accept input from and direct output to all system I/O devices,

and relocate and protect user programs in core memory.

The Monitors utilize the PDP-10 hardware features for

memory protection, memory relocation, executive/user mode, and

real-time clock to provide an advanced, third-generation, multi-

programming time-sharing environment. System facilities start

with a minimum configuration of 16K core and two DECtapes and can

accommodate magnetic tapes, disks, drums, communication line

controllers, card readers and punches, paper tape readers and

punches, line printers, displays, incremental plotters, and user

Teletype consoles. Other special devices, including real-time

digitizers and analog converters, easily interface with the

system.

Several user programs are loaded into core at once and

the Time-Sharing Monitors schedule each program to run for a

certain length of time, utilizing a scheduling algorithm that

makes efficient use of system capabilities. The Monitors direct

data flow between I/O devices and the user programs, making them

device independent, and overlap I/O operations concurrently with

computation for high system efficiency.

de eZ ioe Job Scheduling

One of the parameters which must be specified in

299

. creating a PDP Time-Sharing Monitor is the number of jobs which

may be run simultaneously. Up to 127 jobs may be specified. Each

ieee who accesses the system is assigned a job number. The Pee

job is used to refer to the entire sequence of operations the

user initiates from his console.

In a multiprogramming system all jobs reside in core,

and the scheduler decides which of these jobs should run. Ina

swapping system jobs can exist on an external storage device

(usually disk) as well as in core. The scheduler decides not

only which job is to run but also when a job is to be swapped out

onto the disk or brought back into core.

In the Swapping Monitor, jobs are retained in queues of

varying priorities that reflect the status of Hee obs at any

given moment. Each job number possible in the system resides in

only one queue at any point in time. The possible queues a job

may be in include the following.

a) Run queues - for runnable jobs waiting to execute.

(There are three run gueves of different levels of priorities.)

b) I/O wait queue - for jobs waiting while doing I/O.

c) I/O wait satisfied queue - for jobs waiting to run

after finishing I/O.

d) Sharable device wait queue - for jobs waiting to use

sharable devices.

e) masuGpe wait queue - for jobs waiting for input or

output on the user's Sonspee.

f) Teletype wait satisfied queue - for jobs that com-

pleted a Teletype operation and are awaiting action. '

g) Stop queue - for processes that have been completed

or aborted by an error and are awaiting a new command for further

action.

300

h) Null queue - for all job numbers that are inactive

(unassigned) .

Each of these queues is addressed through tables.

The position of a queue's address in a table represents the

priority of the queue with respect to the other queues. Within

each queue, the position of a job determines its priority with

respect to the other jobs in the same queue. The status of a job

is changed when it is placed in a different queue.

Each job, when it is assigned to run, is given a quantum

time. When this time expires, the job ceases to run and moves to

a lower priority run queue. The activities of the job currently

running may cause it to move out of the run queue and enter one

of the wait queues. For example, when a currently running job

begins input from a DECtape, it is placed in the I/O wait queue,

and the input is begun. A second job is set to run while the

first job's input proceeds. If the second job then decides to

access a DECtape for an I/O operation, it is stopped because the

DECtape control is busy, and it is put in the queue for jobs

waiting to access the DECtape control. A third job is set to run.

Now the input operation of the first job finishes, making the

DECtape control available to the second job. The second job's 1/0

operation is initiated, and the job is transferred from the

device wait queue to the 1/0 wait queue. The first job is trans-

ferred from the I/O wait queue to the highest priority run queue.

This permits the first job to preempt the third job's running.

When the quantum time of the first job becomes zero, it is moved

into the second run queue, and the third job runs again until the

second job completes its I/O operations.

Scheduling occurs at each clock tick (1/60th or 1/50th

of a second) or may be. forced at Monitor level between clock ticks

c=6

301

if the current job becomes unrunnable. The asynchronous swapping

algorithm is also called at each clock tick and has the task of

bringing a job from disk into core. This function is dependent

upon (1) the core shuffling routine, which consolidates unused

areas in core so as to make sufficient room for the incoming job,

and upon (2) the swapper, which creates additional room in core

by transferring jobs from core to disk. Therefore, when the

scheduler is Boleskingsene next job to be run, the swapper is

bringing the job to be run after that into core. The transfer

from disk to core takes place while the central processor con-

tinues computation for the previous job.

A258 Use of Swapping Space and Physical Core

The reentrant capability reduces the demands on core

memory, Swapping storage, swapping channel, and storage channel.

However, to reduce the use of the storage channel, copies of the

sharable segments are kept on the swapping device. This increases

the demand for swapping storage. The Monitor achieves this space-

time balance dynamically by assuming that there is no shortage of

swapping space. The amount of swapping space is fixed by the

operator at system initialization. Thereafter, the Monitor keeps

a single copy of as many sharable segments as possible in the

swapping space. (The maximum number of segments that may be kept’

may be increased by individual installations but is always at |

least as great as the number of jobs plus one.) If a sharable

segment is currently unused, it is called a dormant segment. If

the Monitor cannot find contiguous free space on the swapping

device, it will fragment the high and low segments of the user

whose job is being swapped out. If swapping space runs out,

the Monitor deletes a dormant segment and continues to fragment

EZ

302
the user's segments. If and when a deleted segment is needed

again, it is retrieved from the storage device.

The Monitor keeps track of the total amount of "virtual

core" assigned to all users. In computing virtual core, sharable

segments count only once and dormant segments do not count at all.

The Monitor does not allow more virtual core to be granted than

the system has capacity to handle. When the Monitor is started

the amount of unused virtual core is set equal to the amount of

swapping space pre-allocated on the disk. Thus, there is always

room to swap out the largest possible job in core and swap in

another job.

The same techniques used in allocating swapping space

are used to allocate core in both swapping and non-swapping

systems. A dormant segment will stay in core until core is

needed. In the swapping system, an active write-protected segment

remains in core even though no one in core is using it. Some

swapped-out user must be using it or else it would be dormant

rather than idle.

eS USER FACILITIES

Users gain access to the PDP-10 Time-Sharing system

from a terminal located either at the computer facility or ata

spot remote from the facility but connected to it bi telephone.

Three levels of communication are available at the console:

a) Monitor command level

b) ie 2CUSP Gommend level

c) CUSP I/O level.

At Monitor command level, the console communicates with

the Monitor Command Interpreter. The Monitor Command Interpreter

a) provides the system with access protection,

v= 8

303

b) allocates and protects memory and peripherals

“requested by the user,

c) provides communication with the operator for mount-

ing of Eee: tapes,

d) provides run control for the user over programs

stored in the system,

e) idows the user to initiate background jobs,

£) provides the user with job monitoring and debugging

facilities, and

g) returns facilities to the system when the job is

finished using them.

Chapter 2 describes the various Monitor commands which provide

each of these capabilities.

Using Monitor commands, the user at his console can call

in programs from the system file. The system file contains pro-

grams for creating and editing program source files (TECO,EDITOR),

for assembling or compiling program source files (MACRO,FORTRAN,

BASIC, COBOL), and for loading relocatable binary files (LOADER).

The usage of these and many other CUSPs (Commonly Used Systems

Programs) are currently described in the System User's Guide

(DEC-10-NGCC-D) .

The user's console provides both a control and data path

to any CUSP or other user program that the user initiates via

Monitor commands. Once a particular CUSP has been called in, the

user's console is at CUSP command level and the user can issue a

command to the CUSP. In processing that command, the CUSP may

access the user's console directly as an input or output device.

This is illustrated by the following example.

304

*R PIP Monitor command level. User calls

CUSP named PIP, Peripheral Inter-

change Program.

2D Sik een Nyse CUSP command level. User instructs

PIP to create a file on the disk

named TEXT using Teletype console
as input medium.

THIS IS FILE TEXT CUSP I/O level. User types input to
PrP.

42 +Z causes Teletype end of file.
Return to CUSP command level.

PIA tC is a special character that
causes return to Monitor command
level.
The period (.) signifies return to
Monitor command level.

The console is switched back ‘to the Monitor Command

Interpreter by either the program or the user. The user can

exercise another dimension of control over his program by loading

it with the powerful Dynamic Debugging Technique (DDT) available

in the system file. Entry to DDT is through the Monitor Command

Interpreter or by breakpoints in the program. While DDT is in

control of the program, the user can examine intermediate results

on his console and then modify his program accordingly.

The user's program communicates with the Monitor by

means of PDP-10 operation codes 040 through 077. These op-codes

are called UUO's and are described in detail in Chapter 4. With

these operation codes, the Monitor provides the program with com-

plete device-independent I/O services. The programmer is relieved

of the job of I/O programming and is freed from the dependence on

the availability of particular devices at run time. In addition,

the user's program may exercise control over central processor

trapping, modify its memory allocation, and monitor its own

running time. Provisions exist for inter-job communication and

aoneeou. reentrant user programs, and, in selected cases, direct
i

user I/O control.

305

1.4 SEGMENTS

A segment is a Sonean one region of the.user's core

area that the Monitor maintains as a continuous unit in physical

core and/or as a possibly fragmented unit on the swapping device.

A program or user job is composed of one or two segniante. A

segment may contain instructions and/or data.. The Monitor

determines the allocation and movement of segments in core and on

the swapping device.

A sharable segment is a segment which is the same for

many users. The Monitor keeps only one copy in core and/or on

the swapping device, no matter how many users are using it. A

non-sharable segment is a segment which is different for each

user in core and/or on the swapping device.

The PDP-10's two relocation and protection registers,

which divide a user's core area into two parts, permit a user

program to be composed of one or two segments at any point in

time. The required low segment starts at user location 0. The

optional high segment starts at user location 400000 or at the

end of the low segment, whichever address is greater. The low

segment contains the user's accumulators, Job Data area, in-

structions and/or data, I/O buffers, and DDT symbols. A user's

core image 6 composed of a low segment, which may have from 1K

to 256K words, in multiples of 1K (1K = 102445 words), and a high

segment which may have from OK to 128K words, also in multiples

of 1K. A high segment may be sharable or non-sharable, whereas

a low segment is always non-sharable. The high segment may be

write-protected.

A reentrant program is always composed of two segments —

a low segment which usually contains just data, and a high

(sharable) segment which usually contains instructions and

dee

306

constants. The low segment is sometimes referred to as the im-

pure segment. The sharable high segment, if write-protected, is

referred to as the pure segment.

A one-segment non-reentrant program is composed of a

single low segment containing instructions and data. User pro-

grams written for machines with only a single relocation and

protection register are always one-segment non-reentrant programs.

A two-segment non-reentrant program is composed of a

low segment and a non-sharable high segment. This kind of pro-

gram is useful when there ised requirement for two fixed-origin

data areas to increase and decrease independently during execution.

5 FILES

A file is a collection of 36-bit words comprising com-

puter instructions and/or data. A file can be of arbitrary

length, limited only by the available space on the device and the

user's maximum allotment of space on that device.

A named file is uniquely identified in the system by

its filename (up to six characters in length) and extension (up

to three characters in length) and by its directory name (owner's

project-programmer numbers for disk, physical device name for

DECtape) in which the filename and extension apoeees The filename,

being arbitrary, is specified by the owner, whereas the extension,

usually one of a small number of standard names whdich identify

the. type of information in the file, is usually specified by the

program. A named file may be written by a user program in

buffered or unbuffered mode, or in both. It may be read and/or

modified sequentially or randomly with buffered or unbuffered

mode I/O independently of how it was written. Named files are

stored on the storage device. Each named file has certain access

EAD

307

privileges associated with it. These privileges designate which

users can read or write the file or change its access privileges.

In regard to a given file, users are divided into three groups:

the owner of the file, the users in his project, and the rest of

thHEsWSeESs

A file is said to be created if no file by the same name

existed when the file was opened for writing. A file is said to

be superseded if another file by the same name already exists. A

file is said to be updated when one or more blocks of the file

are rewritten in place. Other users may read a disk file while a

certain user is superseding it. The older version of the file is

deletéd only when all the readers have finished with it. Only one

user may open a file for updating at a time; all other users

attempting to open that file receive an error message.

1.6 COMPARISON OF SEGMENTS AND FILES

Files and segments have certain similarities Ba ak

ferences. Both are named, one-dimensional arrays of 36-bit words.

A file can be as long as the size of disk or DECtape. A segment

can be only as big as physical core. Both may be shared for

reading, but only one user may supersede or update a file ata

time, whereas many users share a segment for writing. When many

users share the same file, each user is given his Ain copy of the

portion of the file that he is reading. It is read into his low

segment by the INPUT UUO. When many users share the same segment,

each user does not have his own copy of the segment. A file

exists on the storage device and portions of it may exist in dif-

ferent parts of the low segment of one or more users. A segment

never exists on the storage dcatnes it exists as a Sore

unit only in core or on the swapping device.

ESS}

308

309
CHAPTER 2

MONITOR COMMANDS

Dron CONSOLE AND JOB CONTROL

The PDP-10 time-sharing system is a multiprogramming

system. This means that control is transferred rapidly among a

number of programs or processes in such a way that all the

processes appear to be running simultaneously. Each eas is

called a job. In configuring and loading a time-sharing Monitor,

the system administrator sets the maximum number of jobs which

his system will handle simultaneously. This number may be up to

127 jobs if the system has enough core, disk storage, processor

capacity, and time-sharing consoles to handle this load.

Jobs are initiated by users typing on a time-sharing

console. A console is typically any of several models of

Teletype machines but may also be a CRT (cathode ray tube) with a

keyboard. The console may be directly connected to the computer

or may be remotely connected via a private wire or the public

telephone system.

There is not necessarily a one-to-one relationship

between jobs and consoles. A console must initiate a job, but

the DETACH and ATTACH commands (see Table 2.7) permit a job to

"float" in a state where it is not associated with a particular

console. Therefore a user heyy control several jobs from the same

console. Each job is either in the ATTACHed or DETACHed mode

depending on whether a console is currently associated with that

job. At any point in time, each console is attached to at most

one job. The console is often referred to as being in a "detached

mode," but this results froma semantic confusion. It is really

Pai.

310

meant that the job initiated from that console is in a detached

mode. By typing an appropriate command, the job may be attached

to the same console or to any other console in the system.

2 la: Monitor Mode and User Mode

From the user's point of view, his console is in one of

two states - monitor mode or user mode. In monitor mode, each

line the user types in is sent to the Monitor Command Interpreter.

The execution of certain commands (as noted in the tables below)

places the console in user mode. Once the program is in user

mode, the console becomes simply an apne /eutout device for that

user. In addition, user programs will use the console for two

purposes. The user program will accept command strings from the

console or will use the console as a direct input/output device.

Example:

monitor mode ee se monitor command

user mode *DSK:FOO+¢TTY: user program command
string

user mode THIS IS FILE FOO*Z user program using
‘ console as an input
device

monitor: mode -R.MACRO monitor command

user mode *TTY: ,<DSK:PROG1 user program command
string

user mode user program using
console as an output
device

@
r)

code
e

The special character +C (produced by typing C with the

CONTROL Key depressed) is used to stop a user program and return

the console to monitor mode. There are certain commands which

22

311 ;

cause the user program to start or continue running (as noted in

the tables below) but which leave the console in monitor mode.

When the system is started, each Ueneoie is in monitor

mode ready for users to begin typing in commands. However, if

the system becomes fully loaded (i.e., all the jobs that the

system can accommodate have been initiated) , then any unused con-

soles enter a special state where any command typed in will

receive either the message "JOB CAPACITY EXCEEDED" or "X."

2.2 COMMAND INTERPRETER AND COMMAND FORMAT

Each command is a line of ASCII characters in upper

Snaer lower case. Spaces and non-printing characters preceding

the command name are ignored. The Monitor Command Interpreter

will not interpret or execute a line of comments preceded by a

semicolon. Every command to the Monitor Command Interpreter must

'be terminated by pressing the RETURN key on the console. If the

command is not understood, an error message is typed out by the

Monitor and the mode is unchanged.

The Pek Command Names

Command names are strings from one to six letters.

Characters after the sixth are ignored. Only enough characters

to uniquely identify the command need be typed. In the tables

which follow, the commonly used abbreviation of the command name

is shown. Installations which choose to implement additional

commands should take care to preserve the uniqueness of the first

few letters of existing commands.

Qiiliw 2 Arguments

Arguments follow the command name, separated from it by

2=3 .

312

a space or any printing character that is not a letter or a

numeral. Argument formats are described under the associated

commands.

If the Monitor Command Interpreter Petocar os the com-

mand name, but a necessary argument is missing, the Monitor

responds with

TOO FEW ARGUMENTS

Extra arguments are ignored.

2325.3 Login Check (Disk Monitor Systems)

If a user who has not logged in (see Table 2.1) types a

command requiring him to be logged in, the disk Monitor systems

will respond with

LOGIN PLEASE

and the user's command will not be executed. Login is not re-

quired by a non-disk Monitor system.

225.4: Job Number Check (Non-disk Monitor Systems)

If the non-disk Monitor system recognizes a command name

which requires a job number and no job number has been assigned,

the Monitor assigns a job number, n, and responds with

JOB n

and a line identifying the Monitor version. The Monitor will then

proceed to execute the command.

PEPE, Core Storage Check

If the Monitor Command Interpreter recognizes a command >

name which requires core storage to have been allocated to the job -

‘and the job has no core, the Monitor responds with

NO CORE ASSIGNED

2-4

313

The user's command is not executed.

BPRS) Delayed Command Execution

If the Monitor Command Interpreter recognizes a com-

mand that requires all devices to be inactive and the job has

devices actively transmitting data to or from its core area, the

execution of the command will be delayed until the devices are

inactive. A command is also delayed if a job is swapped out to

the disk and the command requires core residence. It will be

executed when the job is returned to core.

2.2.7 | Completion-of-Command Signal

Most commands are processed without delay. The completion

of each command is signaled by the output of a carriage return,

line’ feed.» If the console is left in Monitor mode, a period

follows the carriage return, line feed. If the console is left

in user mode, any response other than the carriage return, line

feed comes from the user's program. For example, all standard

DEC CUSPS immediately send an asterisk (*) to the user's console

to indicate their readiness to accept user-mode command strings.

Ags} SYSTEM ACCESS CONTROL COMMANDS

Access to the system is limited to authorized personnel.

The system administrator provides each authorized user with a

project number, a programmer number, and a password. The project

and programmer numbers are octal numbers up to six digits each.

The project-programmer numbers will identify not only the user

but also his file storage area on the disk. The password is from

one to five ASCII characters. To LOGIN successfully the project-

2—5

314

programmer numbers and the password typed in by the user must

match the project-programmer numbers and password stored in the

system accounting file (ACCT.SYS [1,1]).

Table 2-1

Monitor Command to Gain Access to the System

Command per Explanation

LOGIN PLEASE
?

LOGIN ; LOGIN initializes a Monitor routine
to accept the user's LOGIN data.

The following is the procedure used
to gain access to the system.

The user has typed a
command that the Monitor
cannot accept unless the

- LOGIN user logs in.

JOB n PDP-10 4S.50F

?INVALID ENTRY - TRY

Job number assigned AGAIN
to user, followed by

Monitor name and
version number.

\

An illegal project-
programmer number was
entered or the password

System types out num- did not match.
ber sign to indicate
user should type his
project-programmer
number.

?1+1/nK CORE
VIR. CORE LEFT=0O

proj,prog User types in his
project-programmer
number

System core and swapping
space exceeded,

PASSWORD: System requests user

to type his password.
User types password,
followed by carriage
return. To maintain
password security,
the Monitor will not
echo the password.

1135 8-AUG-69 EARN Ge)

AACS

Fi If user entries are

correct, Monitor
responds with time,

date, TTY number, tC

and a period, indica-
ting readiness to
accept a command.

*Characteristics: ,

d = places job in detached mode L = LOGIN required (Disk Monitor)
m = places job in Monitor mode A = no active device
u = places job in user mode C = core required

J = requires a job number,
R = runs a CUSP thereby replacing previous) program in user's

addressing space.
D = available only in Multiprogramming Disk and in swapping

systems, not in Multiprogramming non-disk systems.

2-6

315

2.4 FACILITY ALLOCATION COMMANDS

The Monitor allocates peripheral devices and core

memory to users upon request and protects these allocated facili-

ties from interference by other users. The Monitor maintains a

pool of available facilities from which a user can draw.

A user should never abandon a time-sharing console

without returning his allocated facilities to the Monitor pool.

Until a user returns his allocated faci tities to the pool no

other users may utilize them.

All devices controllable by the system are listed in

Table 5-1. Associated with each device is a physical name, con-

sisting of three letters and zero to three numerals to specify

unit number. A logical device name may also be assigned by the

user. This logical name of one to six alphanumeric characters of

the user's choice is used synonymously with a physical device

name in all references to the device. In writing a program, the

user may use arbitrarily selected device names which he assigns

to the most convenient physical devices at runtime. All refer-

ences 6 epdede itn the Monitor pool are made by physical names

or by assigned logical names.

When a device is assigned to a job, it is removed from

the Monitor's pool of available facilities. Any attempt by

another job to reference the device fails. The device is re-

turned to the pool when the user deassigns it or kills his job.

Command

ASSIGN’
phys-dev

log-dev

DEASSIGN’ |DEA
dev

REASSIGN

dev job

316

Babille 252

Monitor Commands to Allocate Facilities

Explanation

To assign an I/O device to the user's
job for the duration of the job or
until a DEASSIGN command is given.

phys-dev Any device listed in
Table 5-1*. .This argument
is required.

log-dev A logical name assigned by
the user

Returns one or more devices currently
assigned to the user's job to the
Monitor's pool of available devices.

dev If this argument is not
specified, all devices
assigned to the user's job
are deassigned.

If this argument is speci-
fied, it can be either the

logical or physical device
name -

‘

Allows one job to pass a device to a
second job without going through the.
Monitor device pool.

dev The physical or logical
name of the device to be
reassigned. Cannot be a
user console.

The number of the job to
which the device is to be
reassigned.

dev: ASSIGNED

The device has been suc—
cessfully assigned to the
job.

NO SUCH DEVICE

Device name does not
exist.

ALREADY ASSIGNED TO JOB n

The device has already
been assigned to another
user's job.

LOGICAL NAME ALREADY IN

USE DEVICE dev: ASSIGNED

The user has previously |
assigned this logical
name to another device.

NO SUCH DEVICE

Device name does not
exist.

DEVICE WASN'T ASSIGNED

The device isn't current-
ly assigned to this job.

DEVICE dev WASN'T

ASSIGNED

The device isn't current-
ly assigned to this job.

JOB NEVER WAS INITIATED

The job number specified
has not been initialized.

NO SUCH DEVICE

The device does not
exist.

DEVICE CAN'T BE

REASSIGNED

A user's console Teletype
cannot be reassigned.

FINISH

Command

317

\

Explanation

Terminates any input or output cur-
dev rently in progress on the device.

dev

TALK dev

dev

The logical or physical
name of the device on
which I/O is to be ter-
minated.

If no name is specified,

I/O is terminated on all

devices assigned to the
job.

To allow the user to type directly to
another user's console.

Must be one of the follow-

ing:

ClY == Console
Teletype

Where n can be in
the range of 0
through 77.

Operator's console
(the Teletype desig-
nated as such when
the Monitor was
initialized).

To modify the amount of core assigned

to the user's job.

The low and high segments
disappear from the job's
virtual addressing space.

Total number of 1K blocks
of core to be assigned to
the job from this point on.

If n is omitted, Monitor
types out the same re-
sponse as when an error

occurs, but does not change

core assignment.

NO SUCH DEVICE

Either the device does
not exist or it was not
assigned to this job.

BUSY

The console addressed is

either (1) not in the
Monitor mode or (2) is
not positioned at tle
left margin.

(OPR is never busy.)

10/40 Systems:

m/p

10/50 Reentrant Systems:
mtn/p CORE
VIR. CORE LEFT=v

“number of 1K
blocks in low
segment

number of 1K
blocks in high
segment

maximum K per job
swapping systems-
max. physical user
core
non-swapping sys-
tems - free +
dormant core
number of K
unassigned in
core and swapping
device

RESOURCES RES To print out all the available devices
(except TTY's) and the number of free

318

Explanation

blocks on the disk.

*Refer to footnote in Table 2-1

‘The ASSIGN command applied to DECtapes clears the copy of the directory
currently in core, forcing any directory references to read a new copy
from the tape.

same function.
The DEASSIGN command applied to DECtapes performs the
(See 5.7.7 for further details.)

?If DTA or MTA is used, ‘the Monitor performs a search for an available
drive and then types out DTAn (or MTAn) ASSIGNED.

qo

Examples showing use of logical and physical names:

User types

Monitor
responds

User then

types

Monitor
responds

User then

types

Monitor
responds

User then

types

Monitor
responds

-ASSIGN DTA,ABC

DEVICE DTA6 ASSIGNED

4

-ASSIGN DTA,DEF

NO SUCH DEVICE

-ASSIGN Fg ereae

LOGICAL NAME ALREADY
IN USE

DEVICE PTP ASSIGNED

-ASSIGN DTA1,DEF

ALREADY ASSIGNED

TO JOB 2:

(successful)

(find another unit)

(all in use)

(reserve paper tape
punch)

(paper tape punch is
reserved, but ABC

still refers to DTA6
only)

(another user has

it)

319

User then Sint Je) ie. (request for system

types program PIP)

User then *PTP:<ABC: FOO (command string to
types PIP asking that file

FOO be transferred

from device ABC
(which is now
assigned as DTA6) to
device PTP (which is
assigned to user).

NOTE: The user does not type the period or the asterisk.
The period is the Monitor response to the user and
the asterisk is the CUSP response. The user must
terminate every command to the Monitor Command
Interpreter by pressing the RETURN key on the

Teletype.

255 SOURCE FILE PREPARATION COMMANDS

The following commands call in the editing programs

and cause these programs to open a specified text file for edit-

ing. Two of these commands call the TECO CUSP and two call the

LINED CUSP (a disk-oriented version of EDITOR). For each editor,

one command causes an existing file to be opened for changes and

the other command causes a new file to be created. Each command

requires a filename as its argument and may have an optional

extension.

Filenames are from one to six letters or digits. All

letters or digits after the sixth are ignored. A filename is

terminated by any character other than a letter or digit. Ifa

filename is terminated by a period, a filename extension is

assumed to follow. A filename extension is from one: to three

letters or digits. It is generally used to indicate file format.

The filename extension is terminated by any character other than

a letter or digit.

2-11

320

The following are the standard meanings for file

extensions:

blank

Temporary file

Source file in MACRO language

Source file in FORTRAN IV language

Source file in COBOL language
(available in 1970)

Listing or CREF data

Relocatable binary file

Command file, for @ construction

Core dump, from SAVE command

Unspecified ASCII text file

Each time one of these commands is executed the command

with its arguments is "remembered" as a file on the disk.

Because of this, the filename last edited may be recalled for the

next edit without specifying the arguments again. For example,

if the command

{

is executed, then the

instead of

-CREATE PROG1.MAC

user may later type the command

-EDIT

-EDIT PROG1.MAC

assuming no other source file preparation command’ was used in the
j

interim,

321

Table 2-3

Monitor Commands to Prepare Source Files

Command Explanation

EDIT Runs LINED (bine Editor for Disk) -and See Table
file.ext opens an already existing sequence-

numbered file on disk for editing.

QonAre *

Runs LINED and opens a new file on See Table
disk for creation.

u

L

R

D

J

Runs TECO (Text Editor and Corrector) See Table

and opens an already existing non-
sequence-numbered file on disk for
editing.

GQowmhe

Runs TECO and opens a new file on disk See Table
for creation.

*Refer to footnote in Table 2-1

Table 2-4

Monitor Command Diagnostic Messages

(For File Manipulation Commands)

Message Meaning

COMMAND ERROR The COMPIL CUSP cannot decipher the
command.

DEVICE NOT AVAILABLE Specified device could not be
initialized.

DISK NOT AVAILABLE Device DSK: could not be initial-

ized. :

322

Table 2-4 (Cont)

Monitor Command Diagnostic Messages

(For File Manipulation Commands)

EXECUTION DELETED Errors detected during assembly,
(typed by LOADER) compilation, or loading prevent a

program from being executed.
Loading will be performed, but
LOADER will EXIT to) the Monitor
without starting execution.

FILE IN USE OR PROTECTED A temporary command) file could not
be entered in the user's UFD.

INPUT ERROR I/O error occurred while reading a
temporary command file from the
disk. |

LINKAGE ERROR I/O error occurred while reading a
CUSP from device SYS:.

NESTING TOO DEEP The @ construction exceeds a depth
of nine; may be due| to a loop of
@ command files. |

NO SUCH FILE - file.ext Specified file could not be found
(may be a source file or a file re-
quired for operation of COMPIL
CUSP).

NOT ENOUGH CORE System cannot supply enough core
for use as buffers or to read ina
CUSP. |

OUTPUT ERROR I/O error occurred while writing a
temporary command file on disk.

PROCESSOR CONFLICT Use of + Pee has resulted
in a mixture of source languages.

TOO MANY NAMES or Command string complexity exceeds
TOO MANY SWITCHES table space in COMPIL CUSP.

UNRECOGNIZABLE SWITCH An ambiguous or undefined word
followed a slash (/).

323
2.6 FILE MANIPULATION COMMANDS

Each of the following commands performs complex func-

tions which would require a number of commands on a less sophis-

ticated system. The commands in Table 2-5 list

and file directories and cause his source files

loaded, and executed.

Commands

TYPE list

LIST list

DIRECT dev

Table 2-5

Monitor Commands to: Manipulate Files

Explanation

Directs PIP (Peripheral Interchange Program)
to type contents of named source file(s) on
user's Teletype.

list A single file specification, or a
string of file specifications
separated by commas. A file
specification is the same as that
described for COMPILE, LOAD,

EXECUTE, and DEBUG commands. In

addition, the * construction can

be used as follows:

filename.* All files with this
filename and any

extension

All files with this
extension and any
filename

All files

Examples: TYPE FILEA, DTAO:FILEB.MAC,*.TMP

TYPE A,DTA4:B,C[15,107]

Directs PIP to list contents of named source

file(s) on the line printer (LPT).

Examples: LIST TEST.*
LIST *,MAC

LIST DTA4:A,B,C

If dev: is omitted or DSK:, directory listing

of user's disk files is typed on the user's
Teletype. If DTAn: is specified, directory
of that DECtape is typed.

Two switches can be used with the DIRECT
command : é

/7F List short form of directory (i.e., omit
dates)
7L List on line printer (LPT) instead of
Teletype.

The : may be omitted in dev.

2-15

the user's files

to be compiled,

See Table 2-4

See Table 2-4

See Table 2-4

Commands

DELETE list] DEL

RENAME arg | pry

CREF

COMPILE

list

CRE

CO.

324 |

Explanation

Deletes one or more files from disk or
DECtape. If a device name is specified, it
remains in effect until changed or end of
command string is reached. /

Changes the name of one or more files on disk
or DEC tape. The arg is a pair of file speci-
fications separated by an = sign, or a string
of such pairs separated by commas:

RENAME newl = oldl,new2 = old2,...

Device names can be specified only with the
new filename and remain in effect until
changed or end of command string is reached.

Runs CREF and lists on the line printer any
CREF listing files generated by previous
COMPILE, LOAD, EXECUTE, and DEBUG commands

using the /CREF switch. The file containing
the names of these CREF-listing files is then
deleted so that subsequent CREF commands will
not list them again.

Produces reAocatable binary file(s) for the
specified program(s). The use of the MACRO
assembler and/or the FORTRAN IV compiler is
determined as follows.

Condition Action

If no .REL (binary) , Translate source file
file

If source-file [date, Translate source file
time] is later than

binary-file [date,
time]

‘If other than above Do not translate
source file; use cur-
rent .REL (binary)
file.

Source File Extension Translator Used

-MAC MACRO assembler
-F4 FORTRAN IV compiler

(E40)

Other than above, or "Standard processor"
null is used (see 2.6.2).

The list of files which may be a single file
specification, or a string of file specifica-
tions separated by commas. A file specifica-
tion consists of a filename (with or without
an extension) and may include a device name
(if the source file is not disk) or a project-
programmer number (if the source file is not
in the user's disk area).

Examples:

PROG1,PROG1.MAC,PROG1.F4,PROG1.XYZ,DTAO:PROGL

PROG1 [10,16] ,PROGA, DTAO:PROGB

PROGC .MAC

(See)-2/67.1 7 256.2)

“ooe-Monitor Messages

See Table 2-4 a
i J

See Table 2-4

See Table 2-4

See Table 2-4

325 C2

Explanation

Performs the COMPILE function for the speci- See Table 2-4
fied program(s), then runs LOADER and loads
the .REL files.

EXECUTE EX| Performs the COMPILE and LOAD functions for See Table 2-4
that ess the specified program(s) and begins execution

of the loaded program. ; :

DEBUG list DEB] Performs the COMPILE and LOAD functions and, See Table 244
in addition, prepares for debugging. DDT (the
Dynamic Debugging Technique program) is loaded
first, followed by the user's programs with
local symbols. DDT is entered on completion

of loading. aK :

Examples:

COMPILE PROGA

EXECUTE DTA1:TEST.MAC

DEBUG/L FILEA,FILEB,FILEC/N, FILED

: (Generate listings for FILEA,FILEB,and FILED;

see 2.6.2)

LOAD FILEA,FILEB,%60000FILEC |

(Pass origin switch to LOADER; see "Loader-
Switches" 2.6.4)

*Refer to footnote in Table 2-1

Each time a coments, LOAD, EXECUTE, or DEBUG COMMAND

is executed, the command with its arguments is "remembered" as a

file on the disk. Because of this, the filename last used may

be recalled for the next command without specifying the arguments

again. (See last paragraph in Section 2.5)

Deven Extended Command Forms

The commands shown in Table 2-5 are adequate for the

compilation and execution of a single program or a small group

of programs at one time. However, the assembly of large groups

of programs, such as the FORTRAN library or the Time-Sharing

2-17

: 326
Monitor, is more easily accomplished by means of one or more of

|
the extended command forms.

226 alee lt The @ Fide

When there are many program names and switches, they

can be put into a file so that they do not have ae typed in

for eauhe coriaeion. This is accomplished by the use of the

"@ file" construction, which may be combined with bay of the

commands in Tables 2-3 and 2-5.

The "@ file" must appear at any point agter the first

word in the command. In this construction "file" must be a file-

name, which may have an extension and project-programmer numbers.

If the extension is omitted, a search is made for the command

file with a null extension and then for a command file with the

extension .CMD. The information in the command file specified

is then put into the command Steen to replace the characters

"@ file".

For example, if the file FLIST contains the string

FILEB,FILEC/LIST,FILED

then the command

COMPILE PILEA , FILEB ,FILEC/LIST FILED, FILEZ

could be replaced by

COMPILE FILEA , @FLIST, FILEZ

Command files themselves may contain the "@ file" con-

struction to a depth of nine levels. If this indirecting process

sneuia result in files pointing in a loop, the maximum depth will

rapidly be exceeded and an error message will be produced.

The following rules are used in the handling of format

characters in a command file.

327

a) Spaces are used to delimit words but are otherwise

ignored. Similarly, the characters TAB, VTAB, and FORM are

treated like spaces.

b) The characters CARRIAGE RETURN,LINE-FEED, AND

ALTMODE are ignored if the first non-blank character after a

sequence of returns, line-feeds, and altmodes is a comma. Other-

wise, they are treated either as commas by the COMPILE, LOAD,

EXECUTE, and DEBUG commands or as command terminators by all the

other commands appearing in Tables 2-3 and 2-5.

c) Blank lines are completely ignored since strings

of returns and line-feeds are considered together.

d) Comments may be included in command files by pre-

ceding the comment with a semicolon. All caus from the semicolon

through the line-feed is ignored.

e) If command files are sequenced, the sequence num-

bers are ignored.

96.1.2. The "+" Construction

A single relocatable binary file may be produced from

a collection of input source files by means of the "+" construc-

tion. For example, a user may wish to compile the parameter

file, S.MAC, the switch file, FT50SB.MAC, and the file that is

the body of the program, APRSER.MAC. This is specified by the

following command:

COMPILE S + FT50SB + APRSER

The name of the last input file in the string is given to any

output (.REL and/or .LST) files (e.g., APRSER. in the foregoing

example). The source files in the "+" Gonstruction may each con-

lysed in COMPILE, LOAD, EXECUTE, and DEBUG commands only.

328
tain device and extension information and project-programmer

numbers. e

2/6n1.. 3. = The ="" Construction:

Usually the filename of the binary file is the same as

that of the source file, with the extension specifying the dif-

ference. This can be changed by use of the "=" construction,

which allows a filename other than the source filename to be

given to the output file. For example, if a binary file is

desired with the name BINARY.REL from a source program with the

name SOURCE.MAC, the following command is used.

COMPILE BINARY = SOURCE

This same technique may be used to specify an output name to a

file produced by use of the "+" construction. To give the name

WHOLE.REL to the binary file produced by PART1.MAC and PART2.MAC,

the following is typed.

COMPILE WHOLE = PART1 + PART2

2 sOrel 4 The "C>" construction?

The "C>" construction causes the programs within the

angle brackets to be assembled with the same parameter file. If

a + is used, it must appear before the <> construction. For

example, to assemble the files LPTSER.MAC, PTPSER.MAC, and

PTRSER.MAC, each with the parameter file S.MAC, the user may

type

x COMPILE S + LPTSER, S + PTPSER, S + PTRSER

But -by using the angle brackets, the command becomes

COMPILE S +CLPTSER,PTPSER,PTRSER >

The user cannot type

COMPILE <LPTSER,PTPSER,PTRSER>+ S

lUsed in COMPILE, LOAD, EXECUTE, and DEBUG commands only.

2-20

329

De VaP Compile Switches!

The COMPILE, LOAD, EXECUTE, and DEBUG commands may be

modified by a number of switches. Each switch is preceded by a

slash (/SWITCH) and is terminated by any non-alphanumeric charac-

ter, usually a Space or a comma. An abbreviation'may be used as

long as it uniquely identifies a particular switch.

These switches may be either temporary or permanent.

A temporary switch is appended to the end of the filename, with-

out an intervening space, and applies only to that file.

Example: COMPILE A,B/MACRO,C (The MACRO assembler

applies only to file B)

A permanent switch is set off from filenames by spaces,

commas or any combination of the two. It applies to all the

following files unless modified by a subsequent switch.

Example:

COMPILE A,/MACRO,B,C

COMPILE A /MACRO B,C

COMPILE A,/MACRO B,C

PR SG) 5 GAL Compilation Listings

Listing files may be generated by ene use of switches.

The listings may be of the ordinary or the cross-reference type.

The operation of the switch produces a disk file with the ex-

tension .LST.

The compile-switches "LIST" and "NOLIST" cause listing

and non-listing of programs. These agiibnes may be used as

either temporary or permanent switches.

lUsed in COMPILE, LOAD, EXECUTE, and DEBUG commands only.

2-21

330

COMPILE /LIST A,B,C

will generate listings of all three programs.

COMPILE A/LIST, B,C

will generate a listing only of program A.

COMPILE -/LIST A, B/NOLIST, Cc

will generate listings of programs A and C.

The compile-switch "CREF" is just like "LIST", except

that a cross-reference listing is generated, to be processed

later by the program "CREF".

Unless the /LIST or /CREF is specified, no listing

file is generated. The LIST command is used to obtain printer

output of regular listing files and the CREF command to obtain

printer output of CREF listing files.

Since the "LIST", "NOLIST", AND "CREF" Switches are so

commonly used, the switches "L", "N", and "C" are defined with

the corresponding meanings, even though there are (for instance)

other switches beginning with the letter "ZL". Thus the command

COMPILE /L A

produces a listing file "A.LST" (as well as, of course, "A.REL").

ZO 2ia 2 The "Standard Processor"

The "standard processor" is used to compile or assemble

programs which do not have the extensions sMAG).F4) or. RET:

There are a number of switches for setting the "standard

prouescen”. If all source files are kept with the appropriate

extensions, this subject can be disregarded.

If the command

COMPILE A

is executed and there is a file named "A."(that is, with a blank

222

331

extension), then "A." will be translated.to "A.REL" by the

"standard processor", Similarly, if the command

COMPILE FILE.NEW

is executed, the extension ".NEW", although meaningful to the

user, does not specify a language, so the "standard processor"

will be used. For these cases the user must be able to control

the setting of the "Standard processor".

The "standard processor" is FORTRAN IV at the begin-

ning of each command string.

The “standard processor" may be changed by the follow-

ing compile-switches:

MACRO change standard to MACRO
M same as MACRO
FORTRAN change standard to FORTRAN IV

1 same as FORTRAN

REL change standard to use RELocatable

binary; i.e., use existing .REL
files, even though a newer source

file may be present. (Useful
primarily in LOAD, EXECUTE, DEBUG

commands) .

These switches may be used as "temporary" or "per-

manent". For example, assume that programs A, B, and C exist on

the disk, with blank extensions. Then

COMPILE A, B/M, C

will cause A and C to be translated by FORTRAN, B by MACRO.

COMPILE A, /M B, C

will cause A to be translated by FORTRAN, B and C by MACRO.

NOTE

Programs with .MAC and .F4 extensions are always translated by

the extension implied, regardless of the "standard processor."

1

‘ 332

Mise 7 AS Forced Compilation

~

The compilation (or assembly) occurs if the source

file is at least as recent as the relocatable binary file. If

the binary is newer than the source, there is not normally any

need to perform the translation.

There are cases, however, where such extra translation

may be desirable, as for instance, when one desires a listing of

the assembly. To force such an assembly, the switch "COMPILE"

is provided, again in both temporary and permanent form. For

example:

COMPILE /CREF / COMPILE A, B, C

will create cross-reference listing files A.LST, IBS SUKSHe e) “rlig\ol

C.LST, even though current .REL files may exist. In fact, the

binary files will also be recreated.

The corresponding switch "NOCOMPILE" is also provided,

to turn off the forced-compile made. Note that this differs

from the /REL switch which turns off even the normal compilation

caused by a source file newer than the .REL file.

2% Omar Library Searches

The LOADER normally performs a library search of the

FORTRAN library. Sometimes it is necessary to search other files

as libraries. To do this, the compile-switches "LIBRARY" and

(its complement) "NOSEARCH" are provided.

These switches may be used as either "permanent" or

"temporary".

For example, suppose a special library file named

SPCLIB.REL were kept on device SYS at a particular installation.

Then to compile and load a user program, library search the

333

special library, and then search the normal FORTRAN library, the

following command could be used:

LOAD MAIN,SYS:SPCLIB/LIB

At this point, it should be noted that the program SPCLIB is not

assembled simply because its source file is presumably not on

device SYS. The COMPILE process will compile any program named

in the command string, if its source is present and not older

than the .REL file, unless prevented by the /REL switch.

DeOrm Die Loader Maps

Loader maps are produced during the loading process by

the compile-switch "MAP". When this switch is encountered, a

loader map is requested from the Loader. The map will be

written with filename MAP.MAP, in the user's disk area.

This compile-switch is the one exception to the

"permanent compile-switch" rule, in that it causes only one map

to be output, even though it may appear as a permanent switch.

DIG. 3 Processor Switches !

Occasionally it is necessary to pass switches to the

assembler or compiler. Recall that for each translation (assem-

bly or compilation), a command string is sent to the translator

containing three parts: the source files, a binary output file,

and a listing file.. If the user wishes to add switches to those

files, he must do so as follows:

a) If the "+" construction is used, group the switches

according to each related source filename.

b) Group the switches according to the three types of

files (source, binary, and listing) for each source filename.

lUsed in COMPILE, LOAD, EXECUTE, and DEBUG commands only.

2-25

334

c) For each source filename, separate the groups of

switches by commas.

& d) Enclose all the switches for each source filename

within one set of parentheses.

(SSSS) Only source switches are
present

(SSSS ,BBBB) Source and binary switches
are present

(SSSS,BBBB,LLLL) Source, binary, and listing

switches are present.

e) Place each parenthesized string immediately after

the source filename to which it refers.

Examples:

DEBUG TEST (N) Suppress typeout of errors during
assembly.

COMPILE OUTPUT MTAQ: (W,S,M) /L

Rewind the magtape (W), compile the
first file, produce binary output for
the PDP-6(S), and eleminate the MACRO
coding from the output listing (M).
Output files are given the names
OUTPUT.REL and OUTPUT.LST.

COMPILE/MACRO A = MTAO: (W,,Q) /L

Rewind the magtape -(W), compile the
first file, and suppress Q (questionable)
error indications on the listing. Note

2 that when a binary switch is not present,.
the delimiting comma must appear.

COMPILE/MACRO A = MTAO:(,,Q)/L

Compile file at current position of the
tape and suppress Q error indications
on the listing. Note that when the
source and binary switches are not
present, the delimiting comma must
appear.

2.6.4 Loader Switches!

In unusually complex loading processes, it may be

necessary to pass loader-switches to the LOADER to direct its

1Used in COMPILE, LOAD, EXECUTE, and DEBUG commands only.

2-26

335

operation. These are passed via the COMPILE, LOAD, EXECUTE, and

DEBUG commands. These switches must be passed to the LOADER’

(not to the compiler or assembler). This is accomplished by the

% character. The % has the same meaning as that Of oehe> 7am =the

Loader's command string. Also, like the /, it takes one letter

(or a sequence of digits and one letter) following it. Therefore,

to set’ a program origin of 6000 for program C, the user types

LOAD A,B, %60000C,D

The most commonly used switches are:

%S Load with symbols

enO Set program origin to n

SF Cause early search of FORTRAN library

$P Prevent FORTRAN library search

DeAGis® Temporary Files

The COMPIL CUSP deciphers the commands found in Tables

2-3 and 2-5 and constructs new commands for the CUSPS that were

referenced. These new commands are written as temporary files

on the disk, as are all of the Monitor-level commands. COMPIL

and the other CUSPS transfer control directly to one another

without requiring additional typed-in commands from the user.

Temporary filenames have the following form:

nnnxxx. TMP

where nnn is the user's job number in decimal, with leading

zeros to make three digits and xxx specifies the use of the file.

In the filenames listed below, job number 1 will be assumed.

PES Sek 001SVC.TMP

This file contains the most recent COMPILE, LOAD,

EXECUTE, or DEBUG command which included arguments. It is used

to remember those arguments. See section 2.6.

2-27

336

EIS SAC OO1EDS .TMP

This file contains the most recent EDIT, CREATE, TECO,

or MAKE command which included an argument. It is used to

remember that argument. See section 2.5

2.6.5.9. OOUMAGCSIMP

This file contains commands to MACRO. It is written

by COMPIL, and ready by MACRO. It contains one line for each

program to be assembled, and (if required) the command

NAME!

to cause MACRO to transfer control to the named CUSP ("name

may be F40, LOADER, etc.).

2s Ore Dia 4 OOLFOR.TMP

This file corresponds exactly to the one described in

the preceding section, except that it is read by the FORTRAN IV

compiler, F40.

210m Davo 001PIP.TMP

This file is written by COMPIL and read by PIP. It

contains ordinary PIP commands to implement the DIRECTORY, LIST,

TYPE, RENAME, and DELETE commands.

PAA) G5) 5A) 001CRE.TMP

This file is written by COMPIL and read by CREF. It

contains ponmenas to CREF corresponding to each file which has

produced a CREF listing on the disk.

COMPIL also reads this file, if it exists, each time

a new CREF listing is generated, to prevent multiple requests

2-28

337

for the same file, and to prevent discarding other requests which

may not yet have been listed.

Prt 5 3) 7 OO1LEDT.TMP

This file is written by COMPIL for each EDIT, CREATE,

TECO, or MAKE command, and is read by either the LINED or TECO

CUSP.

For the commands MAKE or CREATE, it contains the

command

Sfile.ext

For the commands TECO or EDIT, it contains the command

Sfile.ext (GLINEFEED)

Dheel. RUN CONTROL COMMANDS

By using a run control command, the user can load core

image files from retrievable storage devices (i.e., disk, DECtape,

magnetic tape). These files can be retrieved and controlled from

the user's console. Files stored on disk and DECtape are addres-

sable by name. Files on magnetic tape require the user to pre-

position the tape to the beginning of the file.

338

Table 2-6

Monitor Commands to Call, Load, and Control Programs

5 2
5 o* xy

xy ye

12 &
J xf

oe iS
Command pe Explanation Ose Monitor Messages

RUN dev RU To load a core image from a retriev- dev: NOT AVAILABLE
file.ext able storage device and start it at The device has been
[proj ,prog] the location specified within the file assigned to another job.
core (JOBSA) .

i NO SUCH DEVICE

If the program has two segments, both The device does not exist.

the low and high segments will be set
up. If the high file has extension
.SHR (as opposed tg .HGH), the high
segment will be shared. A two-
segment program may have a low file
extension (.LOW).

nK OF CORE NEEDED

There is insufficient
free core to load the

file.

NOT A DUMP FILE

The file is*not a core

image file.
dev The logical or physi-

cal name of the device
containing the core
image. TRANSMISSION ERROR

A parity or device error
file.ext The name of the file occurred during loading.

containing the core
image; if .ext is
omitted, it is assumed
to be SHR + LOW,

HGH + LOW, or SAV.

See SAVE, SSAVE.

{[proj.prog] Project-programmer
number; required only
if core image file is
located in a disk area
other than the user's.

core Amount of core to be
assigned if different

from minimum core
needed to load the
the program or from
the core argument of
the SAVE command which
saved the file. Since
previous core is re-
turned, MTA must have

this argument because
there is no directory
to tell how much core

; for low segment.

R file.ext Same as RUN SYS: file.ext core. The Same as RUN
core R command is the usual way to run a

5 CUSP that does not have a direct

Monitor command to run it.

GET dev G

file.ext
Same as RUN command except that

Monitor types out
Same as RUN

[proj ,prog]
core Paths JOB SETUP

and does not start execution.

Command

START adr

HALT (4+C)

vi

e

é

:

Explanation

Begins execution of a program pre-
viously loaded with the GET command.

The address at which
execution is to begin
if other than the
location specified
within the file
(JOBSA). If adr is

not specified, the
starting address comes
from JOBSA.

adr

NO CORE ASSIGNED

No core was allocated to
the user when the GET
command was given and no
core argument was speci-
fied in the GET.

NO START ADR

Starting address was 0
because user failed.to
specify a starting
address in END statement
of source program.

Places the console in Monitor mode and

transmits a HALT command to the Moni-
tor Command Interpreter. Stops the

job and stores the program counter
in the job data area (JOBPC).

Starts the program at the saved pro-
gram counter address stored in JOBPC
by a HALT command (tC) or a HALT
instruction.

Copies the saved program counter value

from JOBPC into JOBOPC and starts the
program at an alternate entry point

specified.-in JOBDDT (beginning address
of DDT as set by Linking Loader). DDT
contains commands to allow the user to
start or resume at any desired address

Similar to the DDT command. Copies
saved program counter value from
JOBPC into JOBOPC and starts program
at an alternate entry point specified
in JOBREN (must be set by the user or
his program) .

Examines a core location in the user's
area (high or low segment) -.

adr If this argument is
specified, the con-

tents of the location
are typed out in half-
word octal mode. Adr
is required the first
time the E or D

command is used.

If adr is not speci-
fied, the contents of

the location following
the previously speci-
fied E adr or the
location of the
previous D adr are
typed out.

CAN'T CONTINUE

The job was halted due
to a Monitor-detected
error and can't be
continued. -

NO START ADR
DDT starting address was
0 (JOBDDT).

NO START ADR

REENTER starting address
was 0 (JOBREN) .

OUT OF BOUNDS

The specified adr is not
in the user's core area,

or the user does not have
read privileges to file
which initialized the
high segment.

Command Explanation

D lh rh adr Deposits information in the user's OUT OF BOUNDS
core area (high or low segment). The specified adr is

not in the user's core
lh - The octal value to be area, or high segment

deposited in the left . is write protected and
half of the location. user does not have

write privileges to
The octal value to be file which initialized

deposited in the the high segment.
right half of the
location.

The address of the
location into which
the information is to
be deposited.

If adr is omitted, the
data is deposited in
the location following
the last D adr or in
the location of the
last E adr.

SAVE dev Writes out a core image of the user's n 1K BLOCKS OF CORE
file.ext coré area on the specified device. NEEDED
core Saves any user program (reentrant, one The user's current core

segment non-reentrant, or two segment allocation is less than
non-reentrant) as one or two files. the contents of JOBFF.
Later when the program is loaded by a
GET, R, or RUN command, it will be DEVICE NOT AVAILABLE

non-reentrant. If DDT was loaded with Device dev is assigned
the program, the entire core area is to another user.
written; if not, the area starting

from zero up through the program break TRANSMISSION ERROR
(as specified by JOBFF) is written. An error was detected

while reading, or writ-
dev The device on which ing the core image

the core image file is file.
to be written.

DIRECTORY FULL
file.ext The name to be assign- The directory of device

ed to the core image dev is full; no more
file. If ext is files can be added.
omitted and the pro-
gram has only one JOB SAVED
segment, the ext is The output is completed.
assumed to be .SAV.
If ext is omitted and
the program has two
segments, the high

segment will have
extension .HGH, and
the low segment will
have extension .LOW.

Amount of core in
which the program is

to be run. This value
is stored in the job's
core area (JOBCOR) and

is used by the RUN and
GET commands. Speci-
fied as number of 1K
blocks.

341

Explanation
If core is omitted,
only the number of
blocks required by
the core image area
(as explained above)
is assumed.

SSAVE dev Same as SAVE except that the high
file.ext segment will be sharable when it is
core ; loaded with the GET command. To

indicate this sharability, the high
segment is written with extension.
-SHR instead of .HGH. A subsequent
GET will cause the high segment to be
sharable. Because an error message
is not given if the program does not
have a high segment, a user can use
this command to save CUSP's without
having to know which are sharable.

*Refer to footnote in Table 2-1

Pag I) coll Additional Information on SAVE and SSAVE

Low segment files will be zero compressed on all

devices (DTA,MTA,DSK), but high segment files will not since the

high segment may be shared at the time of the command. Saved

files are ordinary binary files and can be copies using the /B

switch in PIP.

In order to save file space, only the high segment up

through the highest location (relative to high segment origin)

loaded, as specified in the LH of JOBHRL, will be written by the

SAVE command. If LH is zero (high segment created by CORE or

REMAP UUO) or DDT is present, the entire high segment will be

written.

342

It is possible for most programs to be written so that

only the high segment contains non-zero data. This will also

save file space and I/O time with the GET command. SAVE will

write the high segment (.HGH) only. The LOADER will indicate to

the SAVE command that no data was loaded above the Job Data area

in the low segment by setting the LH of JOBCOR to the highest

_location loaded in the low segment with non-zero data.

There are a number of locations in the Job Data area

which need to be initialized on a GET, even though there is no

other data in the low segment. The SAVE command copies these

locations into the first 10, locations of the high segment, pro-

vided it is not sharable. These 10 locations are referred to as

the Vestigial Job Data area. Therefore, the LOADER will load

high segment programs starting at location 400010.

To prevent user confusion, SAVE and SSAVE delete a

previous file with the extension .SHR or .HGH. Therefore, SAVE

deletes a file with the extension .SHR and SSAVE deletes a file

with the extension .HGH. Both commands also delete a file with

the baveneioa .LOW, if the high segment was the only segment

written.

The regular access rights of the saved file indicate

whether a user can do a GET, R, or RUN command. These commands

will assume eeat the user wants to execute (but not modify) the

high segment independent of the access rights of the: file used

to initialize the segment. The Monitor will always enable the

hardware user-mode write protect to prevent the user program

from storing into the segment inadvertently.

To debug a reentrant CUSP which is in the system

directory, the user should make a private, non-sharable copy,

rather than modifying the shared version and possibly causing

2-34 g

343

harm to other users. To make a private, non-sharable copy, the

following commands are used.

a) GET SYS CUSP

b) SAVE dev CUSP Writes a file in the user
directory as non-sharable.

The high segment in the’
user's addressing space
remains sharable.

c) GET dev CUSP Overlays the sharable
program with the non-
sharable one from the
user's directory. Now
the user can make patches
while other users share
the version in the system
directory.

The Monitor will keep the shared and the non-shared versions

separate from each other. A sharable program may be superseded

into the directory by the SSAVE command. The Monitor will clear

the high segment in its table of storable segments in use but

will not remove the segment from the addressing space of users

/

currently using it. Only the users doing a GET, R, or RUN com-

mand or a RUN or GETSEG UUO will have the new sharable version.

When the SAVE or SSAVE command is used to save a

sharable program with only a high file, the Monitor will not

modify the Vestigial Job Data area unless the user has write

privileges to the file which initialized the shared segment.

This prohibits unauthorized users from modifying the first 10

locations of a shared segment. This restriction does not exist

if a low file is also written, since the GET command reads the

low file after the high file. The real Job Data area locations

are set from the low file.

344

P 2e8 BACKGROUND JOB CONTROL COMMANDS

A job is a background, or detached, job if it is not

under control of a user console. Any console can initiate any

number of background jobs. r/o to the console while a job is

running ina background mode causes the job to stop until a

console is attached.

Table 2-7

Monitor Commands to Control Background Jobs

Command Explanation

Monitor responds by typing the job
number to which the user's console is

attached.

10/40 System - If the console is not
attached to a job, Monitor assigns a
job number and types the job number
and a line identifying the Monitor
version.

10/50 System - If the console is not

attached to a job, Monitor responds
with LOGIN PLEASE.

CSTART Identical to the START and CONT com- Same as START and CONT.

CCONT mands, respectively, except that the
console is left in the Monitor mode.
Roms ei:

Begin the program with the con-
sole in user mode.

Type control information to the
program, then type tC to halt job
with console in Monitor mode.

Type CCONT to allow job to con-
tinue running and leave console
in Monitor mode.

Further Monitor commands can now

be entered from the console.

Caution: These commands should not
be used when the user pro-
gram (which is continuing
to run) is also requesting
input from the console.

DETACH Disconnects the console from the
user's job without affecting the
status of the job. The user console
is now free to control another job,
either by initiating a new job or
attaching to a currently running
background job.

ATTACH job] AT

Explanation

Connects a console to a background
job.

job The job number of the
job to which the con-
sole is. to be attach-
ed.

The project-programme
number of the orig-
inator of the desired
job. May be omitted
if same as job to
which console is cur-
rently attached. The
operator (device OPR)
may always attach to
a job even though
another console is
attached, provided he
specifies the proper

[proj,prog] .

[proj,prog]

*Refer to footnote in Table 2-1

If an error message
occurs, the console re-

mains attached to its
current job.

TTYn ALREADY ATTACHED

Job number typed is
erroneous and is attach-

ed to another console,

or another user is
attached to the job.

NOT A JOB

The job number is not
assigned to any cur-
rently running job.

CAN'T ATTACH TO JOB

The project-programmer
number entered is not
that of the originator
of the desired job.

JOB TERMINATION COMMANDS

When a user leaves the system, all facilities allocated

to his jobs must be returned to the Monitor facility pool so that

they are available to other users.

Table 2-8

Monitor Command to Terminate Jobs

%
62
Oe

49

Oe
Command Explanation Ss ionitor Messages

KJOB K In Multiprogramming Systems: m

Stops all allocated I/O devices and returns A

7 them to the Monitor pool.
Returns all allocated core to the Monitor

pool.
Returns the job number to the pool.
Leaves the console in the Monitor mode.

Performs an automatic TIME command.

In Swapping Systems:
All of the above procedures. In addition, if
user has any files, responds with:

~ CONFIRM:

P&S Si

Command Explanation

To which the user may type tC to abort
log-out; or type one of the following:
K J) to kill job and delete all unprotected
files;
LJ to list his disk directory;
I) to individually save and delete files as
follows:

After each file name is listed, type:
P to save and protect, S to save without

protecting, or) to delete. Files with
extensions.LST and .TMP will be deleted
automatically.

‘

*Refer to footnote in Table 2-1

2 e0 SYSTEM TIMING COMMANDS

All system times are kept in increments of one-sixtieth

or one-fiftieth of a second, depending on the power frequency of

the country in which the PDP-10 is installed.

Table 2-9

Monitor Commands for System Timing

Command Explanation

DAYTIME Types the date followed by the time of day.
Time is typed in the format.

hh:mm

hours
minutes

Types out the total running time since the
last TIME command followed by the total

running time used by the job since it was
initialized (logged in), followed by the
integrated product of running time and core
size (KILO-CORE-SEC=). Time is typed in the
format

hh:mm:ss.hh

= hours

= minutes

ss.hh = seconds to nearest hundredth.

2-38

Command

347

Explanation

charged to the

job

*Refer to footnote in Table 2-1

Peal

Interrupt level and job scheduling times

interrupt or rescheduling occurred.

are
user who*was running when the

The job number of the job
whose timing is desired.

If job is omitted, the job to
which the console is attached
is assumed. In this case,

Monitor types out the incre-
mental running time (running
time since last TIME command)

as well as the total running
time since the job was
initialized.

If job = 0, an approximation
of the time spent core shuf-
fling (SHFL) is printed,
followed by the amount of time
spent clearing core (ZCOR),
the running time of the null
job (NULL),the time during
which one or more jobs wanted
to run but were swapped out or
in the process of being swap-
ped out (LOST), and the total
time system has been up (UP).

SYSTEM ADMINISTRATION COMMANDS

a 4 5
Ck-Monitor Messages

The SYSTAT command permits a user to learn how heavily

the system is loaded and the status of devices in the sharable

device pool.

to system administrators only.

The other commands in this section are restricted

Command

SCHEDULE n

SYSTAT

ASSIGN

. SYS :dev

DETACH dev

ATTACH dev

CTEST

=

a

348
Table 2-10

Monitor Commands for System Administration

Explanation

Changes the scheduled use of the system, de-

pending on n. This command is- legal only from
the operator's console. n is stored in RH of
STATES word in COMMON:

0 regular time sharing.
1 = no further LOGINS allowed.
2 no further LOGINS from remote TTY's.

If n is omitted, the current value of n is

printed.

Types out status of the system: system name,
time of day, date, uptime, percent null time.
Status of each job: job number, project-
programmer number (**** if detached), TTY
number, program name being run, size of low
segment, state (RN = runable, TT = TTY input
wait, C = Monitor command mode) and run time.
Status of high segments being used: name,
directory name, size, number of users in core
or on disk. Status of each assigned device:
name, job number, how assigned (AS = ASSIGN
command, INIT = INIT UUO).

To change the systems device to device "dev."
The user must be logged, in under either [1,1]

Th (he | MERA 4

To assign the device "dew" to JOB 0, thus
making it unavailable. The user must be
logged in under [1,1].

To return a detached device to the Monitor
pool of available devices. The user must be

logged in under [1,1].

This command is used by system programmers to
test extensions made to the COMPIL CUSP.

*Refer to footnote in Table 2-1

2-40

349

Pedy? MONITOR DIAGNOSTIC MESSAGES

Once a user program has been started, a number of error

conditions may arise which cause the job to revert to monitor

mode. The error messages typed, and the meanings for each are

summarized in the following table.

Table 2-11

Time-Sharing Monitor Diagnostic Messages

The typein is typed back The Monitor command decoder has
followed by ? J) encountered an incorrect character,

such as a letter in a numeric argu-
ment. The incorrect character
appears immediately before the ?.
Example:

User types in: CORE ABC
Monitor responds: CORE A ?)

ADDRESS CHECK FOR DEVICE Monitor has checked a user address

dev AT USER adr and has found it to be too large
(>C(JOBREL)) or too small (<JOBPFI)
Some user addresses can be the

user's accumulators while others
cannot.

One of the following addresses may
be wrong:

buffer
buffer header
dump mode command list
data specified by dump mode

command list
insufficient core available for

setting up
Monitor-generated buffers.

BAD DIRECTORY FOR DEVICE The DECtape directory is not in
DTAn; proper format or had a parity error
UUO AT USER adr when read. Many times this error

occurs when an attempt is made to

use a virgin tape.

DEVICE dev OK? Device dev is temporarily in an
inoperable state, such as LPT off-
line. The user should correct the
obvious condition and then type a
CONT command.

2-41

350

Table 2-11 (Cont)

Time-Sharing Monitor Diagnostic Messages

Message a Meaning

ERROR IN JOB n A fatal error has occurred in the
user's job (or in Monitor while
servicing the job). This typeout
is normally followed by a 1-line
description of the error.

HALT AT USER adr The user program has executed a
halt instzuctionjat loc. adr.
Typing CONT will resume execution

at the effective address of the

halt. 5

HUNG DEVICE dev;

UUO AT USER adr

A device has not generated an in-
terrupt for a timed period and,
therefore, is in need of attention.

ILLEGAL DATA MODE FOR
DEVICE dev AT USER adr

The data mode specified for a
device in the user's program is
illegal.

ILLEGAL UUO AT USER adr An illegal UUO has been executed
at user location adr.

ILL INST. AT USER adr An illegal operation code has been
encountered in the user's program.

ILL MEM REF AT USER adr An illegal memory reference has
been made by the user program at
adr or adr+l.

The retrieval pointers for a file
are not in the correct format; the
file is unreadable. If this type-
out occurs, the user should report
it on a Software Trouble Report.

INCORRECT RETRIEVAL
INFORMATION:
UUO AT USER adr

INPUT DEVICE dev

CANNOT DO OUTPUT;

UUO AT USER adr

An illegal OUTPUT UUO has been
executed at user location adr.

I/O TO UNASSIGNED CHANNEL
AT USER adr

No OPEN or INIT was performed on
the channel.

LOOKUP AND ENTER HAVE

DIFFERENT NAMES:

UUO AT USER adr

An attempt has been made to read
and write a file on the disk.
However, the LOOKUP and ENTER UUO's

have specified different names on
the same user channel. This mes-
sage does not indicate a DECtape
error.

351e5-

Table 2-11 (Cont)

Time-Sharing Monitor Diagnostic Messages
/

Meaning
rr TTT

MASS STORAGE DEVICE FULL;

UUO AT USER adr :

The storage disk is full. Users
must delete unneeded files before
the system can proceed.

‘Monitor has encountered an error

while reading or writing a critical
_ NON-RECOVERABLE DISC READ

ERROR;
UUO AT USER adr

-NON-RECOVERABLE DISC WRITE

ERROR;
UUO AT USER adr

NOT ENOUGH FREE CORE IN
MONITOR:
UUO AT USER adr

NOT FOUND

OUTPUT DEVICE dev CANNOT

DO INPUT;

UUO AT USER adr

PC EXCEEDS -MEMORY BOUND

AT USER adr

SWAP READ ERROR

block in the disk file structure
(e.g., the MFD or the SAT table).
If this condition persists, the
disk must be reloaded using Fail-
safe after the standard location

for the MFD and SAT table has been

changed using the Monitor once-
only dialogue.

The Monitor has run out of free
core for assigning disk data
blocks and Monitor buffers. If
this type-out occurs, the user
should report it on a Software
Trouble Report.

The program file requested cannot

be found on the systems device (or

on the specified device).

An illegal INPUT UUO has been
executed at user location adr.

An illegal transfer has been made

by the user program to user
location adr.

A consistent checksum error has

been encountered when checksumming

locations JOBDAC through JOBDAC+74

of the Job Data area during

swapping.

352

353

CHAPTER 3

LOADING USER PROGRAMS

3.1 MEMORY PROTECTION AND RELOCATION

Each user program is run with the processor in a special

mode known as the user mode, in which the program must operate

within an assigned area in core and certain operations are illegal.

Since every user has an assigned area in core, the rest of core is

unavailable to him; he cannot gain access to the protected area for

either storage or retrieval of information.

The assigned area of each user may be divided into two

segments. If this is the case, the low segment is unique for a

given user and can be used for any purpose. The high segment may

be used by a single user or it may be shared by many users. If the

high segment is shared by other users, the program is a reentrant

program. The Monitor can write-protect the high segment so that

the user cannot alter its contents. This is done, for example,

when the high segment is a pure procedure to be used reentrantly by

Many users. One high pure segment may be used with any number of

low impure segments. See Chapter 1 for the distinctions between

pure and impure segments. Any user program which attempts to

write in a write-protected high segment is aborted and receives an

error message. If the Monitor defines two segments but does not

write-protect the high segment, the user has a two-segment non-

reentrant program (see SETUWP UUO).

The Time-Sharing Monitor defines the size and position of

a user's area by specifying protection and relocation addresses for

the low and high segments. The protection address is the maximum

relative address the user can reference. The relocation address is

the absolute core address of the first location in the segment, as

Jeb

354

seen by the Monitor and the hardware. The Monitor defines these

addresses by loading four 8-bit registers (two 8-bit registers in”

PDP-10's without the KT10A option), each of which corresponds to

the left eight bits of an 18-bit PDP-10 address. Thus, segments

always contain an even multiple of 1024 words.

In user mode, the PDP-10 hardware automatically relocates

user addresses by adding the contents of the memory relocation

register in the central processor to the high-order eight bits of

the user address before the address is sent to memory. The address

before the addition is the relative address and after the addition

is the absolute address. To determine whether a relative address

is legal, its eight high-order bits are compared with the contents

of the memory protection register. If the relative address is

greater than the contents of the memory protection register, the

Memory Protection flag is set in the central processor, and control

traps to the Monitor, which aborts the user program and prints an

error message on the user's console (unless the user program has

instructed the Monitor to pass such interrupts to itself for error-

handling). See APRENB UUO, 4.3.3.1. ay

Some systems have only the low pair of protection and

relocation registers. In this case, the user program is always non-

reentrant and the assigned area comprises only the low segment.

When the Monitor schedules a user's program to run, the

memory protection and relocation registers are set to the bounds of

the user's allocated core area and the central processor is switched

to user mode.

To take advantage of the fast accumulators, memory ad-

dresses 0-17 are not relocated, all users having access to the

accumulators. Therefore, relative locations 0-17 cannot be Gerer=

enced by a user's program. The Monitor saves the user's accumulators

3=2

355

in this area when the user's program is not running and while the

Monitor is servicing a UUO from the user. See Book 1 for a more

complete description of the relocation and protection hardware.

Ba USER'S CORE STORAGE

A user's core storage consists of blocks of memory whose

sizes are an integral multiple of 1024,9 (2000g) words. In a non-

reentrant Monitor, the user's core storage is a single contiguous

block of memory. After relocation, the first address in a block

is a multiple of 2000g. The relative user and relocated address

configurations are illustrated below, where Pre Ryr Pur and Ry are

the protection and relocation addresses, respectively, for the low

and high segments as derived from the 8-bit registers loaded by the

Monitor. If the low segment is more than half the maximum memory

Capacity (P,> 400000), the high segment starts at the first location

after the low segment (at Py +°2000). The high segment is limited

to 128 K. on, HARDWARE
o 17 ACCUMULATORS

LOW s
SEGMENT

PL +1777

Ry + 400000

ILLEGAL Ry + Py +1777

/

400000 Rip, +20
HIGH

SEGMENT RL +440
Py t+ 1777

RL+ PL+1777

ILLEGAL | |
| NON- | Ry MUST BE NEGATIVE

EXISTENT UNLESS SYSTEM HAS A
| MEMORY MEMORY LARGER THAN

| 28K.

777777 Lees eS J
USER ADDRESSES TYPICAL PHYSICAL ADDRESS
BEFORE RELOCATION CONFIGURATION AFTER

RELOCATION

Figure 3-1

User's Core Area

3-3

356
There are two methods available to the user for loading

his core area. The simplest way is to load a core image stored on

a retrievable device (see RUN and GET, Chapter 2). The other method

is to use the relocatable binary loader to link-load binary files.

The user may then write the core image on a retrievable device for

future use (see SAVE, Chapter 2).

Sree Job Data Area

The Job Data area provides storage for specific informa-

tion of interest to both the Monitor and the user. The first 140

(octal) locations of the user's core area always are allocated to

the Job Data area. Locations in this area have been given mnemonic

assignments whose first three characters are JOB. Therefore, all

mnemonics in this manual with a JOB prefix refer to locations in

the Job Data area.

Table 3-1

Job Data Area Locations

(for user-program reference)

Octal

Name Location Description

JOBUUO 40 User's location 40,. Used for processing
user UUO's (001 through 037). Op code and
effective address are stored here.

User's location 41,. Contains the beginning
address of the user's programmed operator
service routine (usually a JSR or PUSHJ).

JOB41

JOBERR Left half: Unused at the present.
Right half: Accumulated error count from
one CUSP to the next. CUSPs should be
written to look at the right half only.

ett halt: 1 Ol.

Right half: The highest relative core loca-
tion available to the user (i.e., the
contents of the memory protection register
when this user is running).

JOBREL

357

Table 3=L (Cont)

Job Data Area Locations

(for user-program reference)

Octa
Name Location Description

JOBBLT Three consecutive locations where the LOADER
puts a BLT instruction and a CALLI UUO to
move the program down on top of itself.
These locations are destroyed on every exec—
utive UUO by the executive pushdown list.

Contains the starting address of DDT. If
contents are 0, DDT has not been loaded.

JOBDDT

Six temporary locations used by CHAIN
(FORTRAN Runtime Routine) after it releases
all I/O channels. JOBCN6 is defined to be
in JOBJDA.

JOBCN6

Left half: First relative free location in
the high segment (relative to the high seg-
ment origin so it is the same as the high

segment length). Set by the LOADER and

subsequent GETs, even if there is no file

to initialize the low segment. The left

half is a relative quantity because the high

segment can appear at different user origins

at the same time. The SAVE command uses

this quantity to know how much to write from

the high segment.
Right half: Highest legal user address in
the high segment. Set by the Monitor every

time the user starts to run or does a CORE

or REMAP UUO. The word is = 401777 unless

there is no high segment, in which case it

will be zero. The proper way to test if a

high segment exists is to test this word
for a non-zero value.

JOBHRL

JOBSYM Contains a pointer to the symbol table

created by Linking Loader.

Left half: Negative count of the length of

the symbol table.
Right half: Lowest register used.

Contains a pointer to the undefined symbol

table created by Linking Loader. Nogf yet

used by DDT.

JOBUSY

Left half: First free location in low seg-

ment (set by Loader).

Right half: Starting address of the user's

program.

358

Table 3-1 (Cont)

Job Data Area Locations

(for user-program reference)

Octal
Name | Location Description

JOBFF Left half: 0.

Right half: Address of the first free loca-
tion following the low segment. Set to
C(JOBSA) +45 by RESET UUO.

JOBREN Left half: Unused at present.
Right half: REENTER starting address. Set
by user or by Linking Loader and used by
REENTER command as an alternate entry point.

Pett hates 2. 0k,

Right half: Set by user program to trap
address when user is enabled to handle APR
traps such as illegal memory, pushdown over-
flow, arithmetic overflow, and clock. See
CALL APRENB UUO.

JOBAPR

JOBCNI Contains state of APR as stored by CONI APR
when a user-enabled APR trap occurs.

Monitor stores PC of next instruction to be
executed when a user-enabled APR trap occurs.

JOBTPC

JOBOPC © The previous contents of the user's program
counter are stored here by Monitor upon
execution of a DDT, REENTER, START, or
CSTART command.

Left half: 0 Address of first location
after first FORTRAN IV loaded program.
Right half: Address of first location after
first FORTRAN IV Block Data.

JOBCHN

JOBCOR Left half: Highest location in low segment
loaded with non-zero data. No low file
written on SAVE or SSAVE if less than 140.
Set by the LOADER.
Right half: User argument on last SAVE or
GET command. Set by the Monitor.

JOBVER Left half: Zero or the programmer number
of the programmer who made last identifica-
tion to the program.
Right half: Program version number in octal.
The number is never converted to decimal.
After a GET, R, or RUN-command, a E command

can be used to find the version number.
(Digital always distributes CUSPs with the
left half = 0, so customers making modifica-
tions to CUSPs should change only the left

3-6

359

Table 3-1 (Cont)

Job Data Area Locations

(for user-program reference)

Octal
Name Location Description

JOBVER JES) half. The right half will remain as a re-

(Cont) cord of the Digital version.)

JOBDA The value of this symbol is the first sole

tion available to the user.

NOTE

Only those JOBDAT locations of significant

importance to the user are given in this

table. JOBDAT locations not listed include

those which are used by the Monitor and

those which are unused at the present time.

User programs should not refer to any loca-

tions not listed above since such locations

are subject to change without notice.

Some locations in the Job Data area, such as JOBSA and

JOBDDT, are set by the user's program for use by the Monitor.

Others, such as JOBREL, are set by the Monitor for use by the user's

program. In particular, the right half of JOBREL contains the

highest legal address set by the Monitor whenever the user's core

allocation changes. |

JOBDAT exists in binary form in the Systems Library for

loading with user programs that refer to Job Data area locations

symbolically. User programs must reference locations by means of

the assigned mnemonics, which are declared as EXTERNAL references

to the assembler. JOBDAT is loaded automatically, if needed, during

the Loader's library search for undefined global references, and

the values are assigned to the mnemonics.

400000

Bis Ze

360

Loading Relocatable Binary Files

The relocatable binary loader (LOADER, V.47) which

resides in the system file is started by the command

R LOADER core

where core is an optional argument.

of the Loader command string.)

USER JOBDAT

USER
LOW SEGMENT

t
USER

SYMBOLS

—————— |

LOADING USER PROGRAM

(LOADER EXPANDS CORE
IN LOW SEGMENT AS
NECESSARY.)

LOADER STARTING

USER >
LOW SEGMENT

USER
SYMBOLS

USER | 1 NOT
HIGH NECESSARILY | :

SEGMENT PRESENT ! i

1 VESTIGIAL 400000 | —~TESTIGIAL BOSOGO VESTIGIAL _ JOBDAT _ _ JOBDAT _ = SGSBRE
LOADER LOADER Sohn gies HIGH SEGMENT HIGH SEGMENT

HIGH SEGMENT

——————

DURING LOADING

(LOADER DOES A REMAP UUO,
REPLACING ITS OWN HIGH
SEGMENT WITH THE USER'S
HIGH SEGMENT IF THERE IS
ONE.)

Figure 3-2

Loading User Core Area

S—8

400000

(See Book 5 for a description

USER
_ JOBDAT

USER
LOW SEGMENT

USER
SYMBOLS

VESTIGIAL
_ JOBDAT

USER
HIGH SEGMENT
|

AFTER LOADING

(LOADER WIPES OUT ITS OWN
LOW SEGMENT BY MOVING
DOWN THE USER'S LOW
SEGMENT.
THE USER'S SYMBOLS MAY
OR MAY NOT MOVE DOWN
IN CORE.)

361

In writing reentrant user software, an effort is made to

minimize the support required to run such software on a machine

having only a single relocation register. Both the source and

relocatable binary files are the same for a reentrant program that

must run on a non-reentrant system.

Since the Loader is reentrant, its instructions exist in

the high segment. In loading two segments, both segments are data

with respect to the Loader and must exist in the low segment during

load time. Therefors, the following Loader variables must be dupli-

cated for each segment:

a) offset (the number of locations a program must be

moved toward zero before it can be executed),

b) program origin (the location assigned by the Loader

to relocatable zero of a program), and

c) location counter (the register that indicates the

location of the next instruction to be interpreted).

BG a AcAb The H Switch

A program written to be reentrant can be loaded into one

segment instead of two by use of the H switch (/H). This switch

is used only when a eyeseeenene program is to be loaded into one

segment. This switch is not required when a one-segment program

is to be loaded into one segment.

To minimize the use of the H switch on single-register

machines, the Loader will check to see if the Sos (ives narde=

ware plus software) has a two-segment Garpaloilicbyieons tt whe Mowtinets

has this capability but the machine does not, then the system does

not have the two-segment capability. If the system does not have

the two-segment capability, the Loader automatically loads a two-

segment program into one segment, just as if the user had typed

39

362

the H switch.

To find out if the system has a two-segment capability,

the Loader uses the SETUWP UUO and attempts to set the user mode

write-protect bit to one. An error return indicates a single-

register capability. The Loader cannot produce a two-segment pro-

gram, and the Monitor cannot save a program as two segments.

If a user wants bo load a program, in which the low segment

is longer than 400000 octal words, he can use the switch NNNNNNH.

This switch changes the origin of the high segment from its initial

setting of 400000 to NNNNNN where NNNNNN is larger. If NNNNNN is

missing, the Loader loads everything into the low segment.

Since it is not known before load time whether a reentrant

program is not going into the high segment, the code executed (in-

cluding the Monitor UUO's) is the same for either case.

Bied sae wed The HISEG Pseudo-Op

After loading, a relocatable subprogram assembled by MACRO

is either put entirely in the user low segment or entirely in the

user high segment. To indicate that a sebpdaaien is to be loaded

into the high segment, the HISEG pseudo-op is used. It can appear.

anywhere in the program although it is best to place it at the

beginning since a reader of the program wants to know that the pro-

gram is destined for the high segment. Near the beginning of the

binary output, MACRO generates code that tells the Loader to load

subprograms into the high segment. Loader Version 47 loads programs

in any order. In earlier versions of the Loader, programs for the

low segment must be loaded before any programs for the high segment.

Sala i) The Vestigial Job Data Area

There are a few "constant" data in the Job Data area

3=10

363

which may be loaded by a two-segment, one-file program without using

instructions on a GET command (JOB41, JOBREN, JOBVER) and there are

a number of locations which the Monitor loads on a GET (JOBSA, JOBCOR

JOBHRL) . The Vestigial Job Data area (the first 10 locations

of the high segment) is reserved for these low segment constants.

Therefore, a high segment program is loaded into 400010 instead of

400000. With the Vestigial Job Data area in the high eoehe the

Loader automatically loads the constant data into the Job Data area

without requiring a low file on a GET, R, or RUN command, or a RUN

UUO. SAVE will write a low file for a two-segment program only if

the LH of JOBCOR is 140g or greater.

Bi 2 ord Completion of Loading

The new program code is loaded upward from an offset

above the resident Loader. The program origin (i.e., the first

location loaded) is 10 ty unless ene user changes it by means of

the assembler LOC pseudo-instruction. After completion of the

loading but before exiting, the Loader does the following.

a) Sets the LH of JOBSA and the RH of JOBFF to the

address of the first location above the new code area (i.e., the

program break). The RH of JOBSA is set to the program starting

address. This value is the last non-zero address of the assembler

END pseudo-instruction to be loaded, or zero. It is used by the

RUN and START commands. The LH of JOBFF is zero. .

b) Sets the LH of JOBHRL to the new highest relative

user address (relative to the high segment origin) in high segment,

or zero if no high segment.

c) Sets the LH of JOBCOR to the highest location in the

low segment that is loaded with non-zero date. 3

. dad) Uses REMAP UUO to take the top part of the low segment —

See:

364

which contains the user's high segment, and replaces the Loader

high cements |

e) May move symbols and reduce core, if DDT was loaded.

£) Calls EXIT or starts up program.

If DDT was loaded by means of the D switch in the Loader

, command string, the RH of JOBDDT is set by the Loader to the starting

address of DDT and the LH is zero. A new switch, /K, has been im-

plemented for use with DDT. This switch moves core back to the

absolute maximum needed. A /nK moves core back to nk. ?}

lin the latest version of the Loader, V.50, the /D is used to

imply /B/K.-

JL

365 .

CHAPTER 4

USER PROGRAMMING

The PDP-10 central processor operates in one of three

modes: executive mode, user I/O mode, or user mode. The Monitor

operates in executive mode, which is characterized by the lack of

memory protection and relocation (see Chapter 3) and by the normal

execution of all défined operation codes. The user I/O mode is

a special mode, wherein memory protection and relocation are in

effect, as well as the normal execution of all defined operation

codes. (This mode is not used by the Monitor, and is not normally

available (see TRPSET) to the time-sharing user.) User programs

.are run in user mode in order to guarantee the integrity of both

the Monitor and each user program.

4.1 USER MODE

The user mode of the central processor is characterized

by the following features:

a) Automatic memory protection and relocation (see

Chapter 3).

b) Trap to absolute location 40 on any of the following:

1. Operation codes 040 through 077 and operation

code 000.

2. Input/output instructions (DATAI, DATAO, BLKI,

BLKO, CONI, CONO, CONSZ, and CONSO) .

3. HALT (i.e., JRST 4,).

4. Any JRST instruction that attempts to enter
executive mode or user I/O mode.

c) Trap to relative location 40 on execution of operation

codes 001 through 037.

Since user programs run in user mode, the Monitor must

4-1

366

perform all input/output operations for the user, as well as any

other user-requested operations that are not available in user:

mode. The purpose of this chapter is to describe the services

the Monitor makes available to user mode programs and how a user

program obtains such services.

4.2 PROGRAMMED OPERATORS (UUO's)

Operation codes 000 through 077 in the PDP-10 are pro-

grammed operators (sometimes referred to as UUO's- Unimplemented

User Operators since from a hardware point of view their function

is not pre-specified); some of these op-codes trap to the Monitor

and the rest trap to the user program. :

After the effective address calculation is complete, the

contents of the instruction register, along with the effective

address, are stored in user or Monitor location 40 and the

instruction in user or Monitor location 41 is executed out of

normal sequence. Location 41 must contain a JSR instruction to

a routine to interpret the contents of location 40.

A Quel: Operation Codes 001-037 (User UUO's)

Operation codes 001 through 037 do not affect the mode

of the central processor. Thus, when executed in user mode, they

trap to user location 40, which allows the user program complete

freedom in the use of these Progranned operators.

If a user's undebugged program accidentally executes

one of these op-codes when the user did not intend to use it, the

following error message is normally issued.

ERROR IN JOB n

ILLEGAL UUO AT USER 41

This message is given because the user's relative location 41

4-2

367

contains zero (unless his program has overtly changed it) and 000

is an illegal Monitor UUO.

|

4.222 Operation Codes 040-077, and 000 (Monitor UUO's)

Operation codes 040 through 077 and 000 trap to absolute

location 40, with the central processor in executive mode. These

programmed operators are interpreted by the Monitor to perform

input/output operations and other control functions for the

user's program.

Operation code 000 always returns the user to-monitor

mode with the error message:

ERROR IN JOB n

ILLEGAL UUO AT USER addr

Table 4-1 lists the operation codes 040 thru 077 and

their mnemonics. Most of this chapter is a detailed description

of their operation.

4.2.2.1 CALL and CALLI - Operation codes 040 through 077 limit

the Monitor to 40, operations. The CALL operation extends this

set by specifying the name of the operation by the contents of the

location specified by the effective address,e.g., CALL [SIXBIT/EXIT/]

This provides for indefinite extendability of the Monitor opera-

tions, at the overhead cost to the Monitor of a table lookup.

The CALLI operation eliminates the table lookup of the

CALL operation by having the programmer perform the lookup him-

self and specify the index ta the operation in the effective

address of the CALLI. Table 4-2 lists the Monitor operations

specified by the CALL and CALLI operations.

The customer is allowed to add his own CALL and CALLI

calls to the Monitor. A negative CALLI effective address

4-3

368

(starting with -2) should be used to specify such customer added

operations.

RR a P Restriction on Monitor UUO's in Re-Entrant User Programs

There are a number of restrictions on UUO's which in-

volve a high segment. These Pes rio tene are to prevent naive

or malicious users from clobbering other users while sharing

segments and to minimize Monitor overhead in handling two-segment
‘

programs. The basic rules are as follows.

a) All UUO's can be executed from the low or high segment

although some of their arguments cannot be in, or refer to, the

high segment.

b) No buffers, buffer headers, or dump mode command

lists may exist in the high segment for reading from or writing

to any I/O device.

c) No I/O is processed into or out of the high segment

except via the SAVE and SSAVE commands.

da) No STATUS, CALL or CALLI UUO allows a eLoreean the

high segment.

e) ‘The effective address of the LOOKUP, ENTER,. INPUT,

OUTPUT, and RENAME UUO's cannot bein the high segment. If any

one of these rules is violated, an address check error message is

given (see Table 2-11).

f) As a convenience in writing user programs, the Monitor

makes a special check so that the INIT UUO can be executed from

the high segment, even though the calling sequence is in the high

segment. The Monitor also allows the effective address of the CALL

UUO (contains the SIXBIT Monitor function name) and the effective

address of the OPEN UUO (contains the status bits, device name,

and buffer header addresses) in the high segment.

4-4

369

Pen) Operation Codes 100-127 (Unimplemented Op Codes)

Op code 100-UJEN Dismisses realtime interrupt
from user mode (see 4.3.6.2).

Op codes 101-127 Monitor prints ILL INST AT
USER n and stops job.

4.2.4 Illegal Operation Codes

The eight input/output instructions (DATAI, etc.) and

JRST instructions attempting to enter executive or user I/O mode

from the user mode are interpreted by the Monitor as illegal

instructions. The job is stopped and the following error message

is printed on the user's console.

ERROR IN JOB n

ILL INST AT USER addr

4.3 PROGRAM CONTROL

Areva cl Starting

All program starting is accomplished by the Monitor

~ commands RUN] So LART, CSTARLT, COND, CCONI, DD, and REENTER (see

Chapter 2). The starting address is either an argument of the
a

command or stored in the user's job data area (see Chapter 3).

Ar Si alec: CALL AC, [SIXBIT/SETDDT/] or CALLI AC,2 - These cause

the contents of the AC to replace the DDT starting address, which

is stored in the protected job data area location, JOBDDT. This

starting address is used by the Monitor command, DDT (See 3.2.2.4).

4.3.2 Stopping

Any one of the following procedures can stop a running

program:

4-5

370

a) One +C from user console if user program is ina

Teletype input wait; otherwise, two tC's from user console (see

Chapter 2);

b) A Monitor detected error; or

c) Program execution of HALT, CALL [SIXBIT/EXIT/], or

CALL [SIXBIT/LOGOUT/] .

AS Niel: Illegal Instructions (700-777, JRST 10, JRST 14,) and

Unimplemented Op Codes (101-127) -

Illegal instructions trap to the Monitor, stop the job,

and print:

ERROR IN JOB

ILL.INST.AT USER n

Note that the program cannot be continued by typing the CONT or

CCONT commands.

4.3.2.2 HALT or JRST 4, - The HALT instruction is an exception

to the illegal instructions; it traps to the Monitor, stops the

job, and prints:

ERROR IN JOB

HALT AT USER n

However, the CONT and CCONT commands are still valid and, if typed,

will continue the program at the effective address of the HALT

instruction. HALT is not the instruction used to terminate a pro-

gram (see EXIT, section 4.3.2.3). HALT is useful for catching

"impossible" error conditions.

371

Table 4-1

Monitor Operation Codes

Operation code extension (See 4.2.2.1)

Initialize I/O device (See 4.4.2.2)

No operation
Reserved for

No operation d
installation-

No operation
dependent

No operation
calls

No. operation

CALLI Operation code extension (See 4.2.2.1)

OPEN Open file (See 4.4.2.2)

TTCALL Special Teletype Operations (See 5.1.3)

No operation Reserved for

No operation future

No operation expansion Eo biateaa:

Rename or delete a file (See 4.4.2.5)

IN Input and Skip on error of EOF (See 4.4.3)

OUT Output and skip on error of FOF(See 4.4.3)

SETSTS Set file status (See 4.4.4)

STATO Skip on file status one (See 4.4.4)

STATUS Read file status (See 4.4.4)

GETSTS

STATZ Skip on file status zero (See 4.4.4)

INBUF Set up input buffer ring (See 4.4.2.3)

OUTBUF Set up output buffer ring (See 4.4.2.3)

INPUT Read (See 4.4.3)

OUTPUT Write (See 4.4.3)

CLOSE Close file (See 4.4.5)

372

Table 4-1 (Cont)

Monitor Operation Codes

RELEAS Release device (See 4.4.7)

MTAPE Position tape. (See 5.8.2 and 5.7.5)

UGETF Get next free block number (See 5.7.5)

USETI Set next input block number (See 5.7.5)

USETO Set next output block number (See 5.7.5)

LOOKUP Select file (See 4.4.2.4)

ENTER Create file (See 4.4.2.4)

UJEN Dismiss real-time interrupt (See 4.3.6.2)

Table 4-2

CALL and CALLI Monitor Operations

Customer defined Reserved for definition by
each customer installation.

LIGHTS Displays AC in console lights

RESET Reset I/O devices (See 4.4.2.1)

DDTIN DDT mode console input
(See 5.1.2)

SETDDT Set protected DDT starting
address (See-4.3).1/1)

DDTOUT DDT mode console output
(See 5.1.2)

DEVCHR Get device characteristics
(See 5.12)

(DDTGT) No operation

(GETCHR) Same as DEVCHR(4)

384

Thus, the user can set up a priority interrupt trap into his re-

located core area. Upon a normal return, AC contains the previous

contents of the address specified by LH of AC, so that the user
e

program may restore the original contents of the PI location when

the user is through using these UUO's. If the LH of AC is not

within the range 40 through 57, an eer return will be given just

as if the user was not job 1. ‘

The call is:

MOVE AC, XWD N, ADR

CALL AC, [SIXBIT/TRPSET/]

' error return
normal return

ADR: JSR TRAP ;Instruction to be stored

;in exec PI location

;after relocation added to it.

“TRAP: 0 ;Here on interrupt from exec.

The Monitor assumes that user location ADR contains either a JSR U

or BLKI U, where U is a user address. Consequently, the Monitor

will add the job's relocation to the contents of location U to

make it an absolute IOWD. Therefore, a user should reset the con-

tents of U before every TRPSET call.

MOVEI AC, PNTR

HRRM AC, ADR

MOVE AC, XWD N, ADR

CALL AC, [SIXBIT/TRPSET/]
error return

normal return

ADR: BLKI DEV,PNTR ;Block in PNTR to be stored

zin interrupt location
PNTR: IOWD LEN, BUFFER

This UUO is a temporary expedient until some real-time UUO's are

implemented which will not stop time sharing and which cannot crash

the system.

: 383

FORCE Job being forced to swap out 2
3 EL Job waiting to be fit into core
4 VIRTAL) Amount of virtual core left in system in K

(initially set to no. of K of swapping space)
5 SWPERC LH=no. of swap read or write errors

RH=error bits (bits 18-21 same as status bits)
+no. of K discarded

4.3.6 Direct User I/O

The user I/O mode (bits 5 and 6 of PC word = 11) of the

central processor allows running privileged user programs with

automatic protection and relocation in effect. This mode provides

some srobection against partially debugged Monitor routines, and

permits running infrequently used device service routines as a

user job. Direct control by the user program of special devices

ie particularly important in real-time applications.

To utilize this mode, the job na Dae mae be 1.

CALL [SIXBIT/RESET/] or CALLI 0 terminates user I/O mode.

ASG | CALL AC, [SIXBIT/TRPSET/] or CALLL AC, 25 --These are

privileged UUO's which may or may not stop time-sharing (stop jobs

from being scheduled)and allow the user program to gain control of

the interrupt locations. If the user is not job 1, an error return

to the next location after the CALL will always be given and the

user will remain in user mode. Time-Sharing will be turned back

on. If the user is job 1, the central processor is placed in user

I/O mode. Under job 1, if AC contains zero, time-sharing is turned

back on if it was turned off. If the LH of AC is within the range

40 through 57, all other jobs are stopped from being scheduled and

the specified executive PI location (40-57) is patched to trap

directly to the user. In this case, the Monitor moves the contents

of the relative location specified in the right half of AC, adds

the job relocation address to the address field, and stores altel

the specified executive PI location.

; 4219

20 SERIAL

382

Bit 6=1 If clock is 50 cycle instead of 60
cycle

Set by the privileged operator command,
SCHEDULE:

Bit 34=1 Means no remote LOGINs

Bit 35=1 Means no more LOGINs

Serial number of PDP-10 processor
Set by MONGEN dialog

Entries in ODPTBL (once only disk parameters)

Ttem

Nr oO

1)

Location

SWPHGH
K4SWAP
PROT

PROTO

Use

Highest logical block # in the swapping space:
K of disk words set aside for swapping
In-core protect time multiplies size of job
in K=-1
In-core protect time added to above result
after multiply

Entries in NSWTBL (non-swapping data)

Item Location

CORTAB

CORTAB+7
CORMAX

CORLST
CORTAL
SHFWAT
HOLEF

UPTIME

SHFWRD

STUSER
HIGHJB

CLRWRD
LSTWRD

Use

Map of physical core
1 bit for each K of core

Size in words of largest legal user job
(low segthigh seg)
Byte pointer to last free block in CORTAB
Total freetdormant+idle K physical core left
Job no. shuffler has stopped
Abs. adr. of job above lowest holes Oe ast
no job
Time system has been up in jiffies
Tot. no. of words shuffled by system
Number of job using SYS if not a disk
Highest job number currently assigned
Total no. of words cleared by CLRCOR
Total no. of clock ticks when null job ran
and other jobs wanted to but couldn't because:

1. Swapped out or on way in or out
2. Monitor waiting for I/O to stop

so can shuffle or swap
3. Job being swapped out because

expanding core

Entries is SWPTBL (swapping data)

Ttem

0
1

Location

BIGHOL

FINISH

Use }

No. of K in biggest hole in core
+Job no. of job being swapped out
-Job no. of job being swapped in

4-18

381

Table Numbers (RH of AC) (Cont)

02 - PRJPRG (project and programmer numbers)
Index by job or segment number

03 - JBTPRG (user program name)
Index by job or segment number

04 - TTIME (total time used)
Index by job number

05 - JBTKCT (Kilo-core ticks)
Index by job number

06 - JBTPRV (privilege bits)
Index by job number

07 - JBTSWP (job's swapping parameters)
Index by job or segment number

10 - TTYTAB (Teletype to job translation)
Index by line number

11 - CNFTBL (configuration table)

Index by item number, see below
12 - NSWTBL (non-swapping data)

Index by item number, see below
13 - SWPTBL (swapping data)

Index by item number, see below
14 - JBTSGN (high segment table)

Index by job number
15 - ODPTBL (once-only disk parameters)

Index by item number, see below

Entries in CNFTBL (Configuration Table)

Item Location Use

0 CONFIG Name of system in ASCIZ

4 CONF IG+4

5 SYSDAT Date of system in ASCIZ
6 SYSDAT+1
7 SYSTAP Name of the system device (SIXBIT)

10 TIME Time of day in jiffies
nals “ THSDAT Today's date (12-bit format)
2 SYSSIZ Highest location in the Monitor:+ 1
13 DEVOPR Name of the OPR TTY console (SIXBIT)
14 DEVLST LH is start of DDB (device-data-block) chain
15 SEGPTR LH=-# of high segments, RH=+# of JOBS

(counting NULL job)
16 TWOREG Non-zero if system has two-register hardware

and software
ey STATES Location describing feature switches of this

system in LH, and current state in RH

Assembled according to MONGEN dialog and S.MAC:

Bit 0=1 If disk system (FTDISK)
Bit l=l1 If swap system (FTSWAP)
Bit 2=1 If LOGIN system (FTLOGIN)

Bit 3=1 If full duplex software (FTTTYSER)

Bit 4=1 If privilege feature (FTPRV)
Bit 5=1 If assembled for choice of reentrant

or non-reentrant software at Monitor

load time (FT2REL)

4-17

380

463 40)3'6 CALL AC, [SIXBIT/GETTAB/] or CALLI AC, 41 - These pro-

vide a mechanism for user programs to examine the contents of -

certain Monitor locations in a way which will not vary from Monitor

to Monitor.

The Calis

CALL AC, [SIXBIT/GETTAB/] ;OR CALLI AC, 41

error return
normal return

The left half of AC contains a job number or some other index to

a table. Some job numbers may refer to high segments of programs

by using arguments greater than the highest job number for the

current Monitor. A negative LH means the current job number. The

right half of AC contains a table number from the list of Monitor

data tables and parameters set forth below. The entries in these

tables are all globals in the Monitor subroutine COMMON. The

actual values of the core addresses of these locations are subject

to change and can be found in the LOADER storage map for the Moni-

tor. The complete descriptions of these globals are found in the

listing of COMMON.

An error return leaves the AC unchanged. This means

that the job number or index number in the left half of AC was too

high, or the table number in the right half of AC was too high, or

that the user does not have the privilege of accessing that table.

A skip return supplies the contents of the requested table in AC,

or a zero if the table is not defined in the current Monitor.

The SYSTAT CUSP makes frequent use of these UUO's.

The list of tables and their entries is as follows, with

a brief description of each.

Table Numbers (RH of AC)

00 - JBTSTS (job status word)
Index by job or segment number

01 - JBTADR (job relocation and protection)
Index by job or segment number

4-16

379

on the user's console

The console is left in Monitor mode ready to accept the user's

first command.

Any other user program that calls these UUO's receives

the error message

ILLEGAL UUO AT USER addr

The user's console is then put in Monitor mode, and the CONT and

CCONT commands are not permitted.

a3. b 4 CALL AC, [SIXBIT/PEEK/] or CALLI AC, 33 - These allow a

user program to examine any location in the Monitor. Some customers

may want to restrict the use of this UUO to project 1.

The call is:

MOVEI AC, exec address ;TAKEN MODULO SIZE OF MONITOR

CALL AC, [SIXBIT/PEEK/] SOR CALLI AC, 33

This call returns with the contents of the Monitor location in AC.

It is used by SYSTAT and could be used for on-line Monitor debugging.

LSS) CALL AC, [SIXBIT/GETLIN/] or CALLI AC, 34 - These return

the SIXBIT physical name of the Teletype console that the program

is attached to.

The call is:

CALL AC, [SIXBIT/GETLIN/] ;OR CALLI AC, 34

The name is returned left-justified in the AC.

Example:

CLV 20m UES Ore TEVS0

This UUO is used by the LOGIN program to print the TTY name.

378

4.3.4.5 CALL AC, [SIXBIT/SLEEP/] or CALLI AC, 31 - These stop

the job, and continue automatically after an elapsed real time of

[c (AC) xclock frequency] modulo gi2 jiffies.

The contents of the AC are thus interpreted as the number of

seconds the job wishes to sleep; however, there is an implied max-

imum of approximately 68 seconds (82 seconds in 50 Hz countries)

or one minute.

AES 755, Tdentification

ANB t Ose CALL AC, -[SEXBIT/PJOB/] or CALLI AC, 30 —- These return

the job number right-justified in accumulator AC.

gS igo CALL AC, [SIXBIT/GETPPN/] or CALLI AC, 24 - These return

in AC the project-programmer pair of the job. The project number

is a binary number in the left half of AC, and the programmer

number is a binary number in the right half of AC. If the program

being run is LOGIN or LOGOUT from the system device, the current

project-programmer number is changed to 1,2 so that all files are

accessible for reading and writing, and a skip return is given if

the old project-programmer number is also logged in on another job.

4.3.5.3 CALL AC, [SIXBIT/LOGIN/] or CALLI AC, 15 - These are

not available to user programmers. They are for the exclusive use

of the LOGIN CUSP, which uses these operators to exit to the

Monitor and to pass it certain crucial parameters (including pro-

ject and programmer numbers) about the user who just successfully

logged in. When the LOGIN CUSP calls these UUO's, any devices

the UUO's were using are released, and the following is printed

377

4.3.4 Timing Control

The central processor clock, which generates interrupts

at the power-source frequency (60 Hz in North anes ea 50) Hz in

most other countries), keeps time in the Monitor. Each clock

interrupt (tick) corresponds to 1/60th (or 1/50th) of a second of

elapsed real time. The clock is set initially to the current time

of day by console input when the system is started, as is the

current date. When the clock reaches midnight, it is reset to

zero, and the date is advanced.

4.3.4.1 CALL AC, [SIXBIT/DATE/] or CALLI AC, 14 - A 12-bit

diy integer computed by the formula

date=((year-1964)x12+ (month-1))x31+day-1

represents the date.

This integer representation is returned right-justified

in accumulator AC.

ASS 5452 CALL AC, [SIXBIT/TIMER/] or CALLI AC, 22 - These return

the time of day, in clock ticks (jiffies), right-justified in

accumulator AC.

Ne aS) CALL AC, [SIXBIT/MSTIME/] or CALLI AC, 23 - These return

the time of day, in milliseconds right-justified in accumulator AC.

4.3.4.4 CALL AC, [SIXBIT/RUNTIM/] or CALLI AC, 27 - The accumu-

lated running time, in milliseconds, of the job whose number aL} akin

accumulator AC, is returned right-justified in accumulator AC, If

the job number in AC is zero, the running time of the currently

running job is returned. If the job whose number is in AC does

not exist, zero is returned.

376

When one of the specified conditions occurs while the

central processor is in user mode, the state of the central pro-

cessor is Conditioned Into (CONTI) location JOBCNI, and the PC is

stored in location JOBTPC in the job data area (see Table 3-1).

Then control is transferred to the user trap-answering routine

specified by the contents of the right half of JOBAPR, after the

yanithnetic overflow and floating point overflow flags have been

cleared. The user program must set up location JOBAPR before

executing the CALL AC, [SIXBIT/APRENB/] or CALLI AC, 16. To

return control to his interrupted program, the user's trap an-

swering routine must execute a JRST 2, @ JOBTPC to restore the

state of the processor. 3

If the user program does not enable traps, the Monitor

sets the PDP-10 processor to ignore arithmetic and floating point

overflow, but enables interrupts for the other error conditions

in the table above. If the user program produces such an error

condition, the Monitor will cause the user job to be stopped and

print

ERROR IN JOB n

followed by one of the following appropriate messages:

PC OUT OF BOUNDS AT USER addr

ILL MEM REF AT USER addr

NON-EX MEM AT USER addr

PDL OV AT USER addr

The CONT and CCONT commands will not succeed after such

an error.

AVIS Stet Console-Initiated Traps - Program control can be changed

from the user's console by use of the +C, START, DDT, and REENTER

commands (see Chapter 2).

375

is pr ineed on the user's console, which is left in Monitor mode.

The CONT and CCONT commands cannot continue the program.

When AC is non-zero, the job is stopped but devices are

not released. Instead of printing EXIT and #+C, only the CR-LF oper-

ation is performed and a period is printed on the user's console.

The CONT and CCONT commands may be used to continue the program.

4.3.2.4 CALL [SIXBIT/LOGOUT/] or CALLI 17 - All input/output

devices are RELEASed (see Section 4.4.7), and returned with the

allocated core and the job number to the Monitor pool. The ac-

cumulated running inet we the job is printed on the user's console,

which is left in Monitor mode. This UUO is not available to user

programmers. It is only for use by the LOGOUT CUSP. If a user

program executes a LOGOUT UUO, the Monitor will treat it like EXIT

(SeGi 45332231)

4.3.3 Trapping

4.3.3.1 CALL AC, [SIXBIT/APRENB/] or CALLI AC, 16 - APR trapping

allows a user to handle any and all traps that occur while his job

is running on the central processor, including illegal memory

references, non-existent memory references, pushdown list overflow,

arithmetic overflow, floating point overflow, and clock flag. To

enable for trapping a CALL AC, [SIXBIT/APRENB/] or CALLI AC, 16 is

executed, where the AC contains the central processor flags to be

tested on interrupts, as defined below:

200000 pushdown overflow
20000 memory protection violation
10000 non-existent memory flag
1000 clock flag
100 floating point overflow
10 arithmetic overflow

a
385

4.3.6.2 UJEN (Op code 100) - This op code dismisses a user I/O

mode interrupt if one is in progress. If the interrupt is from user

mode, a JRST 12, instruction can dismiss the interrupt. If the in-

terrupt came from executive mode, however, this operator must be

used to dismiss the interrupt. The program must restore all accumu-

lators,and execute UJEN U where user location U contains the program

counter as stored by a JSR instruction when the interrupt occurred.

4.3.6.3 CALL AC, [SIXBIT/SWITCH/] or CALLI AC, 20 — These return

the contents of the central processor data switches in AC. Caution

must be exercised in using the data switches since they are not an

allocated resource and are always available to all users.

4.3.6.4 CALL AC, [SIXBIT/SETNAM/] or CALLI AC, 43 - These are used

by the LOADER. The contents of AC contain a left-justified SIXBIT

program name, which is stored in a Monitor job table. The informa-

tion in the table is used by the SYSTAT CUSP (See JBTPRG table under

GETTAB UUO 4.3.5.6).

4.3.7 Segment Handling

4.3.7.1. ‘CALL AC, [SIXBIT/REMAP/] or CALLI AC,A37.— These take

the top part of a low segment and remap it into the high segment.

The previous high segment (if any) will be removed from the user's

addressing space. The new low segment will be the previous low

segment minus the amount remapped.

The call is: MOVEI AC, Desired highest adr in lei segment

CALL AC, [SIXBIT/REMAP/] ;or CALLI AC, 37
error return

normal return

The amount remapped must be a multiple of 1K decimal

words. To insure this, the Monitor will perform the inclusive OR

function of 1777 and the user's request. If the argument exceeds

A aA 7

—

386
the length of the low segment, remapping will not take place, the

high segment will remain unchanged in the user's addressing space,

and the error return will be taken. The error return will also be

ees if the system does not have a two-register capability. The

contents of AC are unchanged. The contents of JOBREL (see Job Data

area, Chapter 3) are set to the new highest (eget user address in

the low segment. The RH of JOBHRL will be set to the highest legal

user address in the high segment (401777 or greater or 0). The

hardware relocation will be changed end the user-mode write protect

bit will be set.

This UUO is used by the LOADER to load reentrant programs

which make use of oe of physical core. Otherwise, the LOADER

might eceed core in assigning more core and moving the data from

the low to the high segment with a BLT instruction. The GET com-

mand also uses this UUO to do I/O into the low segment instead of

the high segment.

A307 a2 CALL AC, [SIXBIT/RUN/] or CALLI AC, 35 - These have been

implemented so that programs can transfer control to one:another.

Both the low and high segments of the user's addressing space are

replaced with the program being called.

The call is:

MOVSI AC, Starting address increment
HRRI AC, Adr of six-word arg. block
CALL AC, [SIXBIT/RUN/] or CALLI AC, 35
error return (unless HALT in LH)
[normal return is not here, but to starting
address plus increment of new program]

The arguments contained in the six-word block are:

E: SIXBIT/logical device name/
SIXBIT/filename/ ;for either or both high

and low files

387

SIXBIT/ext .for low file/ rie ali Oy a OWeS cls
sumed if high segment
exists, .SAV is assumed

if high segment does
not exist.

0
XWD proj. no., prog. no. ;if = 0, use cunrent

user's proj ,prog
XWD 0, optional core ;RH = New highest user

assignment address to be assigned
to low segment.
LH is ignored rather
than setting ‘high
segment.

Usually a user program will specify only the first two words and

set the others to zero. The RUN UUO destroys the contents of all

of the user's ACs and releases all the user's I/O channels. There-

fore, arguments or devices cannot be passed to the next program.

Programs on the system library (CUSPs) should be called

by using devas SYS with a zero proje¢t-programmer number instead

of device DSK with the erodeet=procnanner number 1,1. The exten-

sion should also be 0 so that the calling user program does not

need to know if the called CUSP is reentrant or not. ;

The LH of AC is added to and stored in the starting

address (JOBSA) of the new program before control is transferred

to it. +C followed by the START command will restart the program

at the same location as specified by the RUN UUO, so that the user

can start the current CUSP over again. The user is considered to

be meddling with the program if the LH of AC is not 0 or l. (See

Section 4.6),

Programs which accept commands from a Teletype or a

file, depending on how they were started, do so as controlled by

the program calling the RUN UUO. The following convention is used

with all of Digital's standard CUSPs: 0 in LH of AC means type an

asterisk and accept commands from the Teletype. 1 means accept

commands from a command file, if it exists; if not type an asterisk

4-23

388

and accept commands from the Teletype. The convention for naming

CUSP command files is that the filename be of the form

###II1.TMP ©

where III are the first three (or fewer if three do not exist)

characters of the name of the CUSP doing the LOOKUP and ### is the

decimal character expansion (with leading zeroes) of the binary.

job number. The job number is included to allow a user to run two

_ or more jobs under the same project-programmer number. For example,

OO9PIP.TMP

039MAC .TMP

Decimal numbers are used so that a user listing his directory can

see the same number as the PJOB command types. These command files

are temporary and are, therefore, deleted by the LOGOUT CUSP. (See

LOGOUT command in Chapter 2.)

The RUN UUO can give an error return with one of 13 error

codes in AC if any errors are detected. Thus, the user program may

attempt to recover from the error and/or give the user a more in-

formative message on how to proceed. Some user programs do not go

to the bother of including error recovery code. The Monitor

detects this and does not give an error return if the LH of the

error return location is a HALT instruction. If this is the case,

the Monitor simply prints its standard error message for that type

of error and returns the user's console to monitor mode. This

optional error recovery procedure also allows a user program to

analyze the error code received and then execute a second RUN UUO

with a HALT if the error code indicates an error for which the

Monitor message is sufficiently informative or one from which the

user program cannot recover.

The error codes are an extension of the LOOKUP, ENTER,

and RENAME UUO error codes and are defined in the S.MAC Monitor

4-24

file.

389

LOOKUP, ENTER, RENAME, RUN, GETSEG UUO Error Codes

FNFEER

IPPEER
PRTERR

FBMEER
AEFEER
NLEEER

TRNEER
NSFEER
NECEER
DNAEER

NSDEER
TILUEER

0 File not found
1 Incorrect proj-prog no.
2 Protection failure or direc-

tory full-on DIA
3 File being modified
4} Already existing file
5} Neither LOOKUP or ENTER
6 Transmission error
7 Not a saved file

10 Not enough core
bat Device not available

IE No such device

ie Illegal UUO (GETSEG UUO on a
one-register machine)

The Monitor does not attempt an error return to a user program

after the high or low segment containing the RUN UUO has been

overlaid.

In order to successfully program the RUN UUO for all size

systems and for all CUSPs whose size is not known at the time the

RUN UUO is coded, it is necessary to understand the sequence of

operations it initiates. Assume that the job executing the RUN UUO

has both a low

‘

and a high segment. (It can be executed from either

segment; however, fewer errors can be returned to the user if it is

executed from the high segment.)

The sequence of operations for the RUN UUO is.as follows.

Ore

Not possible

Does a high segment already exist with desired name?

If yes, go to 30.

INIT and LOOKUP file name .SHR. If not found, go

OnzOe :

Read high file into top of low segment by extending

it. (Here the old_low segment and new high segment

and old high segment together may not exceed the

capacity of core.)

REMAP the top of low segment replacing old high

segment in logical addressing space. -

If high segment is sharable (.SHR) store its name

so others-can share it.

Always go to 40 or return to user if GETSEG UUO.

LOOKUP file name .HGH. If not found, go to 41 or

error return to user if GETSEG UUO.

on RUN UUO

30.

35%

40.

41.

45.

390

Read high file into top of low segment by extend-
ing it. (Here again the old low segment and new
high segment and old high segment together may not
exceed the capacity of core.)
Check for I/O errors. If any, error return to user
unless HALT in LH of return.
Go to 41.

Remove old high segment, if any, from logical ad-
dressing space.
Place the sharable segment in user's logical
addressing space. Go to 40 or return to user if
GETSEG UUO.

Remove old high segment, if any, from logical
addressing space.
(Go to 41)

Copy Vestigial Job Data area into Job Data area.
Does the new high segment have a low file
(LH JOBCOR>137) ?

EE=not,; go co: 45.

LOOKUP filename .SAV or .LOW or user specified
extension. Error if not found. Return to user if
there is no HALT in LH of error return, provided
that if the CALL is from the high segment it is
still the original high segment. Otherwise, the
Monitor prints the error message

ERROR IN JOB n

filename NOT FOUND, UUO AT USER addr
and stops the job.
Reassign low segment core according to size of file
or user specified core argument, whichever is
larger. Previous low segment is overlaid.
Read low file into beginning of low segment.
Check for I/O errors. If there is an error, print
error message and do not return to user. If no
errors, perform START.

Reassign low segment core according to larger of
user's core argument or argument when file saved
(RH JOBCOR).

NOTE

In order to always be guaranteed of handling the
most number of errors, the cautious user should
remove his high segment from high logical addressing
space (use core UUO with a one in.LH of AC). The
error handling code should be put in the low seg-
ment along with the RUN UUO and the size of the low
segment reduced to 1K. An even better idea would be
to have the error handling code be written once and
put in a seldom used (probably non-sharable) high
segment which could be gotten in high segment using
GETSEG UUO (see below) when an error return occurs
to low segment on a RUN UUO.

4-26

391

AS es CALL Ac, [SIXBIT/GETSEG/] or CALLI AC, 40 - These have

been implemented so that a high segment can be initialized from a

“file or shared segment without affecting the low segment. It is

used for shared data segments and shared program overlays. It is

also used for run-time routines such as FORTRAN or COBOL operating

systems. These programmed operators work exactly like the RUN UUO

with the following exceptions.

a) No attempt is made to read a low file.

b) The only change that is made to the low segment of

the Job Data area is to both halves of JOBHRL.

c) ~E£ an error-occurs, control is returned to the loca-

tion of the error return, unless the left half of the location

contains a HALT instruction.

d) On a normal eetacn control is returned to two loca-

tions following the UUO, whether it is called from low or high

segment. It should be called from low segment unless the normal

return coincides with the starting address of the new high segment.

e) User channels 1 through 17 are not released so the

GETSEG UUO can be used for program overlays, such as the COBOL

compiler. Channel 0 is released because it is used by the UUO.

See steps 1 through 31 of the RUN UUO description for

details of the operation of the GETSEG UUO.

4.3.7.4 CALL AC, [SIXBIT/SPY/] or CALLI AC, 42 - These are used

for efficient examination of the Monitor during time sharing. Any

number of K of physical core is placed into the user's logical high

segment. This amount cannot be saved (no error return if tried),

cannot be increased or decreased by the CORE UUO (error return

taken), or cannot have the user-mode write protect bit set (error

return taken).

392

The=cadi® ais's

MOVEI AC, Highest physical core location
desired

CALL AC, [SIXBIT/SPY/] ;O0r CALLI AC, 42
error return

normal return

Any program that is written to use the SPY uUO should try the

PEEK UUO if it receives an error return. Some installations may

restrict use of.the SPY UUO to certain privileged users (e.g.,

project 1 only).

4,4 INPUT/OUTPUT PROGRAMMING

All user input/output operations are controlled by the

use of Monitor programmed operators. These are device independent,

in the sense that if an operator is not pertinent to a given de-

vice, the operator is treated TG ey ee code. For

example, a rewind directed to a line printer does nothing. Devices

are referenced by logical names or physical monies (see Chapter 2),

and the characteristics of a device can be obtained from the

Monitor. Properly used, these systems characteristics permit the

programmer to delay the device specification for his program from

program-generation until program-run time. I/O is accomplished

by associating a device, a file, and a ring buffer or command list

with one of a user's I/O channels.

4.4.1 Bae

A file is an ordered set of data ona peripheral device.

Its extent on input is determined by an end-of-file Bonduiion

dependent on the device. For instance, a file is terminated by

reading an end-of-file gap from magnetic tape, by at iente Gee ic

card from a card reader, or by depressing the end-of-file switch

on a card reader (see Chapter 5). The extent of a file on output

4-28

393

is determined by the amount of information written by the OUT

or OUTPUT programmed operators up through and including the next

CLOSE or RELEAS operator.

4.4.1.1° Device - To specify a file, it is necessary to specify

the device from which the file is to be read or onto which the

file is to be written. This specification is made by an argument

of the INIT or OPEN programmed operators. Devices are separated

into two categories--those with no filename directory, and those

with one or more filename directories.

a) Non-directory Devices - For non-directory devices,

e.g., card reader, line printer, paper tape reader and punch, and

user console, the only file specification required is the device

name. All other file specifiers, if ‘given, are ignored by the

Monitor. Magnetic tape, which ee aun a non-directory device,

requires, in addition to the name, that the tape be properly posi-

tioned. Even though LOOKUP is not required to read and ENTER is

not required to write, it is always advisable to use them so that

a directory device may be substituted for a non-directory device

at run time (using the Monitor command, ASSIGN). Only in this way

can user programs be truly device independent.

b) Directory Devices - For directory devices, e€.g.,

DECtape and disk, files are addressable by name. If the device

has a single file directory, e.g., DECtape, the. device name and

filename are sufficient information to determine a file. If the

device has multiple file directories, e.g., disk, the name of the

file directory must also be specified. These names are specified

as arguments to the LOOKUP, ENTER, and RENAME programmed operators.

394

4.4.1.2 Data viodeaue Data transmissions are ree: unbuffered: or

buffered. (Unbuffered mode Bee nes referred to as dump mode.)

The mode of transmission is specified by a 4-bit argument to the

INIT, OPEN, or SETSTS programmed operators. Table 4-3 and Table

4-4 summarize the data modes.

Table 4-3
Buffered Data Modes

A ASCII. 7-bit characters packed left
justified, five characters per word.

Octal Code

ASCII line. Same as 0, except that the
buffer is terminated by a FORM, VT,
LINE-FEED or ALTMODE character.

Unused.

Image. A device dependent mode. The
buffer is filled with data exactly as
supplied by the device.

Unused.

Image binary. 36-bit bytes. This mode is
Similar to binary mode, except that no
automatic formatting or checksumming
is done by the Monitor.

Binary. 36-bit byte. This is blocked
format consisting of a word count, n (the
right half of the first data word of the
buffer), followed by n 36-bit data words.
Checksum for cards and paper tape.

Table 4-4
Unbuffered Data Modes

Image Dump. A device dependent dump mode.

Dump aS records without core buffering.
Data is transmitted between any contiguous
blocks of core and one or more standard
length records on the device for each
command word in the command list.

Dump one record without core buffering.
Data is transmitted bétween any contiguous
block of core and exactly one record of (
arbitrary length on the device for each
command word in the command list.

395 :

a). Unbuffered Data Modes - Data modes 15, 16 and 17

utilize a command list to specify areas in the user's allocated

core to be read or written. The effective address of the IN, INPUT,

OUT, and OUTPUT programmed operators points to the first word of

the command list. Three types of entries may occur in the command

list.

1) IOWD n, loc - Causes n words from loc through
loctn-1 to be transmitted. The next command

is obtained from the\ next location following

the IOWD. The assembler pseudo-op IOWD

generates XWD -n, loc-l.

2) xXWD 0, y - Causes the next command to be taken

from location y. ‘Referred to as a GOTO word.

3) 0 - Terminates the command list.

The Monitor does not return program control to the user

until the command list has been completely processed. If an illegal

address is encountered while processing the list, the job is stopped

and the Monitor prints

ADDRESS CHECK AT USER addr

on the user's console, leaving the console in Monitor mode.

b) Buffered Data Modes - Data‘modes 0, 1, 10, 13, and

14 utilize a ring of buffers in the user area and the priority

interrupt system to permit the user to overlap computation with his

data transmission. Core memory in the user's area serves as an

intermediate buffer between the user's program and the device. A

ring of buffers consists of a 3-word header block for bookkeeping

and a data storage area subdivided into one or more individual

buffers linked together to form a ring. During input operations,

the Monitor fills a buffer, makes the buffer available £0 the user's

program, advances to the next buffer in the ring and fills sie eiine

it is free. The user's program flows along behind, emptying the

next buffer if it is full, or waiting for the next buffer to fill.

4-31

396

During output operations, the user's program and the Monitor ex-

change roles, the user filling the buffers and the Monitor empty-

ing them.

1) Buffer Structure - A ring of buffers consists of
a 3-word header block and a data storage area
subdivided into one or more individual buffers
linked together to form a ring. The ring buffer
layout is shown in Figure 4-1, and explained in
the paragraphs which follow.

(a)

(b)

Buffer Header Block - The location of the
3-word buffer header block is specified by
an argument of the INIT and OPEN operators.
Information is stored in the header by the
Monitor in response to user execution of
Monitor programmed operators. The user's
program finds all the information required
to fill and empty buffers in the header.
Bit position 0 of the first word of the
header is a flag which, if 1, means that
no input or output has occurred for this
ring of buffers. The right half of the
first word is the address of the second
word of the buffer currently in use by the
user's program. The second word of the
header contains a byte pointer to the
current byte in the current buffer: The
byte size is determined by the data mode.
The third word of the header contains the
number of bytes remaining in the buffer.
A program may not use a single buffer
header for both input and output, nor may
a single buffer header be used for more
than one I/O function at a time. ~

Buffer Data Storage Area - The buffer data
storage area is established by the INBUF
and OUTBUF operators, or, if none exists
when the first IN, INPUT, OUT, or OUTPUT

operator is executed, a 2-buffer ring is
set up. The effective address of the
INBUF and OUTBUF operators specifies the
number of buffers in the ring. The loca-
tion of the buffer storage.area is speci-
fied by the contents of the right half of
JOBFF in the user's Job Data area. The
Monitor updates JOBFF to point to the first
location past the storage area.

All buffers in the ring are identical
in structure. As Figure 4-2 shows, the
right half of the first word contains the
file status at the time that the Monitor
advanced to the next buffer in the ring.
Bit 0 of the second word of a buffer,
called the use bit, is a flag that indicates

4-32

397

whether the buffer contains active data.
This bit is set to 1 by the Monitor when
the buffer is full on input or being
emptied on output, and set to 0 when the
buffer is empty on output or is being filled
on input. The use bit prevents the Monitor
and the user's program from interfering
with each other by attempting to use the
same buffer simultaneously. Buffers are
advanced by using the UUO's and not by the
user's program. The use bit in each buffer
should never be changed by the user's pro-
gram except by means of the UUO's. Bits 1
through 17 of the second word of the buffer
contain the size of the data area of the
buffer which immediately follows the second
word. The size of this data area depends

on the device. The right half of the first

word of the data area of the buffer, i.e.,

BUFFER HEADER BLOCK

CURRENT
BUFFER

BYTE POINTER

BYTE COUNT

DATA STORAGE AREA

USE FLAG

FILE STATUS

BUFI.

e
USE FLAG e

e

FILE STATUS

Li (oe [orien BUF}:

e

USE FLAG °
e

FILE STATUS

psze | om | BUFn:

DATA

Figure 4-1

User's Ring of Buffers

4-33

398

the third word of the buffer, is reserved
for a count of the number of words (ex-

cluding itself) that actually contain data.
The left half of this word is reserved for
other bookkeeping purposes, depending on
the particular device and the data mode.

FIRST WORD

ADDRESS OF SECOND
es WORD OF NEXT

BUFFER IN RING

BOOKKEEPING WORD COUNT, N

USE BIT —> SECOND WORD

THIRD WORD

N DATA WORDS DATA AREA

UNUSED

Figure 4-2

Detailed Diagram of Individual Buffer

4.4.1.3 File Status - The file status is a set of 18 bits (right

half word), ingen reflects the current state of a file transmission.

The initial status is a parameter of the INIT and OPEN operators.

Thereafter, bits are set by the Monitor, and may be tested and reset

by the user via Monitor programmed operators. Table 4-5 defines

the file status. bits. All bits, except the enaeor seis bit, are

set immediately by the Monitor as the conditions occur, rather than

being associated with the buffer that the user is currently working

on. However, the file status is stored with each buffer so that

the user can determine which bufferful produced an error. A more

thorough description of bits 18 through 29 is given in Chapter 5.

4-34

399

Table 4-5

Fale Status

Meaning | j

Improper mode, e.g., attempt to write on a write-
locked tape.

Device detected error, Other than hardware chechsum

or parity. Checksum, and/or parity error detected by
hardware and/or software.

Data error, e.g., a computed checksum failed or invalid

data was received.

Block too large. A block of data from a device is too
large to fit in a buffer, or a block number is too
large.

End of file.

Device is actively transmitting or receiving data.

Device dependent parameters. (See Chapter 5.)

Synchronous input. Stop the device after each buffer

is filled.

Forces the Monitor to use the word count in the first
data word of the buffer (output only). The Monitor
normally computes the word count from the byte pointer
in the buffer header.

Data mode. See Table 4-3 and Table 4-4.

4.4.2 Tnitialization

BARD: Job Initialization - The Monitor programmed operator

CALL [SIXBIT/RESET/] or CALLI 0

should normally be the first instruction in each user program.

It immediately stops all input/output transmissions on all devices

without waiting for the devices to become inactive. All device

allocations made by the INIT and OPEN operators are cleared, and,

unless the devices have been assigned by the ASSIGN command

4-35

400

(see Chapter 2), the devices are returned to the Monitor facili-

ties pool. The content of the left half of JOBSA (program break)

is stored in the right half of JOBFF so that the user buffer area

is reclaimed if the program is starting over. The left half of

JOBFF is cleared. Any files which have not been closed are de-

leted on disk. Any older version having the same filename remains.

The user-mode write-protect bit is automatically set if a high

segment exists, whether it is sharable or not, so that a program

cannot inadvertently store into the high segment.

4.4732.2 Device Initialization

OPEN D,SPEC INIT D,STATUS

error return SIXBIT/ldev/

normal return XWD OBUF, IBUF
3 error return

normal return

SPEC: EXP STATUS

SIXBIT/ldev/
XWD OBUF, IBUF

The OPEN (operation code 050) and INIT (operation code 041) pro-

grammed operators initialize a file by specifying a device, ldev,

and initial file status, STATUS, and the location of the input and

output buffer headers.

a) Data Channel - OPEN and INIT establish a correspon-

dence between the device, ldev, and a 4-bit data channel number, D.

Most of the other input/output operators require this channel num-

ber eee argument. If a device is already assigned to channel D,

it is released. (See RELEAS in this chapter.) The device name,

ldev, is either a logical or physical name, with logical names

taking precedence over physical names. (See ASSIGN command,

Chapter 2.) If the device, ldev, is not the system device, SYS,

and is allocated to another job or does not exist, the error return

is taken. If the device is the system device, SYS, the job is

i

4-36

401

put into a system device wait queue, and will continue running when

SYS becomes available.

b) Initial File Status - The file status, including the

data mode, is set to the value of the symbol STATUS. If the data

mode is not legal (see Chapter 5) for the specified device, the

job is stopped and the Monitor prints

ILL DEVICE DATA MODE FOR DEVICE dev AT USER addr,

where dev is the physical name of the device and addr is the loca-

tion of the OPEN or INIT operator, on the user's console and leaves

the console in Monitor mode.

c) Buffer Header - Symbols OBUF and IBUF, if non-zero,

specify the location of the first word of the 3-word buffer header

for Gacoue and input, respectively. Only those headers which are

to be used need to be specified. For instance, the output header

need Ast be specified, if only input is to be done. Also, data

modes 15, 16, and 17 require no header. If either of the buffer

headers or the 3-word block starting at location SPEC lies outside

the user's allocated core area,’ the io is stopped and the Monitor

prints

ILLEGAL UUO AT USER addr

(addr is the address of the OPEN or INIT operator) on the user's

console, leaving the console in Monitor mode. 1

‘The first and third words of the buffer header are set

to zero. The left half of the second word is set up with the byte

pointer size field in bits 6 through 11 for the selected device-

data mode combination.

lBuffer headers may not be in the user's AC's. However, they may
be in locations above JOBPFI. (See Table 3.1)

4-37

402

4.4.2.3 Buffer Initialization - Buffer data storage areas may be

established by the INBUF end OUTBUF programmed operators, or by

the first IN, INPUT, OUT, or OUTPUT operator, if none exists at

that time, or the user may set up his own buffer data storage area.

a) Monitor Generated Buffers - Each device has associated

with it a standard buffer size (see Chapter 5). The Monitor pro-

grammed operators INBUF D, n (operation code 064) and OUTBUF D,n

(operation code 065) set up a ring of n standard Size buffers

aneociaced with the input and output buffer headers, respectively,

specified by the last OPEN or INIT operator on data channel D.

If no OPEN or INIT operator has been performed on channel D, the

Monitor stops the job and prints

I/O TO UNASSIGNED CHANNEL AT USER addr

(addr is the location of the INBUF or OUTBUF operator) an the user's

console, leaving the console in Monitor mode.

The storage space for the ring is taken from successive

locations, beginning with the location specified in the right half

of JOBFF. This is set to the program break, which is the first

free location above the program area, by RESET. If there is in-

sufficient space to set up the ring, the Monitor will automatically

attempt to expand the. user"s core allocation by 1K. If this fails,

the Monitor stops the job and prints

ADDRESS CHECK FOR DEVICE ldev AT USER addr

(ldev is the physical name of the device associated with channel D

and addr is the location of the INBUF on OUTBUF operator) on the

user's console, leaving the console in Monitor mode.

The ring is set up by setting the second word of each

buffer with a zero use bit, the appropriate data area size, and the

link to the next buffer. The first word of the buffer header 1

set with a 1 in the ring use bit, and the right half contains the

4-38

403

address of the second word of the first buffer.

b) User Generated Buffers - The following code illus-

trates an alternative to the use of the INBUF programmed operator.

Analogous code may replace OUTBUF. This user code operates simi-

larly to INBUF. SIZE must be set equal to the greatest number of

data words expected in one physical record.

GO:

MAGBUF:
BUF 1:

BUF2:

BUF3:

4.4.2.4

INIT 1, 0
SIXBIT/MTAO/
XWD 0, MAGBUF
JRST NOTAVL

; INITIALIZE ASCII MODE

;MAGNETIC TAPE UNIT 0

; INPUT ONLY

MOVE 0, [XWD 400000,BUF1+1] ;THE 400000 IN THE LEFT HALF

MOVEM 0, MAGBUF

;MEANS THE BUFFER WAS NEVER

; REFERENCED.

MOVE 0, [POINT BYTSIZ,0,35] ;SET UP NON-STANDARD BYTE

MOVEM 0, MAGBUF+1
JIRST CONTIN
BLOCK 3
0

XWD SIZE+2,BUF2+1

BLOCK SIZE+1

0
XWD SIZE+2,BUF3+1
BLOCK SIZE+1
0
XWD SIZE+2,BUF1+1
BLOCK SIZE+1

;SIZE

;GO BACK TO MAIN SEQUENCE

;SPACE FOR BUFFER HEADER
;BUFFER 1, 1ST WORD UNUSED

;LEFT HALF CONTAINS BUFFER

;SIZE, RIGHT HALF HAS
;ADDRESS OF NEXT BUFFER

;SPACE FOR DATA, 1ST WORD
;RECEIVES WORD-COUNT. THUS
;ONE MORE WORD IS RESERVED

;THAN IS REQUIRED FOR DATA

; ALONE
;SECOND BUFFER

;THIRD BUFFER
;RIGHT HALF CLOSES THE RING

File Selection (LOOKUP and ENTER) - The LOOKUP (operation

code 076) and ENTER (operation code 077) programmed operators select

a file for input and output, respectively. Although these operators

are not necessary for non-directory devices, it is good programming

practice to always use them so that directory devices may be sub-

stituted at run time. (See ASSIGN, Chapter 2.)

a) LOOKUP D,E

error return.

normal return

E: SIXBIT/£file/ ;filename, 1 to 6 characters.
SIXBIT/ext/ ;filename extension, 0 to 3

;characters.
0
XWD project number, programmer number,

LOOKUP selects a file for input on channel D. If no

device has been associated with channel D by an INIT or OPEN UUO,

the Monitor prints

I/O TO UNASSIGNED CHANNEL AT USER addr

and returns the user's console to Monitor mode. If the input side

of channel D is not closed (see CLOSE, in this chapter), it is nou

closed. The output side of channel D is not affected. If the

device associated with channel D does not have a directory, the

normal return is now taken. If the device has multiple directories,

e.g., disk, the Monitor searches the master file directory of the

device for the user's file directory whose number is in location

E+3 and whose extension is UFD. If E+3 contains zero, the project-

programmer pair of the current job is used as the name of the

user's file directory. If this file is not found in the master

file directory, 1 is stored in bits 33 through 35 of location E+1

and the error return jis taken.

The user's file directory or the device directory in the

case of a single-directory device (e.g., DECtape) is searched for

the file whose name is in location E and whose extension is in the

left half of location E+l. If the file is not found, 0 is stored

in the right half of E+l and the error return is taken. If the

device is a multiple-directory device (e.g., disk) and the file is

found, but is read protected (see File Protection in this chapter),

405

2 is stored in the right half of location E+l and the error return

is taken. Otherwise, location E+l through E+3 are filled by the

Monitor with the

return is taken.

1)

2)

3)

4)

5)

6)

following data concerning the file, and the normal

The left half of location E+l remains set to the

filename extension.

If the device is a multiple-directory device,

bits 24 through 35 of tocation Ht ane set 0

the date (in the format of DAYTIME programmed

operator) that the file was last referenced.

If the device is a single-directory device,
the right ‘half of slocation H+), is set: to the

device block number of the first block of the

file.

If the device is a multiple-directory device,

bits 0 through 8 of location E+2 are set to the

file protection. (See "File Protection," this

chapter.)

Bits 9 through 12 of location E+2 are set to the

data mode in which the file was written.

Bits 13 through 23 of location E+2 are set to the

time, in minutes, and bits 24 through 35 of loca-

tion E+2 are set to the date (in the format of

the DAYTIME programmed operator) of the file's

creation, i.e., of the last ENTER or RENAME

programmed operator.

If the device is a multiple-directory device, the

left half of location E+3 is set to the negative

of the, number of words in the file, and the right

half is unchanged. If the file contains more

than 217 words, then the left half contains the

positive number of 128-word blocks in the fide.

If the device is a single-directory device,

location E+3 is used only for SAVed files (see

Chapter 3), and contains the IOWD of the core

image, i.e., the left half is the negative word

length of the file and the right half is the core

address of the first word minus 1.

_b) ENTER D,E
error return

normal return

E: SIXBIT/£ile/ ;filename, 1 through 6
;characters.

SIXBIT/ext/ ;filename, extension, 0
;through 3 characters.

EXP<TIME>B23+DATE

XWD project number, programmer number.

ENTER selects a file for output on channel D. If no de-

vice has been associated with channel D by an INIT or OPEN UUO, the

Monitor prints

I/O TO UNASSIGNED CHANNEL AT USER addr

and returns the user's console to Monitor mode. If the output side

of channel D is not closed (see CLOSE in this chapter), it is now

closed. The input side of channel D is not affected. If the device

does not have a directory, the normal return is now taken.

If the device has multiple directories, e.g., disk, the

Monitor searches the master file directory of the device for the

user's file directory whose name is in location E+3 and whose ex-

tension if UFD. If E+3 contains 0, the project-programmer pair of

the current job is used as the name of the user's file directory.

If this file is not found in the master file directory, 1 is stored

in bits 33 through 35 of location E+1l, and the error return is

taken. Since a null filename is illegal, if the filename in loca-

tion E is 0, 0 is stored in bits 33 through 35 of location E+l, and

the error return is taken. The user's file directory, or the device

file directory in the case of a single-directory device, such as

DECtape, is searched for the file whose name is in location E and

whose extension is in the left half of location E+1.

If the device is a multiple-directory device and the file

is found but is being written or renamed, 3 is stored in bits 33

4-42

407

through 35 of location E+1, and the error return is taken. If the

file is write protected (See "File Protection", this chapter), 2

is stored in bits 33 through 35 of location E+1l, and the error re-

turn is taken.

If the file is found, and is not being written or renamed

and is not write protected, then the file is deleted, and the storage

Space on the device is recovered.

On disk, this deletion of the previous version does not

occur until output CLOSE time. Consequently, if the new file is

aborted when panera ly written, the old version remains. On DECtape,

the deletion must occur immediately upon ENTER to insure that space

is available for writing the new version of the file.

The Monitor then makes the file entry by recording the

following information concerning the file and takes the normal return.

a) The filename is taken from location E.

b) The filename extension is taken from the left half of

location E+l.

c) If the device is a multiple-directory device, then

1) the current date is taken as the date of last

reference,

2) the file protection key is set to 055 (see "File
Protection," this chapter),

3) the current data mode is taken as the mode in

which the file is to be written,

4) the project number of the current job is taken
as the file owner's project number, and

5)) Le batts? 1B through sb. 0f location hte ace non
zero, bits 13 through 23 are taken as the time
of creation, in minutes, and bits 24 through 35

are taken as the date of creation (in the format

of the DAYTIME programmed operator) of the file.
Otherwise, the current time and date are used.

If the device is a single-directory device, and if

bits 24 through 35 of location E+2 are non-zero, they are taken as

408

the date of creation; otherwise, the current date is used.

4.4.2.5 File Protection and the RENAME Operator - File protection

on non-directory and single-directory devices is obtained by use of

the ASSIGN command (see Chapter 2). Multiple-directory devices have

a master file directory for the device which contains entries for

each user's file directory. File selection (see LOOKUP and ENTER

in this chapter) requires specification of the name of a user's

file directory and a filename within that directory. Since this

permits each user to access all files on the device, a file pro-

‘gection scheme to prevent unauthorized references is necessary.

For file protection purposes users are divided into three categories:

a) The file owner is the user whose programmer number

is the same as that in the NAME field of the user's file directory

in which the file is entered. (Some installations may modify the

Monitor to require both project and programmer numbers to match.)

b) Project members are users whose project number is the

same as that of the file owner.

c) All other users.

There are three types of protection against each of the

three categories of users.

a) Protection-protection - the protection cannot be

altered.

OWNER PROJECT OTHER

WRITE
PROTECTION

READ
PROTECTION

PROTECTION
PROTECTION

Figure 4-3 File Protection Key

4-44

409

b) Read protection - the file may not be read.

c) Write protection - the file may not be modified.

The file protection key, shown in the foregoing figure, is a

set of nine bits which specify the three types of protection for each

category of user. (See 5.8.2.4) When a file is created by an ENTER

programmed operator, the file protection key is set to 055, indicating

that the file is protection-protected and write-protected against all

users except the owner. The protection key is returned by the LOOKUP

D, E programmed operator in bits 0 through 8 0f location EZ. “Lt aes

be changed by the RENAME programmed operator. The owner's protection-.

protection and read-protection bits are ignored by the Monitor, thereby

preventing a file from becoming inaccessible to everyone. Moreover,

the owner protection-protection bit has been taken over to specify that

a user wishes to protect his file uot deletion when he logs off the

system. This feature is handled completely by the LOGOUT CUSP.

RENAME D,E

error return

normal return

E: SIXBIT/£ile/ ;filename, 1 through 6 characters.

SIXBIT/ext/ ;filename extension, 0 through 3 characters.

EXP<PROT>B8+ <TIMEDB23+DATE
XWD project number, programmer number.

The RENAME programmed operator (operation code 055) is used

to alter the filename, filename extension, and file protection key or

delete a file associated with channel D on a directory device.

If no device is associated with channel D, the Monitor prints

I/O TO UNASSIGNED CHANNEL AT USER addr and returns the user's console to

Monitor mode. If the device is a nondirectory device, the normal re=

tunes caken.. iit no file is selected on channel D, 5 is stored in

bits 33 through 35 of location E+1, and the error return is taken.

4-45

410

If the gaa has multiple directories, e.g., aici 2 ae

Monitor searches the master file directory of the device for the

user's file directory whose name is in location E+3 and whose ex-

tension is UFD. If E+3 contains 0, the project-programmer pair of

the current job is used as the name of the user's file directory

If this file is not found in the master file directory, 1 is stored

in bits 33 through 35 of location E+l, and the error return is taken.

The user's file directory, or the device file directory in the case

of a single-directory device, is searched for the file currently

selected on channel D. If the file is not found, 0 is stored in

bits 33 through 35 of location E+l1, and the error return is taken.

If the device is a multiple-directory device and the’ file

is found, but is being written or renamed, 3 is stored in bits 33

through 35 of location E+1, and the error return is taken. If the

file is owner write-protected or if the protection key is being

modified, i.e., bits 0 through 8 of location E+2 differ from the

current protection key, and the file is owner protection-protected,

2 is stored in bits 33 through 35 of location E+l, and the error .

return is taken. . .

If the new filename in location E is 0, the file is

deleted, or marked for deletion, after all read references are com-

pleted, and the normal return is taken. If the filename in location

E and the filename extension in the left half of location E+l are

the same as the current filename and filename extension, respec-

tively, the protection key is set to the contents of bits 0 through

8 of location E+2, and the normal return is taken.

If the new filename in location E and/or the filename

extension in the left half of location E+l differ from the current

filename and/or filename extension, the user's file directory (or the

device directory) is searched for the new filename and extension, as

4-46

411

in LOOKUP. If a match is found, 4 is stored in bits 33 through 35

of location E+l, and the error Sane is taken. If no match is

found, the file is changed to the new name in location E, the file-

name extension is changed to the new filename extension in the left

half of location E+1, the protection key is set to the contents of

bits 0 through 8 of location E+2, the access date is set to the

current date, and the normal return is taken.

4.4.2.6 Examples

General Device Initialization

INIDEV: 0: ;07SR HERE
ae Ne eages ee 10d sBINARY MODE, CHANNEL 3
SIXBIT/DTA5/ ;DEVICE DECTAPE UNIT 5
XWD OBUF, IBUF ;BOTH INPUT AND OUTPUT
JRST NOTAVL ;WHERE TO GO IF DTA5 IS BUSY

;+FROM HERE DOWN IS OPTIONAL DEPENDING ON THE DEVICE AND PROGRAM

; REQUIREMENTS

MOVE 0, JOBFF
MOVEM 0, SV JBFF ;SAVE THE FIRST ADDRESS OF THE BUFFER

;RING IN CASE THE SPACE MUST BE

> RECLAIMED
INBUF 3,4 ;SET UP 4 INPUT BUFFERS
OUTBUF 3,1 ;SET UP 1 OUTPUT BUFFER
LOOKUP 3, INNAM ;INITIALIZE AN INPUT FILE
JRST NOTFND ;WHERE TO GO IF THE INPUT FILE NAME IS

;NOT IN THE DIRECTORY

ENTER 3, OUTNAME ;INITIALIZE AN OUTPUT FILE

JRST NOROOM ;WHERE TO GO IF THERE IS NO ROOM IN
;THE DIRECTORY FOR A NEW FILE NAME

JRST @INIDEV +RETURN TO MAIN SEQUENCE
OBUF BLOCK 3 ;SPACE FOR OUTPUT BUFFER HEADER
IBUF ' BLOCK 3 ;SPACE FOR INPUT BUFFER HEADER
INNAM: SIXBIT/NAME / ;FILE NAME

SIXBIT/EXT/ ;FILE NAME EXTENSION (OPTIONALLY 0),
;RIGHT HALF WORD RECEIVES THE

;FIRST BLOCK NUMBER
0) ;RECEIVES THE DATE
0 ;UNUSED FOR NONDUMP I/O

OUTNAM: SIXBIT/NAME/ SAME INFORMATION AS IN INNAME
SIXBIT/EXT/ :
0)
)

412

AnH 3} Data Transmission

The programmed operators

INPUT D,E and IN D,E

normal return
error return

transmit data from the file selected on channel D to the user's

core area. The programmed operators

OUTPUT D,E and OUT D,E

normal return
Ghaicore ie Syrbhaig)

transmit data from the user's core area to the file selected on

channel D.

If no OPEN or INIT operator has been performed on channel

D, the Monitor stops the job and prints

I/O TO UNASSIGNED CHANNEL AT USER addr

(addr is the location of the IN, INPUT, OUT, or OUTPUT programmed

Operator) on the user's console leaving the console in Monitor mode.

If the device is a multiple-directory device and no file is selected

on channel D, bit 18 of the file status is set to 1, and control

returns to the user's program. Control always retruns to the

location immediately following an INPUT (operation code 066) and

an OUTPUT (operation code 067). A check of the file status for end-

of-file and error conditions must then be made by another programmed

Operator. Control returns to the location Eee aes ae SilLen ean

an IN (operation code 056) and an OUT (operation code 057), if no

end-of-file or-error condition exists, i.ée., i£ bits 18 through= 22

of the file status are all 0. Otherwise, control returns to the

second location following the IN or OUT. Note that IN and OUT

UUO'sS are the only ones in which the error return is a skip and the

nermal return is not a skip..

é 413

Avi Aw Sneek Unbut cevca (Dump) Modes - In data modes 15, IG veatiayol ALIAS

the effective address E of the INPUT, IN, OUTPUT, and OUT pro-

grammed operators is the address of the first word cf a command

list (see Section 4.4.1). Control does not return to the program

until transmission is terminated or an errcr is detected.

Example

Dump Output

Dump input is similar to dump output. This routine outputs

fixed-length records.

DMPINI: 0 :;JSR HERE TO INITIALIZE A FILE
INIT 0, 16 ;CHANNEL 0, DUMP MODE
SIXBIT/MTA2/ ;MAGNETIC TAPE UNIT 2
0 ;NO RING BUFFERS
JRST NOTAVL ;WHERE TO GO IF UNIT 2 IS BUSY
JRST @DMPINI ; RETURN

DMPOUT: 0 ;JSR HERE TO OUTPUT THE OUTPUT AREA
OUTPUT 0,OUTLST :SPECIFIES DUMP OUTPUT ACCORDING

:TO THE LIST AT OUTLIST
STATZ 0, 740000 ;CHECK ERROR BITS
CALL[SIXBIT/EXIT/] ;QUIT IF AN ERROR OCCURS
JRST @DMPOUT ; RETURN

DMPDON: 0 ;JSR HERE TO WRITE AN END OF FILE
CLOSE 0, :WRITE THE END OF FILE
STATZ 0, 740000 :CHECK FOR ERROR DURING WRITE

;END OF FILE OPERATION

CALL[SIXBIT/EXIT/] ;QUIT IF ERROR OCCURS

RELEAS 0, ;RELINQUISH THE DEVICE

JRST @DMPDON ; RETURN
OUTLST: IOWD BUFSIZ,BUFFER ;SPECIFIES DUMPING A NUMBER OF

;WORDS EQUAL TO BUFSIZ, STARTING

;AT LOCATION BUFFER
0 ;SPECIFIES THE END OF THE COMMAND

Pair esyaly
BUFFER BLOCK BUFSIZ ;OUTPUT BUFFER, MUST BE CLEARED

;AND FILLED BY THE MAIN PROGRAM

Ara Ora? Buffered Modes - In data modes Ges 10, 13 and 14 the

effective address E of the INPUT, IN, OUTPUT, and OUT programmed

operators may be used to alter the normal sequence of buffer mere

erence. If E is 0, the address of the next buffer is cbtained

from the right half of the second word of the current buffer. re

E is nonzero, it is the address of the second word of the next

buffer to be referenced. The buffer pointed to by E can be in an

4-49

414

entirely separate ring from the present buffer. Once a new buffer

location is established, the following buffers are taken from the

ring started at E.

a) Input - If no input buffer ring is established when

the first INPUT or IN is executed, a 2-buffer ring is set up. (See

INBUF, Section 4.4.2.3)

Buffered input may be performed synchronously or asyn-

chronously at the option of the user. If bit 30 of the file status

is 1, each INPUT and IN programmed operator does the following.

l. Clears the use bit in the second word of the
buffer whose address is in the right half of
the first word of the buffer header, thereby
making the buffer available for refilling by
the Monitor.

2. Advances to the next buffer by moving the
contents of the second word of the current buffer
to the right half of the first word of the 3-word
buffer header.

3. Returns control to the user's program if an end-
of-file or error condition exists. Otherwise,
the Monitor starts the device which fills the
buffer and stops transmission.

4. Computes the number of bytes in the buffer from
the number of words in the buffer (right half
of the first data word of the buffer) and the byte
size, and stores the result in the third word of
the buffer header.

5. Sets the position and address fields of the byte
pointer in the second word of the buffer header,
so that the first data byte is obtained by an
ILDB instruction. ‘

6. Returns control to the user's program.

Thus, in synchronous mode, the position of a device, such

as Magnetic tape, relative to the current data is easily determined.

The asynchronovs input mode differs in that once a device is started,

successive buffers in the ring are filled at the interrupt level

without stcpping transmission until a buffer whose bit is 1 is

encountered. Control returns to the user's program after the first

buffer is filled. The position of the device relative to the data

4-50

415
-

currently being processed by the user's program depends on the number

of buffers in the ring and when the device was last stopped

Example:

General Subroutine to Input One Character

GETCHR: 0 ;JSR HERE AND STORE PC
GETCNT: SOSG IBUF+2 :DECREMENT THE BYTE COUNT

JRST GETBUF +BUFFER IS EMPTY (OR FIRST CALL AFTER

; INIT)

GETNXT: ILDB AC, IBUF+l ;GET NEXT CHAR FROM BUFFER 1

JUMPN AC @GETCHR ;RETURN TO CALLER IF NOT NULL CHAR

JRST GETCNT + IGNORE NULL AND GET NEXT CHAR

GETBUF: IN 3 ;CALL MONITOR TO REFILL THIS BUFFER

JRST GETNXT ;RETURN HERE WHEN NEXT BUFFER IS
; FULL (PROBABLY IMMEDIATELY)

JRST ENDTST ;RETURN HERE ONLY IF ERROR OR EOF

ENDTST: STATZ 3, 740000 ;CHECK FOUR ERROR BITS FIRST

JRST INERR ;WHERE TO GO ON AN ERROR

JRST ENDFIL ;WHERE TO GO ON AN END OF FILE

b. Output- If no output buffer ring has been established,

i.e@s, Jf the rrst word of the butter header is 0, when the first

OUT or OUTPUT is executed, a 2-buffer ring is set up (see OUTBUF,

this chapter). If the ring use bit (bit 0 of the first word of the

buffer header) is 1, it is set to 0, the current buffer is cleared

-to all Os, and the position and address fields of the buffer byte

pointer (the second word of the buffer header) are set so that the

first byte is properly stored by an IDPB instruction. The byte count

(the third word of the buffer header) is set to the maximum of bytes

that may be stored in the buffer, and control is returned to the

user's program. Thus, the first OUT or OUTPUT initializes the

buffer header and the first buffer, but does not result in data

transmission.

If the ring use bit is 0 and bit 31 of the file status is

For some devices in ASCII mode, the item count provided will always

be a multiple of five characters. Since the last word of a buffer

may be partially full, user programs which rely ers the item count

should always ignore null characters.

4-51

416

0, the number of words in the buffer is computed from the address .

field of the buffer byte pointer (the second word of the buffer

header) and the buffer pointer (the first word of the buffer header),

and the result is stored in the right half of the first data word

of the buffer. If bit 31 of the file status is 1, it is assumed that

the user has already set the word count in the right half of the first

data word. The buffer use bit (bit 0 of the second word of the buffer)

Sse kntoue indicating that snare ce contains data to be trans-

mitted to the device. If the device is not currently active i.e.,

not receiving data, it is started. The buffer header is advanced to

the next buffer by setting the buffer pointer in the first word of

the buffer header. If the buffer use bit of the new buffer is 1, the

job is put into a wait state until the buffer is emptied at the in-

terrupt level. The buffer is then cleared to 0s, the buffer byte

pointer and byte count are initialized in the buffer header, and con-

trol is returned to the user's program.

Example:
General Subroutine to Output One Character pe age eee a es ee See Ccer

PUTCHR 0 ;JSR HERE AND STORE PC
SOSG OBUF+2 ; INCREMENT BYTE COUNT
JRST PUTBUF ;NO MORE ROOM (OR FIRST CALL AFTER INIT)

PUTNAT: ~* IDPB AC, OBUF+1 ;STORE THIS CHARACTER
JRST @PUTCHR ;AND RETURN TO CALLER

PUTBUF: OUT 3 ;CALL MONITOR TO EMPTY THIS BUFFER
JRST PUTNXT ;RETURN HERE WHEN NEXT BUFFER IS

;EMPTY (PROBABLY IMMEDIATELY)
JRST OUTERR ;RETURN HERE ONLY IF OUTPUT ERROR

OUTERR: GETSTS 3,AC ;GET THE ERROR STATUS TO LOOK AT

4.4.4 Status Checking and Setting

The file status (see Table 4-5) is manipulated by the GETSTS

(operation code 062), STATZ (operation code 063), STATO (operation code

061): and SETSTS (op code 060) programmed operators. In each case the

4-52

417

accumulator field of the instruction selects a data channel. If
4

f

no device is associated with the specified data channel, the Monitor

stops the job and prints,

I/O TO UNASSIGNED CHANNEL AT USER addr

(addr is the location of the GETSTS, STATZ, STATO, or SETSTS pro-

araumed operator) on the user's console leaving the console in

Monitor mode.

GETSTS D,E stores the file status of data channel D in

the right half and 0 in the left half of location E.

STATZ D,E skips, if all file status bits selected by the

effective address E are 0.

STATO D,E skips, if any file status bit selected by the

effective address E is l.

SETSTS D,E waits until the device on channel D stops

transmitting data and replaces the current file status, except bit

23, with the effective address E. If the new data mode, indicated

in the right four bits of E, is not legal for the device, the job

is stopped and the Monitor prints,

ILL DEVICE DATA MODE FOR DEVICE dev AT USER addr

(dev is the physical name of the device and addr is the location

of the SETSTS operator) on the user's console leaving the console in

Monitor mode. If the user program changes the data mode, ie music

also change the byte size fay: the byte pointer in the input buffer

header (if any) and the byte size and item count in the output

buffer header (if any). Changing the output item count should be

done using the count already placed there by the Monitor and y

dividing or multipling by the appropriate conversion factor, rather

than assuming the length of a buffer.

4-53

418

4.4.5 Terminating A File (CLOSE)

File transmission is terminated by the CLOSE D,N (Oper-

ation code 070) programmed operator. If no device is associated

with channel D or if bits 34 and 35 of the instruction are both l,

control returns to the user's program immediately.

If bit 34 is 0 and the input side of data channel D is

Open, it is now closed. In data modes 15, 16, and 17, the effect

is to execute a device dependent function and clear the end-of-file

flag, bit 22 of the file status. Data modes 0, 1, 10, 13, and 14

have the additional effect, if an input buffer ring exists, of

setting the ring use bit (bit 0 of the first word of the buffer

header) to 1, setting the buffer byte count (the third word of the

buffer header) to 0 and setting the buffer use bit (bit 0 of the

second word of the buffer) of each buffer to 0.

If bit 35 of the instruction is 0 and the output side of

channel D is open, it is now closed. In data modes 15, 16, and ae

the effect is to execute a device dependent function. In data modes

0, 1, 10, 13, and 14, if a buffer ring exists, the following oper-

ations are performed. |

: a) All data in the buffers that has not yet been trans-

mitted to the device is now written.

b) Device ad panded: functions are performed.

c) The ring use bit is set to l.

d) The buffer byte count is set to 0.

e) Control returns to the user after transmission is

complete.

419

Example:

Terminating A File

DROPDV: 0 ;JSR HERE

CLOSE 3, ;WRITE END OF FILE AND TERMINATE

; INPUT

STATZ 3, 740000 ;RECHECK FINAL ERROR BITS

JRST OUTERR ;ERROR DURING CLOSE

RELEAS 3, ;RELINQUISH THE USE OF THE

;DEVICE, WRITE OUT THE DIRECTORY

MOVE 0, SVJBFF
MOVEM 0, JOBFF ;RECLAIM THE BUFFER SPACE

JRST. @ DROPDV ;RETURN TO MAIN SEQUENCE

4.4.6 Synchronization of Buffered I/O (CALL D, [SIXBIT/WAIT/

In some instances, such as recovery from transmission errors,

it is desirable to delay ‘until a device completes its input/output

activities. The programmed operators,

CALL D, [SIXBIT/WAIT/]and CALLI D,10

return control to the user's program when all data transfers on channel

D have finished. This UUO does not wait for a Magtape spacing

operation, since no data transfer is in progress. An MTAPE D, 0 (see

Section 5.7.2) should be used to wait for spacing and I/O activity

to finish on Magtape. If no device is associated with data channel

D, Gentil returns immediately. After the device is stopped, the

position of the device relative to the data currently being processed

by the user's program can be determined by the buffer use bits.

4.4.7 Relinguishing A Device (RELEASE)

When all transmission between the user's program and a

device is finished, the program must relinquish the device by per-

forming a

RELEASE D,

RELEASE (operation code 071) returns control immediately,

if no device is associated with data channel D. Otherwise, both

input and output sides of data channel D are CLOSEd and the =~"

4-55

420

correspondence between channel D and the device, which was established

by the INIT or OPEN programmed operators, is terminated. If the de-

vice is neither associated with another data channel nor assigned

by the ASSIGN command (see Chapter 2), it is returned to the Monitor's

pool of available facilities. Control is returned to the user's pro-

gram.

4.5 CORE CONTROL

Aye ®) gall CALL ac, [SIXBIT/CORE/] or CALLI, 11 - These provide a

user program with the ability to expand and contract its core size

as its memory requirements change. In order to allocate core in

either or both segments, the left half of AC is used to specify the

highest user address to be assigned to the high segment. If the

left half of AC contains 0, the high segment core assignment is not

changed. If the left half of AC is non-zero and is either less

ners 400000 or the length of the low segment, whichever is greater,

the high segment is eliminated. If this is executed from the high

segment, an illegal memory error message is printed when the Monitor

attempts to return control to the illegal memory.

The error return is given if LH is greater than or equal

to 400000 and if either the system does not have a two-segment

capability or the user has been meddling without write access

privileges (see section 4.6). A RH of 0 leaves the tae segment core

assignment unaffected. The Monitor clears new core before assigning

it to the user, so that privacy of information is insured. |

In swapping systems, these programmed operators return the

maximum number of 1K core blocks (all of core minus ne Monitor, un-

less an installation chooses to restrict the amount of core) avail-

able to the user. By restricting the amount of core available to

4-56

421

users, the number of jobs in core simultaneously is increased. In

non-swapping systems, the number of free and dormant 1K blocks are

returned. Therefore, the CORE UUO and the CORE command return the

same information.

The call is: MOVE AC [XWD HIGH ADR or 0, LOW ADDR or 0]
GALL AG; |StexBiel/CORE/|s-on CAH wAGy 211:
error return

normal return

The CORE UUO reassigns the low segment (if RH is non-zero)

and then reassigns the high segment (if LH is non-zero). If the

sum of the new low segment and the old high segment exceeds the

maximum amount of core allowed to a user, the error return is given,

the core assignment is unchanged, and the maximum core available to

the user for high and low segments (in 1K blocks) is returned in the

INC Gm AN fel non-swapping system, the number of free and dormant 1K

blocks is returned.

If the sum of the new low segment and the new high segment

exceeds the maximum amount of core allowed to a user, the error re-

turn is given, the new low segment is assigned, the old high

segment remains, and the maximum core available to the user in 1K

blocks is returned in the AC. Therefore to increase the low seg-

ment and decrease the high segment at the same time, two separate

CORE UUO's Conia be used in order to reduce the chances of exceeding

the maximum size allowed to a user job.

If the new low segment extends beyond 377777, the high

segment shifts up into the virtual addressing space instead of being

overlaid. If a long low segment is shortened to 377777 or less, the

high segment shifts from the virtual addressing space to 400000 in-

stead of growing longer or remaining where it was. If the high seg-

ment is a program, it does not execute properly after a shift un-

less it is a self-relocating program in which all transfer instruc-—

tions are indexed.

4-57

422

If the high segment is eliminated by a CORE UUO , a sub-

sequent CORE UUO in which the LH is greater than 400000 will create

a new, non-sharable segment rather than reestablishing the old high

segment. This segment becomes sharable after it has been a) given

an extension .SHR, b) written onto the storage device, c) closed

so that a directory entry is made, and d) initialized from the

storage device by GET,R, or RUN commands or RUN or GETSEG UUO's.

This is the same sequence which the Loader and the SAVE and GET

commands use to create and initialize new sharable segments.

ae aD CALL AC, ISIXBIT/SETUWP/ lor CALLI AC,36 - These allow a

user program to set or clear the hardware user-mode write protect

bit and to obtain the previous setting. It must be used if a user

program is to modify the high segment.

The call is: CALL AC, [SIXBIT/SETUWP/] ; OR CALLI AC,36
CELLO eceturn \
normal return

If the system has a two-register capability, the normal

return will be given unless the user has been meddling without

write privileges, in which case an error return will be given. This

happens whether or not the program has a high segment because the

reentrant software is designed to allow jeans to write programs for

two-register machines which wiil run under one-register machines.

Compatibility of source and relocatable binary files is therefore

maintained between one-register and two-register machines.

If the system has a one-register Capability, the error

return (bit 35 of AC=0) is given. This allows the user program to

find out whether or not the system has a two-segment Capability.

The user program specifies the setting of the user-mode write pro-

tect bit in bit 35 of AC (write protect =l, write privileges =0).,

The previous setting of the user-mode write protect bit is returned

4-58

423

in bit 35 of AC, so that any user subroutine can preserve the pre-

vious setting before changing it. Therefore, nested user sub-

routines which each set or clear the bit can be written, provided

the subroutines save the previous value of the bit and restore it

upon returning to its caller.

4.6 Modifying Shared Segments, and Meddling

Usually a high segment is write-protected, but it is

possible for a user program to turn off the user write-protect

bit or to increase or decrease a shared segment's core assignment

by using the SETUWP or CORE UUO's. These are legal from the high

or low segment, provided the sharable segment has not been "meddled"

with unless the user has write privileges for the file that initialize«

the high segment. Even the malicious user can have the privilege of

running such a program, although he does not have the access rights

to modify the file used to initialize the sharable segment.

Meddling is defined as any of the following, even if the

user has privileges to write the file which initialized the sharable

segment.

a) START or CSTART commands with an argument.

b) DEPOSIT command in the low or high segment.

c) RUN UUO with anything other than a 0 or l:in LH of AC

as a starting address increment.

d) GETSEG UUO:

It is not considered meddling to do any of the foregoing with a

non-sharable program. It is never considered meddling to ee apc

followed by START (withoug an argument), CONT, CCONT, CSTART (with-

out an argument), REENTER, DDT, SAVE, or E command.

When a sharable program is meddled with, the Monitor sets

the meddle bit for the user. An error return is given when the

4-59

424

clearing of the user write-protect bit is attempted with the

SETUWP UUO or the reassignment of core for the high segment (except

to remove it completely) is attempted with the CORE UUO. An attempt

to modify the high segment with the, DEPOSIT command causes the

message

OUT OF BOUNDS

to be printed. If the user write-protect bit was not set when the

user meddled, it will be set so as to protect the high segment in

case it is being shared. The command and the two UUO's are allowed in

Spite of meddling, if the user has the access privileges to write

the file which initialized the high segment.

Br privileged programmer is able to supersede a sharable

program which is in the process of being shared by a number of

users. Whenever a successful CLOSE, OUTPUT, or RENAME UUO is ex-

ecuted for a file with the same directory name and filename (previous

name if the RENAME UUO is used) as the segment being shared, the

segment's name will be set to 0. New users will not share the older

version, but will share the newer version. This requires the Monitor

to read the newly created file only once to initialize it. ‘the

Monitor deletes the older version when all users are finished

sharing it.

Users with access privileges are able to write programs

which access sharable data segments via the GETSEG UUO (which is

meddling) and then turn off the user write-protect bit using

SETUWP UUO. With DECtape, write privileges exist if it is assigned

to the job (cannot be a system tape) or is not assigned to any job

and is not a system tape.

When control can be transferred only to a small number of

425

entry points (2) which the shared program is prepared to handle,

then the shared program can do anything it has the privileges to

do, even though the person running the program does not have

these privileges.

The ASSIGN (and DEASSIGN, FINISH, KJOB if device was pre-

viously assigned by console) -command clears all shared segment

names currently in use which were initialized from the device, if

the device is removable (DTA,MTA). Otherwise new users could

continue to share the old segment indefinitely, even if a new

version were mounted on the device. Therefore, it is possible to

update the library during regular time-sharing, if the programmer

has the access privileges. In a DECtape system, a new €USP tape

can be mounted followed by an ASSIGN SYS command which clears seg-

ment namesfor the physical device but does not assign the device

because everyone needs to share it.

427

CHAPTER 5

Device Dependent Functions

This chapter explains the unique features of each stan-

dard I/O device. All devices accept the programmed operators ex-

plained in Chapter 4 unless otherwise indicated. Buffer sizes are

given in octal and include two bookkeeping words. The user may

determine the physical characteristics associated with a logical

device name by executing a DEVCHR UUO. (See 5.12.) Table 5-1 is

a summary of, the characteristics of all devices.

Table 5-1

Device Summary

Hardware

Physical Type Programmed

Name Number Operator Modes] (Octal)

Console | 626 INPUT, IN

Teletype|Models 33, | OUTPUT, OUT
Siero

TTYO, AE Teletype|630, 680, INPUT, IN

Pei, HNeA ET or DC1LO OUTPUT, OUT,

TTCALL

(Day: Pseudo- INPUT, IN

Teletype | OUTPUT, OUT

INPUT, IN

OUTPUT, OUT

OUTPUT, OUT

LPT or LPTO,Li 646, LP10 OUTPUT, OUT

eee), Dany

“CDR 461, CR10 INPUT, IN

428

Table 5-1 “(Cont.)-

Device Summary

Hardware Buffer!
Physical Type Programmed Size
Name Number Operator (Octal)

CDP CP10 OUTPUT, OUT

DTAO, DTAL1 Dads 5\5)/; INPUT, IN .
«ee, DTA7T TD1O/TD55 | OUTPUT, OUT

LOOKUP
ENTER
MTAPE
USETO
USETI
UGETF
CALL SIXBIT/UTPCLR/]

MTAO, MTA1 jMagnetic|] 516, TM10 | INPUT, IN
«ee, MTA7 TU20, TU79} OUTPUT, OUT

MTAPE

INPUT, IN

OUTPUT, OUT
LOOKUP
ENTER

RENAME
USETO

INPUT
OUTPUT

‘Buffer sizes are subject to change and should be calculated rather
than assumed by user programs. A dummy INBUF or OUTBUF may be em-
-_ployed for this purpose.

Bye dl TELETYPE

IDYSNV/AUS(S IN Fev ier UENO) IRN gl oe ed ae 7G) ENS 7/7) eS (CUENE

Line number n of the Type 630 Data Communications System,

Data Line Scanner DC10, PDP-8 680 System, or PDP-8/I 6801 System is

referred to as TTYn. The console Teletype is CTY. The Time-Sharing

Monitor automatically gives the logical name, TTY, to the user's

52 2

429

console whenever a job is initialized.

Teletype device names are assigned dynamically. For inter-

console communication by program, it is necessary for one of the two

users to type DEASSIGN TTY in order to make his Teletype available

to the other user's program as an output or input device. Typing

ASSIGN TTYn is the only way to reassign a Teletype that has been de-

assigned. Also see TALK command, Chapter 2.

Buffer Size - 236 words.

Two choices of Teletype routines are provided: a newer,

full duplex software routine and an older, half duplex software rou-

tine. Use of the full duplex software is encouraged.

With a full duplex Teletype service, the two functions of

a console, typein and typeout, are handled independently and need not

be handled in the strict sense of output first and then input. For

example, if two operations are desired from PIP, the request for the

second operation can be typed before receiving the asterisk after

completion of the first. The echo of characters typed in will dies

appear since the keyboard and the printing operations are indepen-

dent. To stop output that is not wanted, a "Control O" is typed.

Also, the command "Control C" will not stop a program instantly.

Rather, the Control C will be delayed until the program requests

input from the keyboard, and then the program will be stopped. When

a program must be stopped instantly, as when it’gets into a loop,

Control C typed twice will stop the program.

Programs waiting for Teletype output will be awakened

eight characters before the output buffer is empty, causing them to

be swapped in sooner and preventing pauses in typing. Programs

waiting for Teletype input will be awakened ten characters before the

input buffer is filled, thus reducing the probability of lost typein.

430

Babel Data Modes

Sank eadleeell Full-Duplex Software A(ASCII) and AL(ASCII Line)

The input handling of all control characters is as follows.

(All are passed to program except as noted below).

000 NULL Ignored on input, suppressed on output.
001 tA Echoes as tA. Passed to program.
002 4B Complements switch controlling echoing,

not passed to program. Used on local-
copy dataphones and TWX's.

003 AC The Teletype mode is switched to Monitor
mode the next time input is requested by
the program. Two successive tC's cause
the mode to be switched to Monitor mode
immediately.

004 4D (EOT) 004 passed to program. Not echoed, so
typing in a "Control D" (EOT) will not
cause a full duplex dataphone to hang up.

005 +E (WRU) No special action.
006 tPF Complements switch controlling transla-

tion of lower case letters to upper case.
Used when lower case input is desired to
programs. Not sent to program, but pro-

gram can sense the state of this switch
by the TTCALL UUO.

007 tG (Bell) 007 passed to program, and is a break
character.

010 4H (Back- Acts as a RUBOUT, unless either DDT mode

space) or full character set mode is true, or

the +F switch is on. In these cases,
010 is sent to the program.

O11 tI (TAB) 011 passed to program. Echoed as spaces
if Teletype is a model 33 (determined by
4P switch). Spaces are not passed to
program.

012 4J (Line- Is a break character. No other special
feed) action.

013 1K (Vertical 013 passed to program. Echoes as four
Tab) linefeeds, if a model 33. Is a break

character. Linefeeds are not passed to

program.
014 4L (Form) 014 passed to program. Echoes as 8 line-

feeds on a 33. Is a break character.
Linefeeds are not passed to program.

015 4M (Carriage If Teletype is in paper-tape input mode, 015
Return) is simply passed to program. Otherwise

supplies a linefeed echo, and is passed
to program as a CR and LF, and is a break
character (due to LF).

016 +N No special action
017 +0 Suppresses output until an INPUT, or an

INIT, or OPEN UUO occurs. Not passed to
program. Typed as +O followed by carriage
return-linefeed.

020 +e

021 +Q (XON)

022 +R (TAPE)

023 4S (XOFF)

024 +T (NO TAPE)
025 +U

026 +V
027 +W
030 4X
031 apne
032 +Z

033 +[> (ESE)

034 4\
035 +]
036 t+
037 te
040-137
140-174

7/5 wand 76

177

431

Does not appear in the input buffer. Some
Teletype units (usually Models 35 and 37)
have horizontal tab, vertical tab, and

form feed mechanisms while other units
(usually Model 33s) do not. If the user
finds that his particular Teletype unit
does not have these mechanisms, he should

type tP. Otherwise, tabs will not be
printed at all or spaces will be substi-
tuted for a tab depending upon the
Monitor's.assumption.
Starts paper-tape-mode, as described above.
Passed to program.
No special action.
Ends paper-tape mode, as described above.
023 is passed to program.
No special action.
Deletes input line back to last break char-
acter. Typed back as tU followed by

carriage return-linefeed.
No special action. |
No special action.
No special action.
No special action.
Acts as end-of-file on Teletype input.
Echoes as 4Z followed by carriage return-

linefeed. Is a break character. Appears

in buffer as 032.
This is the ASCII altmode these days, but
is translated to 175 before being passed
to the program, unless in full character

set mode (bit 29 in INIT). 175 is the 1963

altmode. Echoes as a dollar sign. Always,

is a break character.
No special action.
No special action.
No special action
No special action.
Printing characters, no special action.

"Lower case" ASCII. Translated to upper

case, unless +F switch is set. Echoes as

upper case if translated to upper case.

Old versions, of altmode. See description

Of wEhSGr 2 (033)
RUBOUT or DELETE:

A) Completely ignored if in papertape mode

(XON)
B) Is a break character, passed to program

if either DDTmode or fullcharacter-set

mode is true. :

C) Otherwise (ordinary case) causes a

character to be deleted for each rubout

typed. All the characters deleted are

echoed between a single pair of back-

Slashes. If no characters remain to

be deleted, echoes as a carriage ‘return—

linefeed.

4

432
On output, all characters are typed just as they appear

in the output buffer with the exception of TAB, vr, and FORM, which

are processed the same as on type in.

Diatlvelgs Half-Duplex Software A(ASCII) - If, during output opera-

tions, an echo-check failure occurs (the transmitted character was

not the same as the intended character), the I/O routine suspends

output until the user types the next character. If that character

is tC, the console is placed in Monitor mode immediately. If it is

40, all Teletype output buffers that are currently full are ignored,

ane cutting the output short. All other characters cause the

service routines to continue output. The user may cause a deliber-

ate echo check by typing in while typeout is in progress. For ex-

ample, to return to Monitor control mode while typeout is in progress,

the user must type any character ("X", for example) until an echo

check occurs and output is suspended; then and only then he types 7C.

The buffer is terminated when it fills up or when the user

typesi tZi.

SV aulaaibees} Half-Duplex Software AL(ASCII Line) - Same as ASCII mode

(usually preferred) with the addition that the input buffer is ter-

minated by a CR/LF pair, FF, VT, or ALTMODE.

Drenlate : DDT Submode

To allow a user's program and the DDT debugging program

to use the same Teletype without interfering with one another, the

Teletype service routine provides the DDT submode. This mode does

not affect the Teletype status if it is initialized with the INIT

Operator. It is not Aes ase to use INIT in order to do I/O in the

DDT submode. I/0,/in DDT mode is always to the user's Teletype and
4 .

5-6

433

not to any other device.

In the DDT submode, the user's program is responsible for

its own buffering. Input is usually, one character at a time, but if

the typist types characters faster than they are processed, the Tele-

type service routine supplies bufferfuls of characters at a time.

To input characters in DDT mode, use the sequence

MOVEI AC,BUF
CALL AC, [SIXBIT/DDTIN/]

BUF is the first address of a 2l-word block in the user's area. The

DDTIN operator delays, if necessary, until one character is typed in.

Then all characters (in 7-bit packed format) typed in since the pre-

vious occurrence of DDTIN are moved to the user's area in locations

BUF, BUF+1, etc. The character string is always terminated by a

null character (000). RUBOUTs are not processed by the service

routine but are passed on to the user. The special control char-

acters +O and tU have no effect. Other characters are eecee ed as

in ASCII mode.

To perform output in DDT mode, use the sequence

MOVEI AC, BUF
CALL AC, [SIXBIT/DDTOUT/]

BUF is the first address of a string of packed 7-bit characters ter>

minated by a null (000) character. The Teletype service routine

delays until the previous DDTOUT operation is complete, then moves

the entire character string into the Monitor, begins outputting the

string, and restarts the user's program. Character processing is

the same as for ASCII mode output.

Redkesi Special Programmed Operator Service

TTCALL UUO is (and will always be) implemented only in

the “full duplex scanner service", SCNSRF. The general form of this

UUO is as follows:

434

OPDEF TTCALL [51B8]
TTCALL AC, ADR

The AC field describes the particular function desired, and the argu-

ment (if any) is contained in ADR. ADR may be an AC or any address

in low segment above JOB AREA (137). It may be in high segment for

AC fields 1 and 3. The functions are:

AC Field Mnemonic Action

INCHRW Input character and wait
OUTCHR Output a character

INCHRS Input character and skip
OUTSTR Output a string
INCHWL Input character, wait, line mode

INCHSL Input character, skip, line mode
GETLIN Get line characteristics
SETLIN Set line characteristics
RESCAN Reset input stream to command
CLRBFI Clear typein buffer
CLRBFO Clear typeout buffer
SKPINC Skips if a character can be input
SKPINL Skips if a line can be input
(Reserved for Expansion)

INCHRW TTCALL 0,ADR

This command inputs a character into location ADR. ADR may be an

AC or any other location in the user's low segment. If there is

no character yet typed, the program waits for it.

OUTCHR TTCALL 1,ADR

This command outputs a character to the Teletype from location ADR.

Only the low order 7 bits of the contents of ADR are used. The

rest need not be zeroes.

If there is no room in the output buffer, the program waits until

room is available. ADR may be in high segment.

INCHRS TTCALL 2,ADR

This command is similar to INCHRW, except that it skips on a success-—

ful return, and does not skip if there is no character in the input

buffer; it never puts the job into a wait.

435

TTCALL 2,ADR
SRST NONE ;NO TYPEIN
SRST DONE ; CHARACTER IN ADR

-OUTSTR TTCALL 3,ADR

. This command outputs a string of characters in ASCIZ format:

TTCALL 3,MESSAGE

MESSAGE: ASCIZ /TYPE THIS OUT/

ADR may be in high segment

INCHWL TTCALL 4,ADR

This command is the same as INCHRW, except that it decides whether

or not to wait on the basis of lines rather than characters; as

such, it is the preferred way of inputting characters, since INCHRW

causes a swap to occur for each character rather than each line

(compare DDT and PIP input, for instance).

INCHSL TTCALL 5,ADR

This command is the same as INCHRS, except that its decision whether

to skip is made on the basis of lines rather than characters.

GETLIN TTCALL 6,ADR |

This command takes one argument, from location ADR, and returns one

word, also in ADR. The argument is a number, representing a Teletype

line. If the argument is negative, the line number controlling the

program is assumed. If the line number is greater than those de-

fined in the system, a zero answer is returned.

The normal answer format is as follows:

Right half of ADR: The line number.

Left half of ADR: Bits, as follows:

Bit Meaning

Line is a pseudo-teletype.
Tune ss. the ery.
Line is a display console.

Line is a dataset data line.

Line is a dataset control line.

Line is half-duplex. O&WNrFO

B= 8)

(436

Bit Meaning

ALib A line has been typed in by the user.
12 A rubout has been typed.
FS “Control F"™ switch 1s on’.
14 EConitrous PY Aswattch us On.
15 U@ontrols Bis swiakechs as. Ons
16. "Control Q" (paper tape) switch is on.
17 Line is, in a “talk" ring.

SETLIN TTCALL 7,ADR

This command allows a program to set and clear some of the bits

described for GETLIN. They may be changed only for the controlling '

Teletype. The bits which may be modified are bits 13, 14, 15 and

16. Example:

SETO AC,0

TTCALL 6,AC

TLZ AG, Bik Als

TLO AC, BIT 14

TTCALL 7,AC

RESCAN TTCALL 10,0

This command is intended for use only by the CCL CUSP. It causes

the Input Buffer to be re-scanned from the point where the last

command began. Obviously, if it is executed other than before the

first input, that command may no longer be in the buffer. ADR is

not used, (but is address checked).

CLRBFI ARAN NICE) BILAL (0)

This command causes the Input Buffer to be cleared (as if the user

had typed a number of "Control U's"). It is intended to be used

when an error has been detected, such that a user probably would not

want any commands to be executed which he might have typed ahead.

CLRBFO TTCALL~ 12,0

This command causes the output buffer to be cleared, as if the user

had typed “CONTROL O". It should be used only rarely, since usu-

ally one wants to see all output, up to the point of an error. It

is included primarily for completeness.

437

SKPINC TEE CA 153 720

This command skips if eRe user has typed at least one character.

It does not skip if no characters have been typed; however, it never

inputs a character. It is useful for a compute based program which

wants to occasionally check for input and, if any, go off to an-

other routine (such as FORTRAN Operating System) to actually do the

input.

SKPINL TTCALL 14,0

This command is the same as SKPINC except that a skip occurs if a

line has been typed.

Bele 4: Special Status Bits (Full Duplex Software Only)

An INIT or OPEN, with bit 28 a one, suppresses echoing

on the Teletype. This is useful for LOGIN to eliminate the mask

for the password.

By Ly) Paper Tape Input from the Teletype (Full Duplex Software

Only : is ‘

Paper tape input is possible from a Teletype equipped

with a paper tape reader, controlled by the XON and XOFF characters.

When commanded by the XON character, the Teletype service will read

paper tapes, starting and stopping the paper tape as needed and

continuing until the XOFF character is read or typed in. While in

this mode of operation, any RUBOUTS will be ai daaeded and no free

line feeds will be ee ted after carriage returns. Also,TABS and

FORMFEEDS will not be simulated on Model 33's, to pare Oneeue of

the reader control characters. In order to use paper tape process—

ing, the Teletype with paper tape reader must be connected by a full

duplex connection and only ASCII paper tapes are intended to be

used.

5=i

438
The correct operating sequence for reading a paper tape

in this way is as follows:

.R PIP <RETURN>
*DSK: FILE<TTY: <XON><RETURN><LINEFEED>

THIS IS WHAT IS ON TAPE

MORE OF SAME
LAST LINE

47,
*<XOFF>

5ia2 PAPER TAPE READER

Device Mnemonic - PTR

Buffer Size - 439 words

ya ab Data Modes (Input Only)

NOTE: To initialize the paper tape reader, the
input tape must be threaded through the reading
mechanism and the FEED button depressed.

Belek A (ASCII) - Blank tape (000), RUBOUT (377), and null

characters (200) are ignored. All other characters are truncated

to seven bits and appear in the buffer. The physical end of the

paper tape serves as an end-of-file.

Bin Acdiey 7 AL (ASCII Line) - Character processing is the same as for

the A mode. The buffer is terminated by LINE FEED, FORM, or VT.

Bye Zicdaa S) I (Image) - There is no character processing. The buffer

is packed with 8-bit characters exactly as read from the input tape.

Physical end of tape is the end-of-file indication but does not

cause a character to appear in the buffer.

Ds aegis a! IB (Image Binary) - Characters not having the eighth hole
%

punched are ignored. Characters are truncated to six bits and

ae

439

packed six to the word without further processing. This mode is

useful for reading binary tapes having arbitrary blocking format.

SoA oikes B (Binary) - Checksummed binary data is read in the follow-

ing format. The right half of the first word of each physical block

contains the number of data words that follow and the left contains

half a folded checksum. The checksum is formed by adding the data

words using 2s eoreemnentt arithmetic, then splitting the sum into

three 12-bit bytes and adding these using ls complement arithmetic

to form a 12-bit checksum. The data error status flag (see Table

4.5) is raised if the checksum miscompares. Because the checksum

and word count appear in the input BEES, the maximum block length

is 40. The byte pointer, however, is initialized so as not to pick

up the word count and checksum word.

Again, physical end of tape is the end-of-file indication

but does not result in putting a character in the buffer.

Sirs PAPER TAPE PUNCH

Device Mnemonic - PTP

Buffer Size - 438 words

Bo Sadl Data Modes

Darel A (ASCII) - The eighth hole is punched for all characters.

Tape-feed without the eighth hole (000) is inserted after form-feed.

A rubout is inserted after each vertical or horizontal tab. Null

characters (000) appearing in the buffer are not punched.

ba Siclee2 AL (ASCII Line) - The same as A mode. Format control must

be performed by the user's program.

513

440

Be ciodgs) I_ (Image) - Eight-bit characters are punched exactly as

they appear in the buffer with no additional processing.

doen dead! | IB (Image Binary) - Binary words taken from the output

buffer are split into six 6-bit bytes and punched with the eighth

hole punched in each line. There is no format control or check-

summing performed by the I/O routine. Data punched in this mode is

read back by the paper tape reader in the IB mode.

Bron dees) B (Binary) - Each bufferful of data is punched as one

checksummed binary block as described for the paper tape reader.

Several blank lines are punched after each bufferful for visual clar-

ity.

Byasie eA Special Programmed Operator Service

The first output programmed operator of a file causes about

two fanfolds of blank tape to be punched as leader. Following a

CLOSE, an additional fanfold of blank tape is punched as trailer.

No end-of-file character is punched automatically.

Dicit LINE PRINTER

Device Mnemonic - LPT

Buffer Size - 34. words

5.451 Data Modes

Dis alitecle A (ASCII) - ASCII characters are transmitted to the line

printer exactly as they appear in the buffer. See the PDP-10 System

Reference Manual, for a list of the vertical spacing characters.

4A]

5nd ale AL (ASCII Line) - This mode is exactly the same as A and

is included for programming convenience. All format control must

be performed by the user's program; this includes placing a RETURN,

LINE-FEED sequence at the end of each line.

Bia les I (Image) - Same as A(ASCII) mode.

5.4.2 Special Programmed Operator Service

The first output programmed operator of a file and the

CLOSE at the end of a file cause an extra form-feed to be printed

to keep files separated.

Bye) CARD READER

Device Mnemonic - CDR

Buffer Size - 365 words

Syquorulk Data Modes

Bye orlaeal A (ASCII) - All 80 columns of each card are read and trans-

lated to 7-bit ASCII code. Blank columns are translated to spaces.

At the end of each card a carriage-return/line-feed is appended. A

card with the character 12-11-0-1 punched in column 1 is an end-of-

file card. Columns 2 through 80 are ignored. The end-of-file button

on hive card reader has the same effect as the end-of-file catch As

many complete cards as can fit are placed in the input buffer, but

cards are not split between two buffers. Using the Seah au dlsiaeu

buffer, only one card is placed in each buffer.

Cards are normally peancieeca as IBM 026 card codes. If

a card containing a 12-0-2-4-6-8 punch in column 1 is encountered,

any following cards are translated as 029 codes (see Table 5-2

Sih 5)

442

PDP-10 Card Codes) until the 029 conversion mode is turned off.

The 029 mode is turned off either by a RELEASE command or by a card

containing a 12-2-4-8 punch in column 1. Columns 2 through 80 of

both of these cards are ignored.

Die ieee AL (ASCII Line) - Exactly the same as the A mode.

Dye ore Alles} I (Image) - All 12 punches in all 80 columns are packed

into the buffer as 12-bit bytes. The first 12-bit byte is column l.

The last word of the buffer contains columns 79 and 80 as the left

and middle bytes, respectively. The end-of-file card and the end-of-

file button are processed the same as in the A mode. Cards are not

split between two buffers.

Die Disks B (Binary) - Card column 1 must contain a 7-9 punch to

verify that the card is in binary format. Column 1 also contains

the word count in rows 12-2. The absence of the 7-9 punch results

in raising the IOIMPM (improper mode) flag in the card reader

status word. Card column 2 must contain a 12-bit checksum as

described for the paper tape reader binary format. Columns 3 through

80 contain binary data, 3 columns per word for up to 26 words. Cards

are not split Rereeen two buffers. The end-of-file card and the end-

of-file button are processed the same as in the A mode with a word

containing 003200000000 appearing as the last word in the file.

eo CARD PUNCH

Device Mnemonic - DCP

Buffer Size - 358 words

Bie Oreal: Data Modes

443

Table 5-2

PDP-10 Card Codes

+ #¥—H RR = WMH

I~

OANAUFPWNHEH CO

/
0
i
2
3
4
5
6
i
8
9

(o) = ©. r= is) (oe)

i)

co ee
F>TYSONKKANSCCHHNDAOVOSZSHPAGHTODAHUVAWP a

5.6.1.1 A (ASCII) - ASCII characters are converted to card codes

and punched (up to 80 characters per card). Tabs are simulated by

punching from 1 to 8 blank columns; form-feeds and carriage returns

are ignored. Line-feeds cause a card to be punched. All other 3

nontranslatable ASCII characters cause a question mark to be punched.

Cards can be split between buffers. Attempting to punch more than

80 columns per card causes the error bit IOBKTL to be raised. The

CLOSE will punch the last partial card and then punch an EOF Card

ky

(12-11-0-1 in column 1).

Cards are normally punched with DEC026 card codes. If

bit 26 (octal 1000) of the status word is on (from INIT, OPEN, or

SETSTS), cards are punched with DEC029 codes. The first card of

any file indicates the card code used (12-0-2-4-6-8 punch in column

1 for DECO29 card codes; 12-2-4-8 punch in column 1 for DEC026

card codes).

Bravenet AL (ASCII Bine) - The same as A mode.

ye Orb end IB (Image Binary) - Up to 26 2/3 data words will be

punched in columns 1-80. The buffer set up by the Monitor will

only contain room for 26 data words. To punch a full 80-column

card, the user has to set up his own buffers. Image binary will

cause exactly one card to be punched for each output. The CLOSE

will punch the last partial card, and then punch an EOF card

(12-11-0=1 in column 1).

Bie Ora B (Binary) - Column 1 will contain the word count in rows

12-2. A 7-9 punch will also be in column 1. Column 2 will contain

a checksum; columns 3-80 will contain up to 26 data words, 3 columns

per word. Binary will cause exactly one card to be punched for each

output. The CLOSE will punch the last partial card, and then punch

an EOF card (12-11-0-1 in column 1).

564 Special Programmed Operator Service

Following a CLOSE, an end-of-file card is punched.

Both the first eand of the file (the one that identifies

the card code used) and the end-of-file card are laced in columns

2 through 80 for easy identification of files. These laced punches

5-18

445

are ignored by the card reader service routine.

Diet DECTAPE

Device Mnemonic - DTAO, DTAl1, ..., DTA7

Buffer Size - 202. words

Diarieetl: Data Modes

5.7.1.1 A (ASCII) - Data is written on DECtape exactly as it

appears in the buffer. No processing or checksumming of any kind

is performed by the service routine. The self-checking of the

DECtape system is sufficient assurance that the data is correct.

See the description of DECtape format below for further information

concerning blocking of information.

5.7. L.2 Ali (ASCIE Line) = Same as A.

5.7.1.3 I (Image) - Same as A. Data consists of 36-bit words.

5.7.1.4 IB (Image Binary) - Same as I.

5.7.1:5 B (Binary) - Same as I.

5.7.1.6 DR (Dump Records) - This mode is accepted but actually

functions as dump mode 17.

5.7.1.7 D (Dump) - Data is read into or written from anywhere in

the user's core area without regard to the standard buffering

scheme. Control for read or write operations must be via a command

list in core memory. The command list format is as described in

Bae’)

446

Chapter 4, “Unbuffered (Dump) Modes;" any positive number appearing

in a command list terminates the list. Dump data is automatically

blocked into standard-length DECtape blocks by the DECtape control.

Unless the number of data words is an exact multiple of the standard

length of a DECtape block (1289), after each output programmed

operator, the remainder of the last block written is wasted. The

input programmed operator must specify the same number of words that |

the corresponding output programmed operator specified in order to

‘skip over the wasted fractions of blocks.

v5 Ter DECtape Block Format

A standard reel of DECtape consists of 578 (1102.) pre-

recorded blocks each capable of storing 128 (2008) 36-bit words of

data. Block numbers which label the blocks for addressing purposes

are recorded between blocks. These block numbers run from 0 to

1101.. Blocks 0, 1, and 2 are normally not used during time-sharing

and are reserved for a bootstrap loader. Block 10015 (1449) is the

directory block which contains the names of all files on the tape

and information relating to each file. Blocks lig through 9919

(1-143) and 101j9 through 57719 (145-1101) are usable for data.

If in the process of DECtape I/O, the I/O service routine

is requested to use a block number larger than 1101, or smaller

than 0, the Monitor sets the Block Too Large flag (bit 21) in the

file status and returns.

Delos DECtape Directory Format

The directory block (block 100,9) of a DECtape contains

directory information for all files on that tape; a maximum of 22

files can be stored on any one DECtape.

447

Words 0 through 829

The first 83 words of the directory contain "slots," each

"slot" representing one of the 577 (blocks 1 through 1101.

are represented in these 83 words) blocks on the DECtape.

Each slot occupies five bits (seven slots are stored per

word) and contains the number of the file (1-26g) to which

the block the slot represents is assigned. ,

Words 83 through 10414

The next 22 words contain the filenames of the 22 files

residing on the DECtape. Word 83 contains the filename

for file #1, word 84 the filename #2, etc. Filenames are

stored in 6-bit code.

Words 105 through 12649

The next 22 words contain the extension names and dates

of the 22 files, in the same relative order as their file-

names above.

Bits 0 through 179 The extension name of the file (in

6-bit code),

Bits 18 through 2310 Number of 1K blocks minus 1 needed

to load the ae (maximum value = 63)

This information is stored for SAVEd

files only.

Bits 24 through 3549 The date the file was last updated,

according to the formula:

((year-1964) *12+ (month-1)) *31+day-1

Word 12716 Unused.

The message

BAD DIRECTORY FOR DEVICE DTAn: EXEC CALLED FROM USER LOC n

Seal

448
is produced whenever any of the following conditions are detected.

a. A parity error while reading the directory block.

b. No "slots" are assigned to the file number of the file.

c.' The tape block which may possibly be the first block

of the file (i.e., the first block for the file encountered while

searching backwards from the directory block) cannot be read.

5 ad DECtape File Format

A file consists of any number of DECtape blocks. Each

block contains:

Word 0 Left half The link. The link is the block number

of the next block in the file. If the

link is zero, this block is the last

in the file.

Right half Bits 18 through 27: The block number

of the first block of the file.

Bits 28 through 35: A count of the

number of words in this block which

are used (maximum 177 ,).

Words 1 through 177 Data packed exactly as the user

placed in his buffer or in Dump Mode

files, the next 127 words of memory.!

Soles Special Programmed Operator Service

Several programmed operators are provided for manipulating

DECtape. These allow the user to manipulate block numbers and to

handle directories.

™The Monitor compresses the user's core image by squeezing out
blocks of two or more consecutive zeroes before creating the SAVed
files; files with extension .SAV may be read in Dump Mode, but
must be reexpanded before being run. The Monitor takes this action
after input on a RUN or GET.

}

449

In addition to the operators above, INPUT, OUTPUT, CLOSE,

and RELEAS have special effects. When performing nondump input

operations, the DECtape service routine reads the links in each

block to determine the next block to.read and when to raise the

end-of-file flag.

When an OUTPUT is given, the DECtape service routine ex-

amines the left half of the first data word in the output buffer

(the word containing the word count in the right half). If this

half contains -l, it is replaced with a 0 before being written out,

and the file is thus terminated. If this half word is greater than

0, it is not changed Rate Re service routine uses it as the block

number for Ehe next OUTPUT. | EE this half word is 0, the DECtape

service routine assigns the block number ‘of the next block for the

next OUTPUT.

Table 5-3

DECtape Programmed Operators

Programmed Operator Effect

USETE Die Sets the DECtape on device channel D to

input block E next. Input operations on

this DECtape must not be active because

otherwise the user has no way of determin-

ing which buffer contains block E.

USETO D, E Similar to USETI but sets the output block

number. USETO waits until the device is in-

active before setting up the new output block

number.

UGETF D, E Places the number of the first free block of

the file in user's location E.

ENTER D, E User's location E, E+l, E+2, and E+3, must

be reserved for a directory entry. The DEC-

tape service routine searches the directory

for a filename and extension that match the

contents of E and the left half of E+tl. tf

no match is found and there is room in the

directory, the service routine places the

first free block number into the right half

of E+1, places the date in E+2 (unless. al-

“ready non-zero), and places the necessary

' 5-23

450

Table 5=3 (Cont)

DECtape Programmed Operators

Programmed Operator _ Effect ~

information into the dimectory. = lt a
match is found, similar actions Cleleibhar Moths
the new entry replaces the old. If there
is no room in the directory, ENTER returns
to the next location. Otherwise, ENTER
skips one location.

LOOKUP D, E Similar to ENTER but sets up an input file.
error return The contents of E and E+l are matched

against the filenames and extension names
in the DECtape directory. If a match is
found, information about the file is read
from the directory into the appropriate
portions of the 4-word block beginning at
E. The first block of the file is then
found as follows.
1. The first 83 words of the DECtape

directory are searched in a backwards
manner, beginning with the slot immedi-
ately prior to the directory block,
until the first slot containing the de-
sired file number is found.

2. The block associated with this slot is
then read in and bits 18 through 27
of the first word of the block (these
bits contain the block number of the
first block of the file) are checked.
If they are equal to the block number
of this block, then this block is the
first block of the file; if not, then
the block with that block number is read
as the first block of the file.

LOOKUP then skips one location.
If no match is found, LOOKUP returns to
the user's program at the next location.

CALL D, [SIXBIT/UTPCLR/]

: UTPCLR clears the directory of the DEC-
tape on device channel D. A cleared
directory has‘zeroes in the first 83 words
except in those slots related to blocks 0,
Prey cane 10019 and nonexistent blocks
1102 through 1105g. Only the directory
block (block 100) is affected by UTPCLR;
the other blocks are unaffected. This
programmed operator does nothing if the
device on channel D is not DECtape.

RENAME D, E This programmed operator is used to alter
: the name and extension of a file or to de-

lete it from the DECtape. Locations E to
E+3 are as in LOOKUP and ENTER. To be
RENAMEd a file must first be CLOSEd on
channel D, in order to identify for the
for the RENAME UUO. RENAME then seeks

451

Table 5-3 (Cont)

DECtape Programmed Operators

Programmed Operator Effect

out this file and enters the informa-
tion specified in E through E+2 into
the retrieval information and proper
directory. If the contents of E is
zero, RENAME has the effect of deleting
the file. The error return is given if
the new file name and extension already
exist or if neither a LOOKUP nor an
ENTER has been done to identify the file
to be renamed.

For both INPUT and OUTPUT, block 100 (the directory) is

\ treated as an exception case. If the user's program gives

USETI D, 144,

to read block 100, it is treated as a 1-block file.

The CLOSE operator places a’-l in the left half of the

first word in the last output buffer, thus terminating the file.

The RELEAS operator writes the copy of the directory which

is normally kept in core onto block 100, but only if any changes

have been made. Certain console commands, such as ‘KJOB or CORE 0,

perform an implicit RELEAS of all devices and, thus, write out a

changed directory even though the eis prog matl failed to give a

RELEAS. a

Two other special programmed operators are available:

MTAPE D, 1 and MTAPE D, 11. MTAPE D, 1 rewinds the DECtape and

moves it into the end zone at the front of the tape. MTAPE D, ll

rewinds and unloads the tape, pulling the tape completely onto the

lefthand reel. These commands affect only the physical position

of the tape, not the "logical" position. When either is used, the

user's job can be swapped out while the DECtape is rewinding; how-

ever, the job cannot be swapped out if an INPUT or OUTPUT is done

while the tape is rewinding.

452

oa7.6))5. Special Status. Bits

If an attempt is made to write on a unit with the WRITE-

LOCK switch on, the message

\ , DEVICE DTAn OK?

ne

is typed on the user's Teletype. When the situation has been

rectified,. CONT may be typed to proceed as normal.

BG #6 eal Special DECtape status Bits’ = An INIT or SETSTS to-a

DECtape with bit 29 ON informs the DECtape service routine that

the DECtape is in nonstandard format. This implies that no file+

structured operations will be performed on that tape. Blocks will

be read or written sequentially; no links will be generated (output)

or recognized (input). The first block to be read or written must

be set by a USETI or USETO. In Dump Mode, 200g data words per

block will be read or written (as opposed to the normal 177g words).

No "dead reckoning" will be used on a search for a block number as

the tape may be composed of blocks shorter than 200 words. The

ENTER, LOOKUP, and UTPCLR UUOs are treated as no-ops. Block 0 of

the tape may not be read’ or written in Dump Mode if bit 29 is ON,

as the data must be read in a forward direction and block 0 nor-

mally cannot be read forward.

Sood! Important Considerations

The DECtape service routine reads the directory from a

tape the first time it is required to perform a LOOKUP, ENTER, or

UGETF; the directory image remains in core until a new ASSIGN com-

Mand is executed from the console. To inform the DECtape service

routine ‘that a new tape has been mounted on an assigned unit, the

user must use an ASSIGN command. The directory from the old tape

5-26

453

could be transferred to the new tape, thus destroying the informa-

tion on that tape unless the user reassigns the DECtape transport

-every time he mounts a new reel.

5.8 MAGNETIC TAPE

@

Magnetic tape format is industry compatible, 7- or 9-

channel 200, 556, and 800 bpi (see description below) .

Device Mnemonic - MTAO, MTA1, ..., MTA7

Buffer Size - 2036 words

58 o Data Modes

5.8.1.1 A (ASCII) - Data appears to’ be written on magnetic tape

exactly as it appears in the buffer. No processing or check-

summing of any kind is performed by the service routine. The

parity checking of the magnetic tape system is sufficient assurance

that the data is correct. Normally, all data, both binary and

ASCII, is written with odd parity and at 556 bits per inch. A maxi-

mum of 200g words per record is standard. The word count is not

written on the tape.

5 Oc .2- An (ASCIE Line) = Same las As

bagels £. (image). > Same as A but data consists of 36-bit words.

5.8.1.4 IB (Image Binary) - Same as lI.

5.8.1.5 B.(Binary)>- Same as I.

Src ais DR (Dump Records) - Standard fixed length records (128

5-27

454

words is the standard unless installation standard is changed with

MONGEN) are read into or written from anywhere in the user's core

area without regard to the standard buffering scheme. Control for

read or write operations must be via a command list in core memory.

The command list format is as described in Chapter 4, "Unbuffered

(Dump) Modes." For input operations a new record is read for each

word in the command list (except GOTO words); if the record termin-

ates before the command word is satisfied, the service routine

reads the next records. If the command word runs out before the

record terminates, the remainder of the weer is ignored. For each

output command word, as many standard length records are written

followed by one short record to exactly write all of the words on

the tape.

5.8.1.7 D (Dump) - Variable length records are read into or

written from anywhere in the user's core area without regard to the

standard buffering scheme. Control for read or write operations

must be via a command list in core memory. ~The command list format

is as described in Chapter 4, "Unbuffered (Dump) Modes." For input

Operations a new record is read for each word in the command list

(except GOTO words); if the record terminates before the command

word is satisfied, the service routine skips to the next command

word. If the command word runs out before the record terminates,

the remainder of the record is ignored. For each output command

word, exactly one record is written. See Section 4.4.1.2 for com-

mand list format.

B55 2 Magnetic Tape Format

Magnetic tape format can be generally described as un-

labelled, industry compatible format. That is, as far as the user

5-28

455

is concerned, the tape contains only data records and end-of-file

marks which signal the end of the data set or the end of the file.

Files are read from and written on the tape in a sequential manner.

An end-of-file mark consists of a record containing a 17g

(for 7-channel tapes) or a 23g (for 9-channel ree InpoVel ove AE SLi

marks are used in the following manner.

a. No end-of-file mark precedes the first file on

a Magtape.

b. An end-of-file mark follows every file.

c. Two end-of-file marks follow a file if that file

lsethe Last or only fille on jthe, tape-

Files are written on and read from a magtape ina sean

tial manner. A file consists of an integral number of physical

records, separated from each other by interrecord gaps (area on

tape in which no data is written). There -may or may not be more

than one logical record in each physical record.

Datsos) Special Programmed Operator Service

CLOSE performs a special function for magnetic tape.

When an output file is closed (bon dump and nondump), the I/O

service routine automatically writes two end-of-file marks and

backspaces over one of them. If another file is now opened, the ©

second end-of-file is wiped out leaving one end-of-file between

files. At the end of the in-use portion of the tape, however,

there appears a double end-of-file character which is defined as

the logical end of tape. When an input dump file is closed, the

I/O service routine automatically skips to the next end-of-file.

A special programmed operator called MTAPE pfovides for

such tape manipulation functions as rewind, backspace record, back-—

space file, 9-channel tape initialization, etc. The format is

5-29

456

MTAPE D, FUNCTION

where D is the device channel on which the Magnetic tape unit is

initialized. FUNCTION is selected according to the following table:

Table 5-4

MTAPE Functions

No operation; wait for spacing
and I/O to finish

Rewind to load point

Rewind and unload!

eee record

Backspace file

Write end of file

Skip one record

Write 3 inches of blank tape

Skip one file

Space to logical end of tape

Digital Compatible; 9-channel?

Initialize for 9-channel tape?

MTAPE waits for the magnetic tape unit to complete whatever action

is in progress before performing the indicated function, including

*On the 516 Control, this function is not currently implemented as
such, but is treated as a Rewind function only.

‘Digital Compatible mode writes (or reads) 36 data bits in five
frames of a 9-track magtape. It can be any density, any parity, and
is not industry compatible. This mode is in effect until a
RELEAS D, or an MTAPE D, 101 is executed.

3Industry compatible 9-channel mode writes (or reads) 32 data bits
per word in four frames of a 9-track magtape and ignores the last
four bits of a word. It must be 800 bpi density, odd parity.

5-30

457

no operation (0). Bits 18 through 25 of the status word are then

cleared, the indicated function is initiated, and control is re-

turned to the user's program immediately. It is important to re-

member that when performing buffered input/output, the I/O service

routine can be reading several blocks ahead of the user's program.

MTAPE affects only the physical position of the tape and does not

change the data that has already been read into the buffers.

5.8.3.1 Backspace File on Magtape - Issuing a backspace file com-

mand to a magtape unit will move the tape in the reverse direction

until the tape has A) passed the end of file mark or B) reached

the beginning of the tape. This means that the end of the backspace

file operation will position the tape heads either immediately in

front of a file mark or at the beginning of the tape.

In most cases it is desirable to skip forward over this

file mark. This is decidedly not the case if you've reached the

beginning of the tape; in this case giving a skip file command

would indeed skip the entire first file on the tape stopping at the

beginning of the second file, rather than leaving the tape positioned

at the beginning of the first file.

Therefore a typical (incorrect) sequence for backspace

file would be:

MTAPE Mla ;Backspace file

CALLI WAIT :*Wait for completion* f

STATO MT, 4000 ;Beginning of tape?

MTAPE ME ela ;No, skip over file mark

Note that it is necessary to wait after the backspace file

‘instruction in order to insure that the tape is moved to the end-

of-file mark or the beginning of the tape before testing to see

whether or not it is the beginning of the tape. The instruction

CALLI WAIT cannot be used for this purpose; it waits only for the

By SAL

458

completion of I/O transfer operation. (Backspace file is a‘ spac-

ing operation, not an I/O transfer operation.)

Instead, use the following sequence for backspace file:

MTAPE MTF sl), ; Backspace file
MTAPE MT, O ;Wait for completion
STATO MT, 4000 ;Beginning of tape?
MTAPE, “MT, 16 ;No, skip over file mark

In this case the device service routine must wait until

the magtape control is free before processing the MTAPE MT, 0

command, which tells the tape control to do nothing. Thus, the

service routine achieves the waiting period necessary for the com-

pletion of the previous operation and the proper positioning of

the tape.

5.8.4 9-Channel Magtape

Nine-channel magtape may be written and read in two ways:

normal Digital Compatible format, and industry compatible format.

9.8.4.1 Digital Compatible Mode - Digital Compatible mode is the

usual mode and will allow old 7-channel user mode programs to read

and write 9-channel tapes with no modification. Digital Compatible

mode writes 36 data bits in five bytes of a nine track magtape. It

can be any density, and parity, and is not industry compatible.

The software mode is specified in the usual manner during initial-

ization or with a SETSTS. User mode I/O is handled precisely as

in the case of 7-track magtape. It is assumed that most DEC mag-

tapes will be written and read this way.

459

Data Word on Tape

B2 B3
B1O Bll
B18 B19
B26 Bou
(B30) (B31)

Parity
Bit N in core

Data Word in Core - 5 magtape bytes/36-bit word. Parity

bits are unavailable to the user. Bits are written on tape as

shown in diagram, note that bits 30 and 31 get written twice and

that tracks 8 and 9 of byte 5 contain 0. On reading parity bits

and tracks 8 and 9 of byte 5 are ignored, the or of bits (B30) is

read into bit 30 of the data word, the or of bits (B31) is read

Cet Opnog teaeSalee

5.8.4.2 Industry Compatible Mode - For reading and writing. indus-

try compatible 9-channel magtapes, an MTAPE D, 101 UUO must be

executed to set the status. MTAPE D, 101 is meaningful for 9-

- channel magtape only and is ignored for all other devices. In the

left half of the status word, bit 2 (which cannot be read by the

user program) may be cleared (which returns the device to 9-channel

Digital Compatible status) by a RELEAS, a call to EXIT, or an

-MTAPE D, 100 UUO. These MTAPE UUO's act only as a switch to and

from industry compatible mode and in no other way affect I/0 status,

except to set the density to 800 bpi and oa parity.

On INPUT, four 8-bit bytes are read into each word in the

buffer, left justified with the remaining four bits of the word |

containing error checking information.

555

460

On OUTPUT, the leftmost four 8-bit bytes of each word in

the buffer are written out in four frames, with the remaining four

rightmost bits of the word being ignored.

Data Word on Tape

Data Word in Core - four magtape bytes carry 4 8-bit bytes

from data word, parity bits are obtained as shown when reading.

Rightmost four bits are ignored on writing (bits 92-35): ‘

5.8.4.3 Changing Modes - MTAPE CH, 101 automatically sets density

at 800 bits (or 800 eight-bit bytes) per inch and sets odd parity.

Note that buffer headers are set up when necessary by the Monitor

in the usual manner according to the I/O mode the device is initial-

ized in. Byte pointers and byte counts in buffer header will have

to be changed by the user in order to operate on eight-bit bytes.

3) tahoe) Special Status Bits

Special bits of the status word are reserved for select-

ing the density and parity mode of the magnetic tape. Table 5-4

lists the bits that are set and cleared by INIT or SETSTS.

461

Table 5-5

Magnetic Tape Special Status Bits.

Improper mode. When set to one during an output
operation means that the write enable ring is
out.

I/O Beginning of Tape. The tape is at the load

point.

I/O Tape END. The tape is at or past the end
point.

I/O Parity. 0 for odd parity, 1 for even parity?

I/O Density. 00 = System Standard (defined
at MONGEN time)

Ol 200 bpi
10 556 bpi
11 800 bpi

I/O No Read Check. Suppress automatic error
correction if bit 29 is a 1. Normal error

correction is to repeat the desired operation

10 times before setting an error status bit.

iThese bits indicate special magnetic tape conditions and

are set by the magnetic tape service routine when the con-

ditions occur.

?0dd parity is preferred. Even parity should be used only.

when creating a tape to be read in BCD (Binary Coded Decimal)

on another computer.

S\c, 2) DISK

Device Mnemonic - DSK

Buffer Size - 203, words (of which 200g words are data)
8

Bye AB Data Modes

5.9.1.1 A (ASCII) - Data is written on the disk exactly as it

appears in the buffer. Data consists of 36-bit words.

BSS

462

29. Lo2 Ale (ASC Metaine) = Same asi i

5.9.1.3 I (Image) - Same as A.

5.9.1.4 IB (Image Binary) - Same as I.

HAs ab 18 (Binary) - Same as Il.

5.9.1.6 DR (Dump Records) - Functions exactly the same as D.

1) eke eae) (Dump) - Data is read into or written from anywhere in

the user's core area without regard to the normal buffering scheme.

Control for read or write operations must be via a command list in

core memory. The command list format is as described in Chapter 4,

"Unbuffered (Dump) Modes." The disk control automatically measures

dump data into standard-length disk blocks of 200 octal words. Un-

less the number of data words is an exact multiple of the standard

length of a disk block (200 words) after each command word in the

command list, the remainder of that block is wasted.

Diora Structure of Files on Disk

The file structure of the disk system has been designed

to minimize the number of disk seeks for sequential or random

accessing using either buffered or dump mode I/O. The assignment

of physical space for data is performed automatically by the Moni-

tor as logical files are written or deleted by user programs.

Files may be of any length, and eAGh user may have as many files

as he wishes, as long as disk space is available. No initial es-

timate of file length or number of files need be eiee by users or

their programs. Files may be simultaneously read by more than one >

DESIG

463

user at a time, thus allowing data sharing. A new version oe

file may be recreated by one user while other users continue to

read the old version, thus allowing for smooth replacement of

shared programs and data files. Finally, one user may selectively

update portions of a file, rather than creating a new one (see

"Genenal NOES > 59 asics)

5s Soe Addressing by Monitor - The file structure described in

this section is generally transparent to the user, and a detailed

knowledge of this material is not essential for effective user-

mode use of the disk. There are two programs in the Time-Sharing

Monitor that service the disk, DSKSER and DSKINT. DSKSER is the

device service routine for a disk and references a disk by sym-

bolic addressing only. This routine is essentially independent

of what physical disk is attached to the system. DSKINT serves

only two functions: 1) that of translating the logical addressing

used elsewhere in the system to the physical addressing of the

particular disk being utilized, and 2) controlling the physical

disk. The Monitor can be thought of as seeing all disks in the

Same manner; a change of disks requires only a change in DSKINT to

provide the proper software interface between the physical device

and the rest of the system.

All references made herein to addresses on the disk.

refer to the logical or relative addresses used by the system and

not to any physical addressing scheme involving records, sectors,

tracks, etc., that may pertain to a particular physical Ae wes

The basic unit which may be addressed is a logical disk block

which consists of 200. 36-bit words.

Bin) G02 Storage Allocation Table (SAT) Blocks - There is a

y= 3) 7/

461

storage allocation table on the disk, which reflects the current

status of every addressable block on the disk. These SAT blocks

are contained in a file with the name "*SAT* .SYS". This file may

be used by any user, but can only be modified by the Monitor. Each

addressable block on the disk is represented by one particular bit

within the SAT blocks.

If a particular bit is on, it indicates that the corre-

sponding block is filled with data (all blocks on the disk are

filled when any information is written ei thems tithe bates ort,

it indicates that the corresponding block is empty or available to

be written on. The disk can be wiped out by zeroing the SAT blocks

(which is exactly what is done when the disk is refreshed) . The

disk may optionally be "refreshed" whenever the Monitor is reloaded.

Beil ons) File Directories - There are two levels of directories

on the disk; one is referenced mainly by the Syeten- and the other

is referenced by individual users. There is only one higher level

directory, known as the Master File Directory (MFD). One of the

functions of the MFD is to serve as a directory for individual

User's File Directories (UFD's). A UFD is a particular user's own

directory and will contain the names of files he has written on

the disk. The UFD itself is a file like any other file except

that its filename is a binary number combination (project-programmer)

rather than a 6-bit code and its extension is always UFD in SIXBIT.

The binary combination consists of a left half, which is the

project number, and a right half, which is called the programmer

number. When a user is logged in under a specific project-

programmer number and references the disk, he is actually refer-

encing his own area through the UFD having his project-programmer

number as its name. He may, of course, specifically code his

Done

465

routine to reference files listed in the UFD's of other users or

the MFD; whether he is successful or not will then depend upon the

type of protection that has been specified for the file he is

trying to reference.

5.9.2.4 File Format - All disk files (including MFD and UFDs)

are composed of two parts: 1) pure data, and 2) information needed

by the system to retrieve this data. Each data block contains

exactly 200 (octal) words. If a partially filled buffer is output

to the disk by a user, a full block is written with trailing zeros

filling in to make 200, words. Word counts associated with indi-

vidual blocks are not retained by the system. If such a partial

block is input later, it will appear to have a full 200. data words.

There are three links aetne chain by which the system

references data on the disk. The first link is the 2-word direc-

tory entry in the UFD, which points to the Retrieval Information

block(s), which in turn points to the individual pure data blocks.

This chain is transparent to the user, who may look upon the

directory as having 4-word entries analogous to DECtapes.

DIRECTORY ENTRY NONCONTIGUOUS BLOCK

(MFD or UFD) OF PURE DATA

Loe
ADRI

RETRIEVAL INFORMATION ADRI+177

Prot. [M] TIME | DATE2 ADRn

Size=n ADRn+177

Seow

NAME

EXT

LOC

466 Fy

Directory Entry

- Filename in 6-bit ASCII, unless the directory is the MFD

and the file is a UFD; in that case, NAME is a project-—

programmer number in binary.

- Filename extension in 6-bit ASCII; if NAME is a project-

programmer number, EXT is UFD.

- Address of the first block on the disk that contains

Retrieval Information for this file.

Retrieval Information

NAME and EXT as above; used to check hardware for possible read

error, and to check against software malfunctions. (A failure to

match NAME and EXT results in the message "INCORRECT RETRIEVAL

INFORMATION" .)

DATEL

DATE2

TIME

SIZE

NUMBER

In format of DATE UUO; date file last referenced (RENAME,

or ENTER, or INPUT done) (bits 24-35).

Same format as DATE]; date file originally created (ENTER)

(bits 24-35).

Protection; see below (bits 0-8).

Data Mode (ASCII, Binary, Dump, etc.) (bits 9-12).

24-hour time (in minutes) that file was originally

created (bits 13-23).

If negative, this portion indicates the number of words

in the file, where all blocks with the pees ee exception

of the last are assumed to contain a full 200, words. If

positive, this is a count of the number of 200,-word

blocks contained in the file. For files of less than pil

words, the negative word count is used; for larger files,

the positive block count is used instead.

Programmer Number.

5-40

'

467

SUMI1, - Checksum; two's complement, end-around-carry, sum of

ser CUMIN: j

data in data-block whose disk address is ADRI1.

ADRI, - Address of data: block (logical block number on disk).

---ADRn

Protection

The £irst nine bits of (che third word of ja file's re-

trieval information are used to specify the protection of the file.

This is a necessary procedure since the disk is shared by many

users, who may each desire to keep certain files from being written

over, read, or deleted by other users.

The total number of users falls into three categories:

a. Owner of file (person whose programmer number is the

same as that in the right half of the NAME field of the UFD in

which the file is entered).

b. Project members (users whose project number is the

same as that in the left half of the NAME field of the UFD in which

the file is entered).

Gu. Ada Lother-Wsersi.

There are three types of protection against each of the

three categories of users:

(1) Protection - The protection itself cannot be

| altered.

(2) Read protection - The file may not be read.

(3) Write Protection - The file may not be re-
written, renamed, or deleted.

The protection mask (see above) consists of the first

nine bits of the third word of retrieval information; each bit

(when on) represents a particular type of protection against a

specific category of user, according to the following scheme.

However, owner protection-protection and owner read-protection are

ignored lest the file become totally inaccessible.

Sy

468

OWNER PROJECT OTHERS

0 8

| rt + ie ae wee
PROTECTION PROTECTION

All files created with an ENTER are given the protection,

055, by the Monitor; if some other protection mask is desired, the

the RENAME UUO must be employed by the user. (Also see Section

A62.5, “File Protection” .)

Bro we User Programming for the Disk

Boe) 6 Sill Format - The actual file structure of the disk is gener-

ally transparent to the user. In programming for input/output on

the disk, a format analogous to that of DECtapes is used; that is,

the user assumes a 4-word directory entry similar in form to the

first four words of retrieval information. The UUO format is

approximately the same as for DECtapes:

UUO D, E

Where UUO is an input/output programmed operator and D specifies

the user channel Recoaiseed with this device. E points to a 4-word

(kr ee cone entry in the user's program which has the following

format:

PROT [M] TIME

PROJECT PROGRAMMER F
NUMBER NUMBER OR -—WORD COUNT pS Fae]

(Note that E+3 differs from the fourth word of retrieval in-

formation. See Retrieval Information, 5.8.2.4 for description,

5-42

469

Be 9S 22 Special Functions of Programmed Operators (UUO's) -

ENTER D,E Causes the Mondor to store away the 4-word direc-
eGbror Leturn .

tory entry for later entry into the proper UFD when

user channel D is CLOSEd or RELEASed.

NAME - The filename must be non-zero; if rg an

error return results.

EXT - The file extension may be zero; if so, the

Monitor will leave it zero.

DATE] - The correct date is always filled in by

the Monitor.

PROT - The protection is always supplied by the

Monitor as 055. The RENAME may be used to change

protection after file has been completely written

and a CLOSE done.

M - The data mode is supplied by the Monitor as

set by the user in the last INIT, or SETSTS UUO

on channel D.

TIME, DATE2 - If both of these are 0, the Monitor

supplies the current date and time as the creation

date and time for the file. If either is non-zero,

the Monitor will use the TIME and DATE2 supplied

by the user in E+2; thus files may be copied with-

out changing the original creation time and date.

PROJECT-NUMBER, PROGRAMMER-NUMBER - If both of

these are 0, the project-number and programmer-

number (binary) under which the user is loggeatam

is supplied by the Monitor. Otherwise the Monitor

will use the project-number and programmer-number

supplied by the user in E+3; however, it is gener-

ally not possible to create (ENTER) files in.another

5-43

LOOKUP D, E

error return

470

user's area of the disk, since UFDs are usually

write-protected against all but the owner.

With certain types of error returns peculiar to

the disk, the right half of E+l is set to a speci-

fic number to indicate which type of error caused

the return. These numbers have the following

significance:

0 - E contained a zero file name

1 - E+3 contained an incorrect (or nonexistent)
project-programmer number.

2 - File already exists, but is write-protected.

3 - File was being created, re-created, updated,
or renamed.

No user, except an administrator with project

number 1, may create a UFD, since the MFD is uni-

versally write-protected. The LOGIN CUSP (running

under the administrator project number) creates a

UFD for any user the first time he logs into the

system.

When an ENTER is executed by the Monitor on a file

that already exists, a new file by that name is

written, and those bits in the SAT blocks that

correspond to the blocks of the old file are zeroed

when the CLOSE (or RELEAS) UUO is executed, thereby

retrieving space and making it available to any

other user.

Causes the Monitor to read the appropriate UFD. If

a later version of the file is being written, the

old version pointed to by the UFD will be read.

NAME - The filename in SIXBIT.

5-44

RENAME D, E

error return

471

EXT - The file extension in SIXBIT. A zero exten-

sion is not treated in any eoeeiel manner. :

DATE1, PROT, M, TIME, DATE2 are ignored. The

Monitor returns these quantities to the user in

E+1 and E+2.

PROJECT-NUMBER, PROGRAMMER-NUMBER - If both of

these are 0, the project-number and programmer-

number (binary) under which the user is logged-in

is supplied by the Monitor. Otherwise the Monitor

will use the project-number, programmer-number

supplied by the user in E+3. Thus, it is possible

to read files in other user's directories, provided

that the file's protection mask permits reading.

The Monitor returns the negative word count (or

positive block count for large files) in the it of

E+3, O in RH or E+3.

The numbers placed by the Monitor in the right half

of E+l upon an error return have a significance

analogous to that described for the ENTER UUO:

0 - File was not found

1 - Incorrect project-programmer number in E+3

2 - Protection failure

3 - File was being created (no earlier version

existed).

If the file is currently being re-created, the old

file is used.

This programmed operator is used to alter the name,

extension, and/or protection of a file or to delete

a file from the disk. Locations E through E+3 are

as described above. RENAME is the only UUO that

5-45

USETO D, A

USETI D, A

472

can set the protection of a file to that specified

in E+2. To be RENAMEdG a file must first be CLOSEd

oh channel D, in order to identify for the RENAME

UUO. RENAME then seeks out this file and enters

the information specified in E through E+2 into the

retrieval information and proper directory. If the

contents of E is zero, RENAME has the effect of

deleting the file.

The error return numbers in the right half of Etl

are the same as for ENTER, with the added possi-

bilities:

4.- Tried to RENAME file to already-existing
name.

5 - Neither LOOKUP nor ENTER has been done to
identify the file to be renamed.

These programmed operators are treated identically

by the disk service routines. Their function is

to notify the service routine that a particular

block is to be used on the next INPUT or OUTPUT

on channel D. A is a number that gegienaces a

particular block relative to the beginning of the

file. If A is greater than the current size of

the file (in blocks), the next OUTPUT will write

a block immediately after the file; the next INPUT

will cause the end-of-file flag to be set. A=1

refers to the first block of the file (i.e.,

block 0).

If A = 0 or if no previous LOOKUP or ENTER has been

done, this UUO will set the improper mode error

pate (see bit 18, Table 4-4, and Section 4.4.4).

5-46

473

Bye) eS} 58) General Notes - Three types of “writing" on the disk may

be distinguished. If a user does an ENTER with a filename which

did not previously exist in his UFD, he is said to be "creating"

that file. If the filename did previously exist in his UFD, he is

said to be superseding that file; the old version of the file stays

on the disk (and is available to anyone who wants to read it) anti

the user does the output CLOSE (at this point, his UFD is changed

to point to the new version of the file and the old version is

either deleted immediately or marked for deletion later if someone

is currently reading it; the space occupied by deleted files is

always reclaimed in the SAT tables - see Section 5.8.2.2). Finally,

if a user does a LOOKUP followed by an ENTER (the order is impor-

tant) on the same filename on the same user channel, he will be

able to modify selected blocks of that file, using USETO and

USETI UUOs, without creating an entirely new version of it; this

third type of writing is called "updating" and eliminates the need

to copy a file when making only a small number of changes.

As a standard practice, user programs should read, create,

and supersede (new file with same filename) files on different user

channels. However, for compatibility with DECtapes, it is possible

to read and create, or read and supersede, two files on the same

- user channel as long as all OUTPUTs and the CLOSE output are done

before the LOOKUP and the first input, or vice versa. In other

words, a CLOSE UUO is required between successive LOOKUPs and

ENTERs unless updating is intended.

When issuing a RENAME UUO, the user must insure that the

status at locations E through E+3 are as he desires them to be.

Since an ENTER or LOOKUP, as well as CLOSE, must have preceded the

RENAME; the contents of E through E+3 will have been altered, or

filled if the E is the same for all UUO's.

5-47

474

CALL [SIXBIT/RESET/] - Any files which are in the

process of being written, but have not been CLOSEd

or RELEASed, will be deleted and the space re-

claimed. If a previous version of the file with

the same name and extension existed, it will remain

on the disk (and in the UFD) unchanged.

If the pecan ater wants to retain the newly created

file and have the older version deleted, he must

CLOSE or RELEAS the file before doing a RESET UUO.

By 0) INCREMENTAL PLOTTER

Device Mnemonic - PLT

Buffer Size - 43 (octal) words

The plotter takes Ge mue characters with the bits of ech

character decoded as follows:

-X +X

Pen Pen Drum Drum

Raise Lower Up Down

Do not combine pen raise or lower with any of the position

functions. (For more details on the incremental plotter, see the

PDP-10 System Reference Manual, DEC-10-HGAA-D.)

35 Io)eak Data Modes

SelOp ela oeAe (ASC) Five, 7-bit characters per word are
transmitted to the plotter exactly
as they appear in the buffer. Since
the plotter is a 6-bit device, the
leftmost bit of each character is
ignored.

5-48

475

DieclOpelas 2a Aine (AS Cagle Ney) This mode is identical to the A mode.

5p lOials..3) a (MAGE) Six, 6-bit characters per word are
transmitted to the plotter exactly
as they appear in the buffer.

5.10.1.4 B (BINARY) This mode is identical to the I mode.

5.10.1.5 IB (IMAGE BINARY) This mode is identical to the I mode.

5.10.1.6 DR (DUMP RECORDS) Not available.

De OR ule y/a Din GDUME)) Not available.
1

The first OUTPUT operator causes the plotter pen to be

lifted from the paper before any user data is sent to the plotter.

The CLOSE operator causes the plotter pen to be lifted after all

user data is sent to the plotter. These two pen-up commands are

the only modifications the Monitor makes to the user output faves:

Syealal DISPLAY WITH LIGHT PEN (TYPE 30 and TYPE 340)

Device Mnemonic - DIS

Buffer Size - None (uses device-dependent dump mode

only - 15)

Brewlslecel! Data Modes

5.11.1.1 ID (IMAGE DUMP - 15)

An arbitrary length area in the user area may be dis-

played on the, scope. The command list format is as described in

Chapter 4, "Unbuffered (Dump) Modes," with the addition for the

Type 30 display, that, if RH = 0, and LH # 0, then LH specifies

the intensity for the following data (4 to ES). .

5-49

476

Sicdeleee? Background P

The purpose of the Monitor service routine for the VR-30

is to maintain a flicker-free picture on the display during time-—

sharing. To do this, the picture data must be available for display

at least every two jiffies. This necessitates that the display data

remain in core. At present, this means that the user program must

also remain in core. To minimize swapping of other programs and to

make available a larger block of free core for other users, the

user program is shuffled toward the top of core between pictures.

Si. dal.3 Display UUO's

The input/output UUO's for both displays operate as

follows:

SEN RUE IDA eel Ss ;MODE 15 ONLY

SEBEL S/ DES / ;DEVICE NAME

0 ;NO BUFFERS USED

ERROR RETURN ;DISPLAY NOT AVAILABLE

NORMAL RETURN

CLOSE D, ;STOPS DISPLAY AND

or ;RELEASES DEVICE AS

RELEAS D, ;DESCRIBED IN MANUAL

Die lale See eEN Use pe ADR

If a light pen hit has been detected since ee last

INPUT command, then C(ADR) is set to the location of last light

pen hit.

If no light pen hit has been detected since last INPUT

command, then C(ADR) is set to -l.

5 dek.3 2°) OULPUT Dy ZADR >

ADR specifies the first address of a table of pointers.

This table is composed of pointers with the following format:

For the

ite

ie

Et

ae

For the

Taf

itae

ist

VR-

LH

LH

LH

LH

RH

LH

LH

An example

dea Sie

LISTI1:

30 Display:

= 0 and RH Il oOo .

0 and RH = 0,

= 0 and RH # 0,

0 and RH # 0,

0 1228

then this is the end of the command list.

then LH is the desired intensity for the
following data or commands. The inten-
sity ranges from 4 to 13, where 4 is the
dimmest and 13 is the brightest.

then RH is the address of the next
pointer. Successive pointers are
interpreted beginning at RH.

then -LH words beginning at address RH+1
are output as data to the display. The
format of the data word is the following:

nye As) 25.26 35

340 Display:

= 0, then this

0 and RH #4 0,

0 and RH # 0,

is the end of the command list.

then RH is the address of the next
pointer. Successive pointers are in-
terpreted beginning at RH.

then -LH words beginning at address RH+1
are output as data to the display. The
format of the data word is described in
the 340 programming manual.

of a valid pointer list for the VR-30 Display is:

OUTPUT D, List ;OUTPUT DATA

7;POINTED TO BY LIST

Seow ; INTENSITY 5 (DIM)

den ;PLOT A

5,SUBPL ;PLOT SUBPICTURE 1
ks} (0) ; INTENSITY 13 (BRIGHT)

1G 7 PLOT IC .

2,SUBP2 ;PLOT SUBPICTURE 2

0, nESTE ; TRANSFER TO LIST 1

10,0 ; INTENSITY 10 (NORMAL)

Iie) ;PLOT B
AGF ID) 7 POR sD

0,0 ;END OF COMMAND LIST

OUTPUT

A: XWD

B: XWD

(CR XWD

D: XWD

SUBP1: BLOCK

SUB2: BLOCK

478

D, List

6,6
70,105

105,70
1000,200

5
2

;OUTPUT DATA

>POINTED TO BY LIST

3 Y= 6, X=6

P=) -7107— X= 05
7;Y= 105, X=70
;Y=1000, X=200

;SUBPICTURE 1
;SUBPICTURE 2

An example of a valid pointer list for the 340 Display is:

OUTPUT

LiSiys IOWD

IOWD

ITOWD

TOWD

IOWD

IOWD

ITOWD

LES TIE: TOWD

IOWD

IOWD

IOWD

XWD

A: X=6

B: X=105

(Cs X=70

D: X=1000

SUBP1: BLOCK
SUBP2: BLOCK

D, LIST

5, SUBP1
1,A

2,SUBP2
0,0

Y=6

Y=70

;OUTPUT DATA POINTED

;TO BY POINTER IN LIST

;SET STARTING POINT TO (6,6)
7DRAW A CIRCLE

;SET STARTING POINT TO (70,105)
;DRAW A CIRCLE

;SET STARTING POINT TO (105,70)
7DRAW A TRIANGLE

; TRANSFER TO LISTIL

;SET STARTING POINT TO

*; (1000,-200)

;DRAW A CIRCLE

;SET STARTING POINT TO \(6,6)

; DRAW A TRIANGLE

3 STOP

; DRAW A CIRCLE

; DRAW A TRIANGLE

The example shows the flexibility of this format. The

user can display a subpicture by merely setting up a pointer to it.

He can also display the same subpicture in many different places

by setting up pointers to the subpicture, each preceded by a pointer

to commands for the display to reset its coordinates.

Bg ILA, CALL AC, [SIXBIT/DEVCHR/] or CALLI AC, 4

The user may determine the physical characteristics

associated. with a logical device name by executing a DEVCHR UUO.

The DEVCHR UUO returns the following information in the AC

D252

referred.

(AC), 3

(AC) p?

400

1000

2000

4000

10000

20000

40000

100000

200000

400000

400000

200000

Remaining Bits:

479

Device can do output

Device can do input

Device has a directory (DTA or DSK)

Device is a TTY

Device is a magnetic tape

Device is available to this job or is
already assigned to this job

Device is a DECtape

Device is a paper tape reader

Device is a paper tape punch

Device has a long dispatch table (that
is, UUO's other than INPUT, OUTPUT,
CLOSE, and RELEAS perform real actions)

Device is a display

TTY in use as an I/O device

TTY in use as a user console (even if

detached)

TTY attached to a job

Device is a line printer

Device is a card reader

Device is a disk

DECtape directory is in core (this bit
is cleared by an ASSIGN or DEASSIGN
command to that unit)

Device assigned by a console command

Device assigned by program (INIT UUO)

T£ bit 35-n contains a 1, then mode n

is legal for the device.

NOTE

_ The mode number (0 through 17) must be converted to
decimal; for example, mode 17g is represented by
but 35-154) er bit 20.

5 5)S)

481

APPENDIX 1

DECtape Compatibility Between DEC Computers

PDP PDP PDP PDP PDP PDP PDP PDP PDP
4 5 6 Z 8 Ba OME <a 10

550& 552& 551& 550& 552& TCO] TCO TCO TCOI
Read 555 555 Isa Yotcee yobs) = ass) & & & &

By TU55 TU55 TU55 1TU55 TU55 TU55 TU55 TU55 TU55

PDP-4 A D D A D D D D D

PDP-5 D A B € A A A A A

PDP-6 D A. A Gc A A A A A

PDP-7 A (E} A (S (S E E G

Written PDP-8 D A B G A A A A A

By 552
PDP-8 D A B € A A A A A

TCO1
PDP-8/1 D A B (A A A A A

PDP-9 D A A G LA A A A A

A A (SG A A A A A PDP-10 D

A = Can be dorie

B = Can not be done because of difference in writing checksum

C = Can be done with programmed checksum

D = Can probably be done as in (C) except that PDP-4 is too slow for calculating the

exclusive or checksum in line - this must be done before writing.

NOTE: PDP-10 will not allow search to find first or last blocks when searching from the

end-zone.

483

APPENDIX 2

Size of Multiprogramming non-disk Monitor (Reentrant 4 series, Version 50) June, 1969

There are three components to the Monitor:

1) Required code (4.7K)

2) Optional device ¢ode (0-4. 4K)

3) Tables and buffers per job (73 words per job)

A. Required code (Assuming all features)

Lower core 96.

COMMON 409.

CLKCSS 82.

CLOCK1 367.

COMCON 1822;

CORE] 182.

DLSINT 48.

ERRCON 214.

SCNSRF 1260.

SEGCON 602.

SYSINT 78.

UUOCON 1144.

4692. words (Decimal)

B. Optional devices Complete system

DTA 1284. +N(1)*146.N(1)=8 2612.

MTA 452. +N(2)*9. N(2)=2 470.

PTY 176. +N(3)*10. N(3)'= 2 196.

CDR 220. 220.

CDP 308. 308.

DIS 190. 190.

LPT 100. 100.

PLT 65. 65.

A2-1

Optional devices Complete system

PTP 167. 167.

PTR 105. 105.

3067. +N(1)=146.+N(2)*9.N(3)*10. 4433.

C. Tables and buffers

18. words of tables per job

55. word of TTY device data block space per job

73. words per job

Total for complete 8 user system = 4692, + 443. + 8.*73. = 9709.

*

WARNING: The Monitor will continue to grow despite our best efforts to prevent it.
Most new features are put in with conditional assembly so that a customer
can reduce this size of the Monitor by giving up some of the new features.

These sizes are subject to change without notice and should not be construed as a commitment

by Digital Equipment Corporation.

A2-2

485

APPENDIX 3

Size of Swapping Monitor (Reentrant 4 series, Version 50) June, 1969

There are three components to the Monitor:

1) Required code (10K)

2) Optional device code (0-4K)

3) Tables and buffers per job (1K for every 8 jobs)

A. Required code (Assuming all features)

Lower core %6.

COMMON 475.

CLOCK] 376.

COMCON 1592.

CORE] 214.

DLSINT A8.

DSKINT 130.

DSKSRB 2448.

ERRCON Zlile

SCHEDB 7Al.

SCNSRF 1264.

SEGCON 709.

SYSINI 81.

UUOCON 1190.

10375. words (Decimal)

B. Optional devices Complete system

DTA 1286. +N(1)*146. N(1)=8 2454.

MTA 452. +N(2)*9. N(2)=2 470.

PTY 166. +N(3)*10. N(3)=2 196.

CDR 220. 220.
CDP 308. 308.

DIS 191. 19

LPT 104. 104.

A3-1

Optional Devices

PLT
PTP

PTR

80.

167.

105.

Complete system

80.

167.

105.

3089. +N(1)=146.+N(2)*9.+N(3)*10. 4295.

Tables and buffers

21. words of tables per job

54. words of DSK device data block space per job

(1.5 files/job)

55. word of TTY device data block space per job

130. words per, job

Total for complete 16 user system = 10375. + 3987. + 16.*130. = 16442.

WARNING: The Monitor will continue to grow despite our best efforts to prevent it.
Most new features are put in with conditional assembly so that a customer
can reduce this size of the Monitor by giving up some of the new features.

For a complete Swapping System (all devices):

8

16

24

32

40

48

56

64

JOBS

JOBS

JOBS

JOBS

JOBS

JOBS’

JOBS

JOBS

15.7K

16.7K

17.7K

18.7K

19.7K

20. 7K

217K

22.7K

These sizes are subject to change without notice and should not be construed as a commitment

by Digital Equipment Corporation.

A3=2

487

APPENDIX 4

Writing Reentrant User Programs

The LOADER simplification makes it somewhat more lieing

cult to define variables and arrays. The easiest way to define

them so that the resulting relocatable binary can be loaded on a

one- or two-segment machine is to put them all in a separate sub-

program as internal global symbols using Block 1 and Block N

SOSGe- Gos. All other subprograms must refer to this data as ex-

ternal global locations. Most reentrant programs will have at

least two subprograms, one for the definition of low segment loca-

tions and one for instructions and constants for the high segment.

(This last subprogram must have a HISEG pseudo-op.) Since programs

are self-initializing, they clear the low segment when they are

started even though the Monitor clears core whenever it assigns it

EO van WwSei.

Using Block 1 and Block N pseudo-ops causes the LOADER

to leave indications in the Job Data area (LH of JOBCOR) so that

a Monitor SAVE command will not write the low segment. This is

advantageous in sharable programs for two reasons. It reduces the

number of files in small DECtape directories (22 files in the maxi-

mum). Also, I/O is done only on the first user's GET that inteaadic

izes the high segment but not on any subsequent user's GETs for

either the high or low segment.

A4-1

488

An Example of a Reentrant Program:

low segment subprogram:

TITLE LOW - EXAMPLE OF LOW SEGMENT SUB-PROGRAM

JOBVER=137

LOC JOBVER

3 ;version3
RELOC g

INTERNAL LOWBEG, DATA, DATA], DATA2, TABLE, TABLE1

LOWBEG: .

DATA: BLOCK AL

DATAI1: BLOCK 1

DATA2: BLOCK 1

TABLE: BLOCK 1g

TABLE1: BLOCK 1g
LOWEND=.~-1 ;last location to be cleared

END

high segment subprogram:

TITLE HIGH - EXAMPLE OF HIGH SEGMENT SUB-PROGRAM

HISEG

EXTERN LOWBEG, LOWEND
T=1

BEGIN: SETSM LOWBEG ;clear data area
MOVETL T, LOWBEG+1

HRLI T, LOWBEG

BLT T, LOWEND
MOVE T,DATAL ;compute
ADDI leealee

MOVEM T, DATA2

END BEGIN 7Starting address

Some reentrant programs require certain locations in the

low segment to contain "constant" data which does not change during

execution. Since the initialization of this data happens only once

after each GET instead of after each START, programmers are tempted

to place these "constants" in.the same subprogram that contains the

definition of the variable data locations. This action requires the

SAVE command to write them out and the GET command to load them in

again. Therefore the "constant" data should be moved by the programs

A4-2

489

from the high segment to the low segment at the same time that the

rest of the low segment is being initialized. The exception is

when the amount of code and constants in the high sequent needed to

initialize the low segment constants take up too much room in the

high segment. In this case, it is best to have I/O in the low seg-

ment on each GET. A rule to follow in deciding between this high

segment core space and the low segment GET I/O time is to put the

code in the high segment if it does not put the high segment over

the next 1K boundary.

A second way of writing single save file reentrant programs

has been developed in which the source file can be a single fillesain=

stead of two separate ones. This is more convenient although it eh

volves conditional assembly and therefore produces two different re-

locatable binaries. A number of CUSPs have been written ones way.

The idea is to have a conditional switch which is 1 if a

reentrant assembly and g if a non-reentrant assembly. The data is

placed last in the source file following a LIT pseudo-op and consists

only of Block 1 and Block N statements, along with data location

tags. If a reentrant program is desired, a LOC 140 is assembled

which places the data area at absolute 140 in the low segment. Be-

cause of the LOC, no other relocatable program can be loaded into

the low segment. The program should be debugged as a non-reentrant

program with DDT since DDT is a low segment relocatable file. The

LOADER switch /B is used to protect the symbols. The usual way of

assembly is reentrant so, unless already defined, the condi tionae

switch is l.

The program must have one location in the Job Data area

when it is assembled to be reentrant so that the Monitor will know

to start assigning buffers at the end of the data area in the low

segment instead of at location 140. This is accomplished by chang-

A4-3

490
ing the LH of JOBSA before the CALLI @ (RESET) or changing the

contents of JOBFF after the CALLI §, depending on how the program

reinitializes itself on errors and upon completion. The program

should not change these locations if it is assembled as non-

reentrant. This is so that the symbol table can be protected using

the LOADER /B switch, which places the symbols next to the last

program loaded and sets the LH of JOBSA appropriately higher. There-

fore, this code is under control of conditional assembly.

TITLE DEMO - DEMO ONE SOURCE REENTRANT PROGRAM -V@@1
SUBTTL T. HASTINGS 25 JUN 69
JOBVER=137

LOC 137
EXP @91 ;version number

INTERN JOBVER, PURE
EXTERN JOBSA, JOBFF

IFNDEF PURE,<PURE=1> ;assume reentrant if PURE undefined
IFN PURE,<HISEG> ;tell LOADER to load in high segment

;1if reentrant

BEG:

IFN PURE,< ;Only need if reentrant
; (not needed if two files)

MOVSI T,DATAE ;set first free location in low seg,
HLLM T, JOBSA ;RESET sets JOBFF from LH of JOBSA

>

CALLI @ 7;do CALL RESET
MOVE T,JOBFF ;assign at least enough core for data
CALLI T,11 ;CORE UUO
JRST ERROR

MOVE T, [XWD DATAB, DATAB+1] ;now clear data. region
SET4M DATAB

BLT T, DATAE-1 ;last. location cleared

LIT ;put literals in high seg
;DATA AREA:

IFN PURE,<LOC 14> ;Start data area at 14M in low seg
;1i£ reentrant

DATAB: ;£irst location cleared every startup
DATA: BLOCK 1

TABLE: BLOCK 128

DATAE: END BEG ;define free location

A4-4

Book 4

Editing -
the

Source Program
DECtape Editor

(Editor)

Line Editor for Disk

(LINED)

Text Editor and Corrector

(TECO) :

492

493

SOURCE PROGRAM PREPARATION

DECTAPE EDITOR (EDITOR)

Editor creates, adds to, or deletes from sequentially numbered source files recorded in lines of ASCII

characters on a DECtape. Editor edits the source file; (the input and output files are the same). Fresh

source files have editing space in each physical DECtape block. If the user has more edits for a block

than will fit in it, an extra block in the DECtape is used and appropriately linked to the preceding and

following logical blocks of the file. Editor provides a simple method of crearing or modifying Macro or

FORTRAN IV source programs.

Requirements

Minimum Core: IK

Additional Core: Not used

Equipment: One DECtape unit for the reel containing the file(s) to be

modified

Initialization

.R EDITOR 9 Loads the DECtape Editor program.

z Editor is ready to receive a command.

Commands

Initialize a File For Processing

Command Function

Sn tA) Select DECtape n and zero the directory.

Sn ,filename.ext tA $ Select DECtape n, zero the directory, and

create a file called filename .ext.

494

Command ~ : Function

i Z

Sn, filename.ext) ~ Select DECtape n and locate filename .ext for
processing.

Sn, filename .ext $ Select DECtape n and add a new file called
filename .ext.

NOTE

All the above commands place Editor in the Command mode;
i.e., the next typein is assumed to be one of the commands
given below.

Innnnn > Insert the following typed line at line number

nnnnn of the currently open file; nnnnn can be
nnnnn aaad....... a) specified as a line sequence number or as a

point (.). A point refers to the last line typed.
If the line number already exists in the file,

nnnxx $ > the line is replaced.

Insert Multiple Lines

Innnnn, increment > Insert the following typed lines, beginning at

line number nnnnn of the currently open file;
nnnnn daaq.. .aaa) nnnnn can be specified as a line sequence

number or as a point (:). Each time a line is
nnnxx bbbb. . .bbb) entered, nnnnn is increased by the specified ©

increment, and the result becomes the line
nnnxx $ number for the next insertion. Type $ after

Par last line insertion.

Delete a Line

Dnnnnn) Delete line number nnnnn from the currently

open file; nnnnn can be specified as a line
sequence number or as a point (.).

495

Command Function

Delete a Series of Lines

Dmmmmm ,nnnnn) Delete lines mmmmm through nnnnn from the
currently open file.

Pnnnnn » Print line number nnnnn of the currently open
file; nnnnn can be specified as a line sequence

nnnnn aaa. . .aaa > number or as a point (.).

*

Print a Series of Lines

Pmmmmm ,nnnnn > Print lines mmmmm through nnnnn of the

currently open file.

mmmmm aaa. ..aaa)

nnnnn bbb.. .bbb)

bs

Close the Current File

E} (End of file) Closes the currently open file. Another file
can be opened on the same or a different
DECtape via an Sn command, or a return
can be made to Monitor to terminate Editor.

i+

Examples

-R EDITOR 32

*S1>VECTOR §& Select DECtape 1 and create a new file on

‘ DECtape 1 called VECTOR.

*120 520) Begin inserting at line sequence number 20,

and increment this number by 20 each time
a line is inserted. Switch to Text Mode.

496

Editor responds with first line sequence number.
20020 DEFINE VMAG (AB) Operator types line of coding to be inserted,
QOO4G <MOVE O2A) followed by a carriage return.
@O060 FMP 02

Q0080 MOVE 1sA+1)
Q0100 FMP 1513
Q0120 FAD 1)
QG@140 MOVE 15A+2)

@@160 FMP i»1)

001808 FAD 1)
@@208 JSR FSQRT)

g0220 MOVEM B2

Q0240 $$ 2 Typing $ terminates insertions and returns Editor
to command mode,

+120) Change line number 00020.

Q0820 DEFINE VMAG (A>B>2C)?

ILR indicates that the indexing increment has
resulted in the next line number being equal to
the line number of an already existing line (00040).
Note that the indexing increment remains as 20
until explicitly changed.

*190) Insert a line between lines 00080 and 00100.

Q8090 MOVE 1.C)

ILS) *ILS* indicates that the indexing increment has
resulted in an existing line (00100) being skipped,
since the next line addressed would be 00110.

#D1802 Delete line 00180.

¥P20 »220) Print lines 00020 through 00220.

GOG@20 DEFINE VMAG (A3B>C))
@2040 <MOVE O2A?
00060 FMP 0)
@0088 MOVE 1.>A+1)
80298 MOVE 1.C2
00100 FMP 151)
@0120 FAD 1)
00140 MOVE 15A+2)
00160 FMP 1512
98200 JSR FSQRT)
90220 MOVEM B)

*ED Close the currently open file.

*1C Return to the Monitor.

497

. Diagnostic Messages

Editor Diagnostic Messages

J

TLR
we) ESS"

Meaning

Device Data Error due to a write error or WRITE LOCK

switch. Editor must be restarted.

DECtape directory is full.

Filename Already Used. A filename assigned to a new file
already exists on the DECtape.

Illegal Command.

Insert Line Replacement, Insert Line Skip. The line
sequence increment specified for the insert function will
cause the next existing line to be either replaced (R) or

skipped (S). This is a warning message only and does not
necessarily indicate an error.

Not a Current File.

?2NFO* No File Open. A command requiring an active file has been

oe given but no file is currently open.

Nonexistent Line Number. A print (P) or delete (D) command

refers to a nonexistent line.

Unit Not Available. The DECtape specified in an Sn command

is assigned to another job.

498

499
LINE EDITOR FOR DISK (LINED)

LINED is similar to DECtape Editor, but operates on disk files instead of DECtape files. LINED is

called in by typing

eR LINED
is LINED responds with an asterisk to indicate

it is ready to accept a command string.

Commands

LINED commands are very similar to those of Editor; consequently, only a brief summary is given here.

Command Function

S filename .ext) ~ Select an existing file for editing.

S filename .ext $ Select (create) a new file for editing.

Innnnn 2) Insert a line at line number nnnnn.

Innnnn ,increment Insert multiple lines, starting at line number
nnnnn and incrementing the line number each time.

Dnnnnn) Delete the line at line number nnnnn.

Dmmmmm ,nnnnn Delete lines mmmmm through nnnnn.

Pnnnnn > Print line number nnnnn on the Teletype.

Pmmmmm ,nnnnn } Print lines mmmmm through nnnnn on the Teletype.

E? End (close) the current file.

$ If in Insertion Mode, ignore current text line

and return to LINED command level. If in

Command Mode, print the next line.

\ NOTE

Files are written with standard protection (055). All blocks
are assumed to have integral number of lines. Use the /A

switch (line blocking) with PIP to put each file’on disk. |

Diagnostic Messages

The diagnostic messages for LINED are similar to those for Editor. The diagnostic message ?DEC* is
¢

not included, and the following message is added:

Message Meaning

UE CCL error. Error occurred while referencing CCL

command file.

Monitor Commands

To call in LINED and open a new file for creation:

Monitor Command Equivalent CUSP Commands

CREATE filename .ext } R LINED?

*S filename.ext $

To call in LINED and open an existing file for editing:

Monitor Command Equivalent CUSP Command

.EDIT filename .ext) =R LINED?

*S filename .ext

501

TEXT EDITOR AND CORRECTOR (TECO)*

TECO edits files recorded in ASCII characters on any standard device. It can perform simple editing

functions as well as highly sophisticated search, match, and substitute operations, and operate upon

arbitrary length character strings under control of commands which are themselves character strings

(and contains the mechanisms necessary to exploit this recursiveness) .

Requirements

Minimum Core: AK

Additional Core: Takes advantage of any additional core available. Each 1K
additional core augments the basic 6,200+ - character buffer
by 5K additional characters.

Equipment One input device and one output device.

NOTE

TECO automatically requests more core to expand its
buffer under any of the following conditions:

*PDP-10 TECO is based on PDP-1 TECO, developed at MIT by Daniel Murphy, and PDP-6 TECO,
developed at MIT's project MAC by Stewart Nelson and Richard Greenblatt.

502

a. An insert by way of the "I" command or "X"
(Q Register) will overflow the present memory
boundaries .

b. The command acceptance routine needs more
core.

¢. The total number of characters in the Data
Buffer falls below 3000, and an input command
from a peripheral device (other than the user
console) is executed. Thus, TECO maintains a
Data Buffer of at least 3000 characters.

i

If TECO is successful at obtaining more core, the follow-
ing message will be typed:

*10000 <IJS > $$

[5K CORE]

*

nk Core, where n is

new core size of job

If TECO is unsuccessful at obtaining the core request,
the following message is typed:

STORAGE CAPACITY EXCEEDED
ey

Tod

Initialization

.RTECO) Loads the Text Editor and Corrector program.

2 TECO is ready to accept a command.

Basic Commands

NOTE

When typing command strings to TECO, the following
points should be noted.

One $ is used to terminate the text within’
a command string, where applicable; two

| successive $s terminate the entire command

string sequence and generate a RETURN,
LINE-FEED.

$

RUBOUT) The RUBOUT key can be used to erase the
preceding typed-in character(s) of a com- *
mand string. Each character erased is

echoed back on the teletype (e.g., ABD
RUBOU DC...). Successive RUBOUTs
can be used to erase more than one character.

503

N.B. To erase a carriage return (which generates
RETURN, LINE-FEED), two RUBOUT's are required,
one RUBOUT fo erase the LINE-FEED and one to

erase the RETURN.

Two successive tGs (s) can be used to wipe

out the entire command string currently being typed.

TECO commands in the form tx (where x is any character)
can be entered by either holding down the CTRL key
while striking the x key or fyping up-arrow (shift N)

followed by the x character. These alternatives are
not true where tx is a character within a text string
(such as in a Search argument); in this case, the CTRL

key must be used.

A carriage return, line feed, (}) is ignored in a TECO
command string as long as it does not appear within a
particular command, such as Insert. Examples of this are
given on the following pages.

Select The Input Device

Command

ERdev:filename .ext [proj ,prog]
$

EBdev:filename.ext $

*If dev: is not specified, DSK: is assumed.

Function

Edit Read. Selects the input device and file
(if specified) .

dev:* DTAn: (DECtape)
PTR: (paper tape reader)
DSK: (disk)
MTAn: (magnetic tape)
CDR: (card reader)

(DSK: or DTAn: only) filename .ext

[proj ,prog] (DSK: only)

NOTE

Device TTY: cannot be used

here. See I (Insert) command.

Specified only if file is located in
other than user's area.

Edit Backup. Selects an input and file to be
edited (the input device, which will also be
the output device for the edited file, must be
the disk*). EB is intended to be used to keep
a backup of a file during a debugging session,
without the user having to invent a new name
for each version of the file.

Command

504

Function

For example, the command string sequence

EBPROGI.MAC $

editing

EF $$

results in:

a. Reading from file PROG1.MAC on disk

b. Creating a new output file, which is
initially given a temporary name of TECOnn.TMP,
where nn is the user's job number in octal; in-
corporating the job number in the filename solves
the problem of identifying temporary files belong-
ing to multiple 100,100 users

c. Performing,a number of RENAMEs following
the EF command so that the input file becomes
PROG1.BAK, any previous PROG] .BAK file is
deleted, and the new output file becomes
PROG1.MAC.

An ER command can be given following an EB
command and before the EF command, but an
intervening EW command is illegal and results
in the error message ?22 (see Table 2-5). Even
though an ER command may be given, the name of
the final output file is still taken from the EB
command.

Select The Output Device

EWdev:filename.ext [proj ,prog]

EZdey . filename .ext [proj ,prog]

$

*If dev: is not specified, DSK: is assumed.

Edit Write. Selects the output device and file
(if specified) .

Edit Zero. Selects the output device and file
(if specified) , and rewinds the tape (if magnetic
tape) or zeros the directory (if DECtape) .

dev:* DTAn: (DECtape)

DSK: (disk)
MTAn: (magnetic tape)
PTP: (paper tape punch)
LPT: (line printer)

Command

ER

EX

EG

EM

nEM

Function

filename.ext (DSK: or DTAn: only)
[proj,prog] (DSK: only)

Specified only if file is located
in other than user's area.

Terminate Output; Close File

End File. Terminate output on the current
output file and close the file without selecting
a new output file.

Exit. The EX command finishes the current edit
operation by writing out all remaining pages of
a file, performing an EF (End of File) command,

and then exiting to the Monitor. Thus, EX is
equivalent to the command string

1O00000PEF BELL

Exit and Go. The EG command executes an

EX command followed by the last Monitor
command (COMPILE, LOAD, EXECUTE, or

DEBUG) typed by the user. (See Chapter 9.)

Magnetic Tape Positioning

Edit Magtape. Rewind the currently selected

input magnetic tape.

Depending upon the value of n, perform one

of the following operations on the currently

selected input magnetic tape.

Operation n

1 Rewind tape to load point.
3 Write end of file.
6 Skip one record.
7 Backspace one record.
8 Skip to logical end of tape.
Y) Rewind and unload tape.
im Erase 3 in. of tape.
14 Advance tape one file.
15 Backspace tape one file.

NOTE

Throughout TECO, all numbers in

command strings are interpreted as

decimal.

Command

‘¢

PW

506

Input Commands

Function

Yank. Read from current input device into buffer
until

a. A FORM character is read (i.e., a page has
been input), or

b. The buffer is more than 2/3 full and one of the

following is encountered

(1) Line Feed

(2) Form Feed

c. ora point 128 characters from the end of the
buffer is reached.

NOTE

The FORM character, if read, does not enter the

buffer. Any data previously residing in the buffer
is destroyed. The pointer is positioned immediately
before the first character in the buffer. Representa-
tive buffer size for SK TECO:

Total buffer capacity = approx. 11,200 characters

2/3 buffer capacity = approx. 7,460 characters

1 line-printer page = 7,200" characters (120 char./
line)

(60 lines) 7,800" characters (130 char ./line)

Append. Read from the current input device and

append the incoming data to information already
residing in the buffer. Terminate reading on the
same conditions as in Y.

NOTE

No previous data is destroyed. The

pointer is not moved.

Output Commands

Punch, Wait. Output the entire buffer to the
selected output device, with a FORM character
appended as the last character. Do not alter the
contents of the buffer or move the pointer .

Command

np
m,nP

nj

nC

nR

nL

nD

nk

507

Function

Equivalent to a PW command followed by a Y

command (i.e., output the current contents of the
buffer followed by a FORM character, and then
read in more data from the input device) .

Perform the P command n times.

Output the m+] through the nth character from the
buffer to the current output file. Do not append a

FORM character at the end. Do not alter the
contents of the buffer or move the pointer.

Editing Commands

Move The Pointer

Jump. Move pointer to the right of the nth buffer
character and give the pointer symbol (.) the value

of n. If nis omitted, set pointer in front of the first
buffer character (same as OJ).

Continue. Set the pointer to the right of the nth

character-beyond the pointer's present position
(equal to .+nJ). If nis omitted, | is assumed.

Reverse. Set the pointer to the left of the nth

character prior to the pointer's present position
(equal to .-n). If n is omitted, 1 is assumed.

Lines. +n - Move the pointer to the right, stop-
ping after it has passed over n LINE-FEED

characters .

-n- Move the pointer to the left, stopping after it
has passed over n +1 LINE-FEED characters, then

move to the right of the last LINE-FEED character

passed over .

If n is omitted, assume IL.

Delete Text

Delete. Delete n characters.

+n - Delete n characters just to the right of the

pointer .

-n - Delete n characters just to the left of the

pointer.

If n is omitted, 1 is assumed.

Command

nk

m,nKk

Itext... $

nl

n\

| text... $

@lftext/

508

Function

Kill. +n - Move the pointer fo the right,
stopping after it has passed over n LINE-FEED
characters. Delete all characters the pointer
passes over.

-n - Move the pointer to the left, stopping
after it has passed over n+1 LINE-FEED
characters, then move it fo the right of
the last LINE-FEED character passed over.
Delete all characters between this point
and the pointer's previous position.

If n is omitted, 1 is assumed.

Delete the m+] through the nth characters
of the buffer. Set the pointer where the
deletion occurred.

Insert Text

Insert. Insert the text following the "I" up
to, but not including, the $ character, begin-
ning at the current pointer position. Move
the pointer to the right of the inserted material .

Insert at the pointer location a character with
an ASCII code of n (n must be a decimal value).
Move the pointer to the right of the inserted
character.

Insert at the current pointer location the ASCII
text representation of the decimal value of the
expression n. Move the pointer to the right of
the inserted text.

Insert at the current pointer location a(~{)
character and the following text up to, but not
including, the $ character. Move the pointer fo
the right of the inserted text.

Insert at the current pointer location the text
which follows. The text is delimited by a
character, /, which can be any character not
appearing in the text.

Type Text

NOTE

T commands do not move the pointer.

Command Function

nT Type. Type out the string of characters beginning
at the current pointer position and terminating

after the nth LINE-FEED character is encountered.

+n - Typeout n lines to the right of the current

pointer position.

-n - Typeout n lines to the left of the current
pointer position.

If n is omitted, the value is assumed to be 1.

m,n Type out the m +1 through the nth characters of
the buffer.

Stand-Alone Examples (Elementary)

Open an Input File

ERDTAS:SOURCE-MAC & Open the input file called SOURCE .MAC
located on DTAS.

ERDSK:SRCE-«MACL12224] & Open the input file called SRCE.MAC
located in area 12,24 on the disk.

ERPTR: E Open an input file on the paper tape reader.

Open an Output File

EWDTA3 : EDITED «MAC $ Open an output file on DTA and call it
EDITED.MAC.

EZDTA1 :DEBUG+ MAC bi Zero the directory on DIA1, open an output
file on it, and call the file DEBUG .MAC.

Read a Page

Nf Read a page into the buffer from the current

input file, destroying the previous contents

of the buffer.

A Read a page into the buffer, appending the
data to the end of the information currently

in the buffer.

510

Command Function

PW Output the entire buffer, followed by a FORM
character.

6P Execute the WRITE and READ cycle six times.

12 ,50P Write out the 13th through the 50th characters
of the buffer.

Pointer Positioning

Y18J Read in a page of information and position the
pointer after the 18th character of the buffer.

5R Then, move the pointer left to between char-
acters 13 and 14.

Delete Text

J19C3D Move the pointer to the right of the 19th
character in the buffer and then delete the

or next three characters to the right (characters
20, 21, and 22).

19,22K \ Delete the 19+1 (20th) through the 22nd
characters of the buffer.

Insert Text

J2LITAG: MOVE 1, AMT Move the pointer to a position following the
$ second line of the buffer; insert the text TAG:

MOVE 1, AMT between the second and third
lines of the buffer.

69\ Insert the digits 69 in ASCII at the current
pointer position (same as 169 or $ or 541571).

NOTE

Unless a \key is present, \ is typed with a
SHIFT L.

—| ERROR IN JOB $ Insert a tab followed by the text ERROR IN
JOB at the current pointer position.

Command

@I] HERDSK: PROGL#)

. 3T

25, 100T

Examples (Basic)

4R TECQ)

* ERDTA1:SCFILE.MACLS)

+ EWDTA2: EDFILE.MACLS')

kYG,20TLS

qagaaq....... gagaa)

*S3LTULD

bb bbb isis bbbbb }

+1THIS 1S A SAMPLE INSERT 2

a)

+1 0PT$4)

CCCCC...... ccccc 2

511

Function

Insert the text ERDSK:PROG $ at the current

pointer position.

NOTE

The use of delimiters is the only method
for inserting a $ in the text.

Typing Text

Type out the first three lines of the buffer.

Type out the 25+1 (26th) through the 100th
character of the buffer.

Open the file called SCFILE.MAC on DTAI
for input.

Open an output file on DTA2 and call it
EDFILE.MAC.

Read a buffer of information from the input
file and type the first 20 characters of the

buffer .

Move the pointer to the right, stopping when
three LINE-FEED characters have been en-
countered; type the text of the fourth line

in the buffer.

Insert the text THIS IS A SAMPLE INSERT 2

between the third and fourth lines of the

buffer, and position the pointer after the
inserted material .

Write out the current buffer to the output
device; read in and write out the next nine

pages of data; read in the 11th page of data
and position the pointer at the beginning of
the buffer; type out the first line of the

buffer .

Delete this line from the file; position
the pointer at the beginning of the (now)

first line in the buffer .

512

Command Function

+ EX$$) Writes out all remaining pages of the file,
performs an EF (End of File) command, and

exits to the Monitor.

EXIT 2

tC D Kill the job, deassign all devices, release
core.

Advanced Commands

Search Commands

Summary

S text $ (Search) - Searches for text in current buffer only.

N text $ (Nonstop Search) - Searches for text through successive buffers by repeatedly
writing out current buffer and reading in next buffer (similar
to P command, but a form character is not inserted after out-
putting each buffer) .

«text $ - Searches for text through successive buffers by repeatedly reading in new bufferful
of information (Y command).

NOTES \

All searches begin at the current location of the pointer.

Each search command can be preceded by the modifier characters
(: and/or @).

: causes the search command to have a numeric value at
completion;

0 if the search has failed (the requested text was not
found) or -1 if the search was successful (the requested text
was found) .

@ indicates that the text to be matched is delimited by some
character (same as in the @I command).

A numeric argument can appear following the modifiers (if
any) but must precede the command. If the numeric argument
is n, TECO searches for the nth occurrence of the text. If
n is not used, the value of n is assumed to be 1.

If search is successful, the pointer is positioned to the right of
the matched text. If the search fails, the pointer is positioned
at the beginning of the buffer.

513

Use of special characters within text:

tS = | Match any separator character (any
character not a letter, number, period,
dollar sign, or percent symbol).

tX - Match any (arbitrary) character. Used
when the contents of some position within
the text is unimportant.

tNx - Match any character except x.

tQ- Takes the next character literally, even
if it is one of four special characters.
For example, StQtX $ - Find the character
tX,

See note under TECO, Basic Commands.

Search Commands Summary

Command Action at End Action at End Values Typeout ?
of Buffer of File Success Fail if Failure

Failure N/A

Failure N/A

Performs a P command Failure

(but a FORM character

is not inserted) and
resumes search

Performs a P command Failure

(but a FORM character

is not inserted) and

resumes search

Performs a Y command Failure

(read only) and resumes
search

Performs a Y command Failure

(read only) and resumes

search.

"| Q+Register Commands

Q registers are provided for storing quantities, command strings, or buffer contents for later use. Thirty-

six Q registers, labeled 0 through 9 and A through Z, are available.

Command

nUi

Qi

%i

m,nXi

nXi

Gi

Li

di

Mi

<>

ne

n;

.' tag

O tag $

n"G

+514

Function

Use. Places the numeric value n in Q-register i.

Q-register. Represents the current value in Q-register i

Adds 1 to the value in Q-register i and represents the
new value.

Xfer. Copies characters m+] through the nth character
of the buffer into Q-register i. Does not alter buffer
contents or pointer.

Copies the buffer characters between the current pointer
position and the nth LINE-FEED character in Q-register i

Get. Inserts the text contained in Q-register i into the
buffer beginning at the current pointer location. Set
the pointer to the right of the insertion.

Pushes the contents of Q-register i onto the Q-register
pushdown list.

Pops the top entry of the Q-register pushdown list into
Q-register i., The Q-register pushdown list is cleared
each time two successive $s are typed.

Macro, Iteration, and Conditional Commands

Macro. Perform the text in Q-register i as a series of
commands.

Iteration brackets. When > is encountered, command
interpretation is sent back to <.

Perform the commands within the iteration brackets
n times.

If not in an iteration, an error results. If most recent
search failed, send command interpretation to just
beyond the matching >on the right; otherwise, no
effect.

If not in an iteration, an error results. If the value of
n is 0 or greater, send command interpretation just past
the matching >to the right; otherwise, no effect.

Tag definition. Tag is the name of the location in
which it appears in a command string.

Go to the named tag, which must appear in the current
macro or command string. '

If n is Greater than or equal to 0, perform commands
up to next '. Otherwise, skip to next '.

515

Command Function

n"L If n is Less than or equal to 0, perform commands up
to next '. Otherwise, skip to next '.

n"N If n is Not equal to 0, perform commands up to next *.
Otherwise, skip to next '.

nue If n is Equal to 0, perform commands up to next '.

Otherwise, skip to next '.

n"C If n is a symbol Constituent (a letter, number, period,

dollar sign, or percent symbol), perform commands
up to next '. Otherwise, skip to next '.

NOTE

The double quotation mark (") and the single quotation
mark (') symbols are matched in the same way as the left

parenthesis symbol, (, and right parenthesis symbol,).

Numeric Values and Arguments in Command Strings

Many command string formats permit arguments with numeric values. The following characters may

appear in a command string to develop these values in any instance where a numeric value is permiss-

able.

0 through 9 Represent their corresponding numeric values.

B Beginning. Equivalent to 0. e t

Z : Equivalent to the number of characters in the buffer.

Equivalent to the number of characters to the left
of the current pointer position (or in other words,

equal to the current pointer position) .

Qi Q-register. Equivalent to most recent numeric

value placed in Q-register i.

nA ASCII. Equivalent to ASCII value of character to
right of pointer; n is used to differentiate this
argument from an Append command (A) and has no

other significance.

tH Equivalent to value of elapsed time in 60ths of a

second since midnight.

tF ; Equivalent to the value of the console data switches.

516

Command Function

tE . Has the value of the form feed switch. If, during the last
Y or A command execution, data transmission was terminated

by a form feed character, tE has a value of -1, otherwise,
the value is 0.

tt (On Teletype Models 33 and 35, hold down both the CTRL
and SHIFT keys and type N.) Equivalent to the ASCII value
of the next character in the command string; this character
is not interpreted as a command.

{T Typed Character. Stops command execution until user types
a character on the Teletype; tT then becomes equivalent to
the ASCII value of the character typed.

\ Equivalent to the value represented by the digits (or minus
sign) immediately following the current pointer position.
The value is terminated by the first nonnumeric character
encountered. The pointer is positioned immediately following
the value.

m+n Add Fi re
m=n ace Take one or two arguments. A space is equal to

roan Melnigly Take on two ar. ts m/n Divide (truncates) SER CeO ONS OIE

m&n Logical AND; bitwise AND of binary representations m and n.

min Logical IOR; bitwise inclusive OR of binary representations
mand n.

(@) Operators +, -, *, /, #, and $ are normally performed left
to right. This sequence can be overruled by use of parentheses.

NOTE

TECO does not assume that multiplication and division are
always performed before addition and subtraction. Thus, to
obtain the equivalent of a + b *c), one must use the paren-
theses; otherwise, (a +b) *c is assumed.

n= Causes the value of n to be typed out.

H Abbreviation for B, Z. (0 through the last location of the
buffer; in other words, the whole buffer) .

NOTE

If a command takes two numeric arguments, a comma is used
to separate them.

517

TECO Termination Commands

Command Function

tC Returns control to the Monitor without waiting

for any I/O operations to finish.

tG (BELL) Returns control to the Monitor after completing

all current output requests,

Stand-Alone Examples (Advanced)

J3SMOVE $ IM §& Within the current buffer, search for the third

* oecurrence (3S) of the text MOVE, position the
pointer immediately after it, and insert an M at
that point.

Search for a Special Character

StNA §& ~ Search for any character except A within the
current buffer.

STtSi-S Search for any separator character within the
current buffer .

Q-Registers, Macros, Iterations, and Conditionals

J@UN <S} Count the number of LINE-FEED characters in
$3%N>QN = the buffer as follows:

1. Position the pointer at the beginning of
the buffer (J),

2. Place 0 in Q-register N(OUN),

3. Perform a search for a LINE-FEED

character (S LINE-FEED $); if one is
found, add 1 to Q-register N (;%N).
Go back (< >) and repeat this cycle until
the end of the buffer is reached and the

test fails (;); at this point type out the

contents of Q-register N(QN =).

J<SJUMPA $3 -4DIRST° $ > Whenever JUMPA appears in the current buffer

replace it with JRST.

518

Command Function

1. Position the pointer at the beginning of
the buffer (J).

2. Search for JUMPA; when found, backspace
the pointer four positions and delete the four
characters passed over (;-4D).

3. Replace these four characters with the
characters RST (IRST).

4. Repeat this routine (< >) until the test
fails (end of the buffer has been reached)
and exit (;) to >.

Placing a Command in a Q-Register for Later Execution

@I# JOUN <S} 1. Insert the text YOUN <S)! si %N >QN="
$2 into the buffer (@I¥......... #)

3%t>QN = #HXP 2. Copy the contents of the buffer into
Q-register P (HXP).

To Execute the Command:

ERDTA3:FN-EX $ YMP 1. Read in a page of a file to search.
(ERDTA3:FN .EX $ Y)

2. Execute the command stored in Q-register
P (MP).

Reading in Text to be Inserted in Several Places
in a File and Storing it in a Q-Register

ERPTR: $ YHXP>? 1. Assume that the text to be inserted is on
paper tape. Open an input file on the paper
tape reader (ERPTR:); read the text into the
buffer (Y); copy the contents of the buffer
into Q-register P (HXP). -

ERDTA4: TXTEDT $2 2. Open the input file to be edited and the
output file to contain the edited version.

EWDSK: TXTEDU 5)

YNCALC: $ GPD 3. Read a page from the input file and initiate
a search for the text CALC: . When found,
insert the text stored in Q-register P at that
point (GP).

NTOT? $ GP 4. Search for the text TOT: and, when found,
insert the text stored in Q-register P after it.

519

Examples (Advanced)

Command

aR TECO 2

*ERMTAL:SEMIA4EMSS 2

EZDTA1:REVFILS$S).

*YNTAXRTSOLT)
1X1$$)

aaaa...TAXRT aaaa...... aaaaa

*JNTXRTESOLT: OLT?D

G1$$ >

bbb...TXRTE bbb...... bbbbb

*NIXTEND: $

J<SA$$31A-47"G1A-58"L-DIBS">)

PWEFSS$)

* 1G5S 2D

cea 2
CD

Function

Select MTA1 for input; rewind the tape
(EM) and advance the tape one file (14EM).

Select DTAI for output; zero the directory;

open a file and call it REVFIL.

Read in the first page from the input file;

search for the text TAXRT; if it cannot be

found, write the buffer out, read in the

next page, search again, etc .; continue

this cycle until either TAXRT is found or

end of file is reached. If TAXRT is found,

position the pointer at the beginning of the

line containing it, type the line, and place

the line in Q-register 1.

Search the buffer for the text TXRTE; if not

found, write out the buffer, read the next

page, search again; continue this cycle

until either TXRTE is found or end of file is

reached. If TXRTE is found, position the

pointer at the beginning of the line contain-

ing it, type the line, and insert the contents

of Q-register 1 immediately before that line.

Read pages from the input file and write

them on the output file until end of file

(marked by the text TXTEND;) is found.

At that point, move the pointer to the be-

ginning of the buffer (J), and search for all

As in the buffer (SA); if the character follow-

ing the A is a.digit, 0 through 9 (ASCII codes

4819 through 5710), change the A to a B

(IB); continue searching and modifying until

end of buffer is reached; write out the last

page and write end of file on the output

device.

Return contro! to the Monitor after all output

requests have been completed.

/

520

Diagnostic Messages

TECO Diagnostic Messages

?n n is a decimal number associated with one of the list of error
messages given in Table 2-5.

TECO ignores the remainder of the command string and returns
to the idle state. At this point, the user can type back ?,
causing TECO to type out the command string terminated by
the bad command.

I

Error List for ?n Messages

Meaning

TECO attempted to read commands beyond the terminating $$.
This error is probably due to an unterminated @I or @S command,
or to an unsatisfied O command.

Same as 1.

1oe) An attempt was made to supply more than two arguments to a
command, either by the use of two commas or by "H,".

Too many right parentheses .

= command with no argument.

U command with no argument.

Q,U,X, or G command specifies an illegal Q-register (i.e.,
other than A through Z or 0 through 9).

In an X command, the second argument is not greater than the
first .

In a G command, the Q-register does not contain text.

In a G command, the data in the Q-register is not in correct
form (this is an internal error).

In an Ec command (e.g., ER, EW, EF, etc.), c is illegal.

File not found on LOOKUP.

Blank filename specified for directory device.

Project-programmer number specified does not have UFD.

521

Error List for ?n Messages

Meaning

Protection failure on disk.

File cannot be accessed because it is currently being written. —

LOOKUP or ENTER returned error type 6 (not defined).

LOOKUP or ENTER returned error type 7 (no device).

Directory full on ENTER. —

Requested I/O device not available.

Not assigned.

EW command between an EB command and its EF.

EM command given, but no input file open.

nEM command, where n is not in the range 1 to 16.

Internal error: EF after EB, but no input file is open.

Illegal character in filename.

Illegal character in project-programmer number .

Attempt to read an input page when no file has been opened

for input.

1/O error on input device.

Attempt to output a page when no file has been opened for output.

Two arguments were supplied for an L command.

Attempt to move pointer beyond page.

A 2-argument command has its second argument less than the

first argument.

Attempt to search for too long a character string .

Search command did not find the required string.

In an Mcommand, the Q-register does not contain text.

In an M command, the data in the Q-register is not in correct

form (this is an internal error) .

Unmatched right angle bracket.

522

Error List for ?n Messages

Poe ee ee

; encountered when not in iteration.

"command with no numeric argument, or "x where x is not
Gy lege aor

This is the number typed out at the end of the ? command's dump
of the command string in error. Refer to the number of the previous
error.

A character has been encountered as an undefined command.

A tD command, when DDT has not been loaded with TECO.

Not enough core available from the Monitor.

A RENAME attempted with either a blank name or one already in
use. Presumably due to a fault in the EB command.

Debugging Aids - As an aid in debugging macros and iterations, TECO can be set in the trace mode by

typing ? as any character other than the first in a command string. When in Trace Mode, TECO types

out each command as it is interpreted, interspersed with requested output. Typing a second ? in the

same manner takes TECO out of Trace Mode; the ? can be typed each time it is desired to change the

current mode.

The user can also type comments on his teletype sheet as he executes TECO by typing:

t Atext tA

This causes all text entered to be printed on the teletype (with the exception of terminating tA

character).

NOTE

Since the terminator tA is not a command, it must be

typed by holding the CTRL key down while typing A.
It cannot be entered as "up arrow, A."

If DDT has been loaded along with TECO by the Linking Loader, control can be transferred to DDT by

using the command tD.

523

Monitor Commands

To call in TECO and open a new file for creation:

Monitor Commands Equivalent CUSP Commands

MAKE filename .ext .RTECO

* (text input commands) $$ *EWDSK: filename .ext $$

*EX $$ *(text input commands) $$

*EX $$

To call in TECO and open an already existing file for creation:

Monitor Commands Equivalent CUSP Commands

.TECO filename .ext .RTECO

*(editing) $$ *EBDSK:filename.ext $ Y $$

EX $$ *(editing) $$

*EX $$

i
g

e
t
e

yl
h
a
g
o

o
l

oceed €

Book 5

Executing the Program
On-Line

Linking Loader
(LOADER)

DDT-10

PROGRAM LOADING AND LIBRARY FACILITIES

LINKING LOADER (LOADER) (Version #043 and later)

The Linking Loader loads and links relocatable binary (.REL) programs generated by Macro~10 or

FORTRAN IV preparatory to execution and generates a symbol table in core for execution under the

Dynamic Debugging Technique program. It also provides automatic loading and relocation of Macro-

and FORTRAN-generated binary programs, produces an optional storage map, and performs loading and

library searching regardless of the input medium. Storage used by the Linking Loader is recoverable

after loading. ;

Requirements

Minimum Core: 3K

Additional Core: ° Automatically requests additional core from the
Monitor as required

Equipment: User teletype for control; one or more input
devices for binary programs to be loaded; output
device for loader map (optional); one system
device containing library files (optional).

NOTE

The LOADER as described herein loads and links pro-
grams assembled by the Macro Assembler, or compiled
by the FORTRAN Compilers. For those users who do
not wish to load FORTRAN programs (which require a
substantial portion of code within LOADER), a smaller
version of the LOADER, called IKLOAD (although it
is actually larger than 1K), is available. IKLOAD
may be generated from the same symbolic file as LOAD-
ER by setting the parameter K fo some nonzero number
(e.g., K=1).

527

Initialization

=R LOADER core 3

Commands

General Command Format

Loads the Linking Loader into core. The amount
of core allocated is equal to 2K plus the core
required by binary programs; core is optional .

Indicates that the program is ready to receive a
command.

list-dev: filename .ext + source-dev 1:filename.ext,dev2:....source-n $

list-dev:

source-dev:

filename.ext (DSK: and DTAn: only)

The device on which any storage maps or unde-
fined globals are to be written.

LPT: (line printer)
TTY: (Teletype)
DTAn: (DECtape)
DSK: (disk)
MTAn: (magnetic tape)

If the Teletype is to be assumed as the output
device, omit

list-dev:filename .ext +

The device(s) from which the binary relocatable

programs are to be loaded.

DSK:) . (disk)
DTAn: (DECtape)
MTAn: (magnetic tape)
PTR: (paper tape reader)

If more than one file is to be loaded from a mag-

netic tape, card reader, or paper tape reader,

dev: is followed by a comma (or the device name

or : can be repeated) for each file after the first.

The filename .ext of each relocatable binary file

to be loaded. If .ext is omitted, it is assumed to

be .REL. If a search for filename.REL is unsuc-

cessful, a second search for the same filename

with the null extension is performed.

The filename .ext of the output listing file. If

.ext is omitted, .~MAP is used.

If the filename .ext of the output map file is
omitted, MAPMAP..MAP is used. If only the

extension is omitted, the extension MAP is

used.

The storage map device is separated from the

source device(s) by the left arrow symbol .

528

NOTES

Each time RETURN (2) is typed, loading is performed
for all files listed on that line.

Each time $ is typed, all remaining loading, library
searches, and output operations are completed, and

an exit is made to the monitor.

The source device, once stated, continues as the

source device until a new source device or destina-

tion device is specified, or until $ is typed.

Files are loaded in the order they appear in the com-
mand string. The file requiring the largest COMMON
area must be specified first in any loading operation.

When loading is terminated (by $ or switches /C,
/G, or /R), the following steps are executed.

a. A FORTRAN library search is performed if
any undefined globals remain (unless prevented
by the /P switch).

b. If undefined globals still remain, they are
listed on the teletype or other specified listing
device.

c. The number of multiply defined globals (if
any) and the number of undefined globals (if
any) are printed on both the teletype and on
the specified listing device (if given).

d. A Chain file, if requested, is written.

e. The loaded program is relocated down to
the actual locations into which it is to be
loaded.

f. The message

LOADER x + yk core x = low segment core;
y =high segment core;

if nonre-entrant program
y = 2K; if re-entrant,
y = program high segment
or Loader high segment,
whichever is greater

is printed on the Teletype.

When an automatic library search is requested by /F,
/G, or $, the following files will be searched

in order:

a. JOBDAT

b. FORTRAN Library (LIB40 or LIB4)
c. JOBDAT

529

Since JOBDAT is searched after the FORTRAN Library,
it is not necessary to include it as a portion of the
FORTRAN Library. It is also searched prior to the
FORTRAN Library so that users who do not require
FORTRAN Library subroutines do not spend the time
searching the Library. (The FORTRAN Library can
be named LIB40 as on the PDP-10 or LIB4 as on the
PDP-6; an attempt to find LIB40 is made first; if not

found, an attempt to find LIB4 follows.)

Save and Execute Commands

After loading is completed, to write the loaded program onto an output device so that it can be exe-

cuted at some future date without rerunning Linking Loader:

LOADER 2 Loading is completed.

EXIT 2 Automatic exit to the Monitor.

AGS

Write out the user's area of core onto the specified

output device and, if the device is DTAn: or DSK:
assign it the specified filename.ext. If .ext is
omitted, .SAV is assumed.

«SAVE dev:filename.ext core}

The value for core may be given when the user
wishes to run the program in more core than if will
be saved in; this might be done to gain more space
for dynamic allocation of buffers.

JOB SAVED 2 Save operation completed. Core is unchanged and
ey still contains loaded program. Automatic return is

made to the Monitor.

«START 2 Start execution of loaded program. Return is made

) to user's level.

EXIT 2 User's program execution is completed. Automatic
hGH return is made to the Monitor.

Examples

sR LOADER? Run the Linking Loader.

*DSK2:MARK1 »MARK3 »DTA3 =

SUBRTE
4ACALC>PTR: $3

EXIT}
LOADER 6+2K CORE 32

1c)

Load and link the .REL files MARK1 and MARK3
from the disk, .REL files SUBRTE and CALC from
DTA3, and one .REL file from the paper tape reader.

Link-loading is completed; and automatic return is
made to the Monitor.

530

SAVE DSK MARKET) Write out the user's program as an executable pro-

gram on the disk and call the file MARKET.DMP.
Core assigned to the user remains unchanged.

NOTE

Saving a job is optional.

JOB SAVED} Save process is completed; an automatic return is
C2 made to the Monitor.

«START? Begin execution of job.

EXIT) Program execution is completed; automatic return is
10) made to the Monitor.

Switches

Switches are used to:

a. Specify the types of symbols to be loaded or listed

b. Set the Library Search Mode

c. Load the Dynamic Debugging Technique (DDT) program

d. Clear and restart Linking Loader.

All switches are either preceded by a slash (/) or enclosed in parentheses .

Linking Loader Switch Options

Meaning Complement Switch

xt List all global symbols in storage map regardless of program
length.

(Loader feature switch DMNSW must have been set to nonzero
when Loader was assembled for this switch to be available)

Block transfer the loaded job's symbol table from its normal
position at the top of core down to the first free location.
Leave small amount of core (SYMPAT) between JOBSA and
bottom of symbol table to allow for user-defined symbols.
/8 allows programs loaded with DDT to usefully run in as
much core as is available without destroying the symbol
table, and can be used with large programs which do little
I/O to run in less core than needed to load and yet retain
DDT and all symbols.

531

Linking Loader Switch Options

nnnnnC Create Chain file; use first block data for program break;
nnnnn (if nonzero) is starting address. Terminate Linking

Loader.

Load DDT; enter Load with Symbols:
Mode (S); turn off Library Search

Mode (N).

Terminates specification.

Upon termination of loading, control will be transferred to
user's program starting address (starting address of last

program loaded). Equivalent to typing START following

exit from Loader.

Perform a library search of LIB40; exit from Load With
Symbols Mode.

Terminates specification.

nnnnnG Perform an automatic search of LIB40 if any undefined
globals remain (unless the /P switch is used); list any
still-undefined globals; set the starting address of the

program as nnnnn; exit to the Monitor. Use $, instead,

if starting address to be used is the one originally

specified.

Load this two-segment program as a one~segment program.

Use before any files are loaded.

Set the loader to ignore the starting addresses in binary J

input.

Set the loader to accept the starting address of this I

binary input program.

Enter the library search mode. Ni

Print the storage map and undefined globals. Terminate
specification.

Turn off the Library Search Mode. L

Load beginning at numeric argument (octal) if nonzero.

Prevent an automatic library search. Qi

Allow an automatic library search. Turn off the S switch. P

NOTE

indicates those switches set when Loader is in its

initial state.

532

Linking Loader Switch Options

Switch Meaning Complement Switch

nnnnnR Create Chain file; use first FORTRAN IV program break;
nnnnn (if nonzero) is starting address. Terminate Linking
Loader.

Load with local symbols.

Loads SYS:DDT.REL; turns on S switch; upon termination
of loading transfers control to DDT for program testing.
Equivalent to typing /D in command string and, then,
after exit from Loader, typing DDT.

List undefined global symbols on the output list device.
Terminates specification.

Load the reentrant FORTRAN run-time system. Use
before any files are loaded.

Load without local symbols.

Suppress listing of global symbols for zero-length programs.

Rewind magnetic tape before use.

Clear user's core area; reset the loader to its initial state;
restore the teletype; restart loading. Terminates line.

NOTE

indicates those switches set when Loader is in its

initial state.

The effect of a switch on adjacently named files in the command string depends upon whether the switch

is a status switch or an action switch.

Status Switches - The status switches A, I, J, L, N, O, P, Q, S, W, X set the Loader to a particular

status and have an effect on the file in whose specification it appears and on any subsequently name

files in the command string (unless the switch is reset). A file specification is terminated and processed

when a comma, or a colon (if the previous delimiter was a colon), a RETURN, or $ is encountered.

*DTAS:RESID/S ,/M Local symbols are loaded for this and any following
files. A storage map is printed for this file.

*DTA5:RESID , /M/S A storage map is printed for this file; however,
local symbols are not loaded for this file since the
/S switch appears outside the file specification

533

(which is terminated by the comma). Local symbols
are loaded for any following files.

*DTAS:RESID ,/S Local symbols are not loaded for this file since the
/S switch appears outside the file specification
(which is terminated by the comma).

Action Switches - The action switches B, C, D, E, F, G, H, M, R, T, U, V, Y request. an immediate

or file-independent action to be performed by the Loader and are not directly related to any specific

file specification(s).

Chain Feature

The Chain feature is used to segment FORTRAN programs which are too large to be loaded into core as

one unit. When switch /C or /R is specified, loading is terminated and a file acceptable to the Chain

program is written.

Examples: *DSK:CHNPRG +/R or *DTAI:SEGF4 </C

If .ext is omitted for the output Chain filename, .CHN is used.

The Chain file contains:

a. The contents to be loaded into JOB41, JOBDDT, JOBSA, JOBFF, and JOBSYM.

b. The data, beginning from the Chain address through the top of the core area used in

loading.

The Chain address is set from JOBCHN as loaded; switch /C specifies the right half and switch PR

specifies the left half. Location JOBCHN is loaded as follows: the right half contains the program

break of the first FORTRAN IV BLOCK DATA program; the left half contains the program break of the

first FORTRAN IV program. If switch /C or /R contains a nonzero numeric argument, this becomes the

starting address of the loaded program. After the Chain file has been written correctly, the messages

below are output fo the teletype.

CHAIN 2

EXIT 2

tC?

Examples

sR LOADER 6} Run Linking Loader, and assign it 6K of core.

4DTAS:RES 1D»SUB1»SUB22DTA3: Load and link binary program files RESID .REL,

COMPLX > SUB1.REL, and SUB2.REL from DTAS, and the

file COMPLX.REL, DTAS.

534

Carriage return initiates loading.

¥/F) Force a premature search of LIB40 to resolve any
undefined globals up to this point.

*/UD List on the teletype (since no output device was”
279290001 UNDEFINED GLOBALS 2 specified in the first command line) all globals
? SUB4A 900153) which are still undefined.

Undefined global and location containing instruc-
tion which calls it are listed.

*DTAS:SUB4) Knowing that the undefined global is in the binary
program file SUB4, the user requests that it be
loaded also.

*/U) Check if undefined global has now been resolved.

SES a All globals are defined; print storage map on the
LOADER 642K CORE line printer and exit to the Monifor.

EXIT?

102

Use of /E Switch:

-R LOADER 2}

*DSK:PROGI>PROG2/E $2

LOADER 5+2kK CORE 2 (Typeout from Loader)

-. program execution occurs here...

EXIT?

te)

Diagnostic Messages

?

/ /

Linking Loader Diagnostic Messages

?CANNOT FIND filename.ext The filename .ext specified is not in the file
directory. If no .ext is specified for a file,
the file is first searched for with the name

filename .REL, and if not found, is then

searched for under the null filename extension.

535

Linking Loader Diagnostic Messages

Message

CANNOT FIND LOADER HIGH SEGMENT This only occurs if the REMAP UUO failed and the
GETSEG UUO failed to find the LOADER high
segment. It is followed by a call EXIT .LOADER
will have to be restarted by the run command.

?CHAIN DEV ERROR A device error has occurred while writing the
Chain file. Chain file is terminated.

?x CHAR. ERROR IN LOADER COMMAND | An illegal character, was entered in a command
/ string.

?DIR. FULL The file directory of the specified list device is
full and cannot contain an additional file, or a

null file name was specified.

If this message appears at the beginning of the
run, either insufficient core has been assigned
for loading or no console is attached to the job.
EXIT normally is typed at the end of the load-
ing process (after $ or /G) before exiting to the
monitor.

?/H ILLEGAL AFTER FIRST FILE IS LOADED | /H must be the first command to LOADER. This
message is followed "LOADER RESTARTED".

ILL. COMMON abcd A file other than the first contains a program
SUBROUTINE test file F4 test.rel which has attempted to expand the already

established COMMON area. This program
must be loaded first.

PILL. FORMAT filename .ext The input source file is in proper checksummed
binary format, but not in proper link format.

?INPUT ERROR filename .ext A READ error has occurred on an input source
device. Use of that device is terminated.

LOADER RESTARTED This is output each time the LOADER is returned
to its virgin state (i.e. /Z), it usually follows
another message.

?LOW SEGMENT PROGRAM; XYZ Load all low segment programs first. This message is

PRECEDED BY HIGH SEGMENT followed by "LOADER RESTARTED".
-PROGRAM(S)

536
1

Linking Loader Diagnostic Messages

MORE CORE NEEDED Loader requested additional core from Monitor,

but none was available.

?symbol ignored-value old-value A global symbol definition having a value
MUL .DEF.GLOBAL filename .ext different from that of a previous definition of

the same symbol has been encountered. The
new value is ignored and the symbol appears
in the symbol table only once.

?NO CHAIN DEVICE No device has been specified for the Chain
file.

REMAP UUO FAILURE This is followed by LOADER RESTARTED and
loading must be restarted. This can only occur
when loading reentrant programs.

?x SWITCH ERROR IN LOADER COMMAND | An improper switch designation has been
entered in a command string.

2x SYNTAX ERROR IN LOADER COMMAND] A syntax error has been encountered in a
command string.

?dev: UNAVAILABLE Either the device does not exist or it is

assigned to another job.

?UNCHAINABLE AS LOADED The Chain address (the half of JOBCHN selected
\ by /C or /R) is zero.

?nnnnnn UNDEFINED GLOBALS nnnnnn undefined globals were found.

?SYMBOL TABLE OVERLAP file .ext nnnnnn additional words (octal) are required to
?nnnnnn WORDS OF OVERLAP file .ext load everything requested in the last command

string line.

Monitor Commands

Loading of relocatable binary files can be performed by use of the LOAD, EXECUTE and DEBUG

commands. LOAD performs a straightforward load process (along with any necessary translation of

source files). EXECUTE is equivalent to loading with the /E switch (on termination of loading,

transfer control to user's starting address). DEBUG is equivalent to loading with the /T switch (load

DDT from device SYS:, turn on /S switch, and transfer control to DDT on termination of loading).

Loader switches can be passed to the Loader by prefixing them with a % symbol.

537

TABLE OF. CONTENTS

CHAPTER 1

INTRODUCTION

Loading Procedure

Learning to Use DDT

CHAPTER 2

BASIC DDT COMMANDS

Examining Storage Words

Type-Out Modes

Modifying Storage Words

Type-in Modes

Symbols

Expressions

Breakpoints

Starting the Program

Deleting Typing Errors

Error Messages

Summary

CHAPTER 3
DDT COMMANDS

Examining the Contents of a Word

Changing the Contents of a Word

Inserting a Change, and Examining the

Contents of the Last Typed Address

Starting the Program

One-Time Typeouts

Symbols

Typing In

Delete

Error Messages

Upper and Lower Case (Teletype Model 37)

Page

538

CHAPTER 4
MORE DDT-10 COMMANDS

4.1 Changing the Output Radix

4.2 Type Out Modes

4.3 Breakpoints

4.4 Searches

4.5 Miscellaneous Commands

CHAPTER 5
SYMBOLS AND DDT ASSEMBLY

5.1 :- Defining Symbols

Be) Deleting Symbols

5.3 DDT Assembly

5.4 Field Separators

5) 55 Expression Evaluation

5.6 Special Symbols

CHAPTER 6
PAPER TAPE

Gra Paper Tape Control

APPENDIX A

SUMMARY OF DDT FUNCTIONS

APPENDIX B

EXECUTIVE MODE DEBUGGING (EDDT)

APPENDIX C
STORAGE MAP FOR DDT

APPENDIX D

OPERATING ENVIRONMENT

ILLUSTRATIONS

6-1 RIM1LOB Block Format

TABLES

Sree Special Character Functions

Page

539

CHAPTER 1

INTRODUCTION

DDT-10 (for Dynamic Debugging Technique)* is used for on-line checkout and testing of

MACRO-10 and FORTRAN programs and on-line program composition in all PDP-10 software systems.

After the user's source program has been assembled or compiled, the user's binary object

program (with its symbol table) may be loaded along with DDT. DDT occupies about 2K of core.

By typing commands to DDT, the user may set breakpoints where DDT will suspend execution

of his program and await further commands. This allows the user to check out his program section by

section. Either before starting execution or during breakpoint stops, the user may examine and modify

the contents of any location. Insertions and deletions may be done in symbolic source language or in

various numeric and text modes at the user's option. DDT also performs searches, gives conditional

dumps, and calls user-coded debugging subroutines at breakpoints =

Symbolic on-line debugging with DDT provides a means for rapid checkout of new programs.

If a bug is detected, the programmer makes changes quickly and easily and may then immediately exe-

cute the corrected section of his program.

Vel LOADING PROCEDURE

The user loads the program to be debugged and DDT with the Linking Loader. (The /D

switch commands the Loader to load DDT.) To transfer control to DDT, the user types the Monitor

command,

DDT 5

After DDT responds by skipping two lines, the user may begin typing commands to DDT.

Ted LEARNING TO USE DDT

This manual is designed to make DDT easy to use. A survey was made of several program-

mers who use DDT frequently, and it was learned that most debugging is done with a limited set of

commands. These basic commands are described in the next chapter. When learning DDT, it is re-

commended that the reader concentrate on learning to use the commands in Chapter 2. If more de-

tailed information is required, skip ahead to later chapters.

*Historical footnote: DDT was developed at MIT for the PDP-1 computer in 1961. At that time DDT stood for "DEC Debugging Tape." Since then, the idea

of an on-line debugging program has propagated throughout the computer industry. DDT programs are now available for all DEC computers. Since media other

than tape are now frequently used, the more descriptive name "Dynamic Debugging Technique” has been adopted, retaining the DDT acronym. Confusion be-

tween DDT-10 and another well known pesticide, dichloro-dipheny|-trichloroethane (C 14HoCl}5) should be minimal since each attacks a different, and ap-

parently mutually exclusive, class of bugs.

1-1

540

After reading Chapter 2, practice debugging, using the basic commands. This may be all.

that will ever be needed. Read the following chapters which describe the entire command set in detail;

this should be read when the basic commands are understood.

After learning the system, the Summary of Commands, listed by function in Appendix A, will

be useful for quickly finding any DDT command. This summary, along with the chapter on Basic Com-

mands, is also available in the PDP-10 Systems User's Guide (DEC-10-NGCA-D).

CHAPTER 2

BASIC DDT COMMANDS

The DDT commands most frequently used by programmers are described in this chapter. Many

programs are debugged successfully using only these basic commands.

This chapter introduces the main features of DDT to the uninitiated user. Later chapters

describe in detail these basic commands, less frequently used commands and other more complex options.

Za EXAMINING STORAGE WORDS

By using DDT, a programmer may examine the contents of any storage word by typing the

address of the desired word followed immediately by a slash (/). For example, to type out the con-

tents of a location whose symbolic address is CAT, the user types,

CAT/

DDT now types out the contents (preceded and followed by tabs) on the same fine :

CAT/ MOVEM AC»DOG+21

The word labeled CAT is now considered to be opened, and DDT has set its location pointer

to point to this address.

Died TYPE-OUT MODES

The preceding example showed DDT typing out the contents of location CAT as a symbolic

instruction with its address field also relative to a symbol. This is the type-out mode in which DDT is

initialized. It is also initialized to type all numbers in the octal radix. The user may ask DDT to re-

ice the preceding quantity as a number in the current radix by typing an equal sign =). For excnplecs

CAT/Z MQVEM ACsDOGt21 = 202400526736

DDT has numerous commands which reset the type-out mode permanently, temporarily, or

for only one typeout. The modes that can be selected include numeric constants, floating point numbers,

ASCII and SIXBIT text modes, and half-word format. Absolute or relative addressing and different

radices may similarly be selected. For example, to change the current type-out mode to ASCII text,

the user types the canna:

ST

ns this manual information typed out by DDT is underlined to distinguish DDT output

from user-typed input. ;

The two commas indicate that 202400 is in the left half of CAT, and 6736 is in the

right half.

The Teletype keys ALTMODE (ALT), PREFIX (PREFIX), or ESCAPE (ESC) are all

equivalent and echo as $.

2-1

542

or, to change the current type-out mode to half-word format, he types

SH

or, to select decimal numbers in his typeouts, he types

S16k

Using these commands (and others described in Chapter 3), a programmer may examine any

location in the mode most appropriate to the information stored there. The semicolon (;) commands

DDT to retype the preceding quantity in the current mode. Combining this command with a mode

change gives results such as the following:

CAT/ MOVEM ACsDOG+21 $14kK3 MOVEM AC»DOG+17

or CAT/ MQVEM AC»DOG+21 SH 202400» »DOG+21

or TEXT/Z ANDM 15342212010) $T3 ABCDE

2.3 MODIFYING STORAGE WORDS

Once a word has been opened, its contents may be changed by typing the desired new con-

tents immediately following the typeout produced by DDT. A carriage return will command DDT to

make the indicated modification and close the word. For example,

CATZ MOVEM AC2DO0G+21 MGVNM AC2sDO0G+21)

The carriage return simply closes the previously examined register without opening anther. :

The line feed (+) may also be used to close a word after examining (and optionally modifying) it. The

line feed also commands DDT (1) to echo a carriage return, (2) close the current word (making a modi-

fication if one was typed), (3) add one to DDT's location pointer, and (4) type out the new pointer

value and the contents of that address. Thus, if a line feed had been used in the previous example,

the result would be:

CAT/ MOVEM ACsDO0G+21 MOVNM AC2,D0G+21]

CAT+1/ AOBUJN XR6sLOOPS

Location CAT+1 is now open and may be modified if desired.

The vertical arrow (1) is similar to the line feed command except that the location counter

is decremented by one. Therefore, if the user continued the previous example by typing t the result

would be

CAT+1/7 AOBJN XR65 LOOPS?

CATS MOVNM AC2,D0G+2 1

1 E aes The carriage return command has the additional property of causing temporary
__ type-out modes to revert to permanent mode.

543

5s

Location CAT is thus displayed and shows the result of the modification made in the previous

example. *

The tab (|) and backslash (\) both close the current register and open the address last

typed (whether typed by DDT or the user). However, tab sets DDT's location pointer (.) to this new

‘address while backslash leaves it unaltered. A more complex example may clarify the usefulness of

these commands.

CAT+1/ AOBJN XR6sLOOPS >

LOOPS/ CAMGE AC2sTABLCXR6) CAMG

ACD sTABLT1 (CXRENSETZI B=401990> G4

LOOPS+1/ JUMPL AC3sFAULT JUMPL AC2@sFAULT |

FAULT/ JRST 4sFAULT

2.4 TYPE-IN MODES

The examples in the preceding section showed modifications made as symbolic instructions in

a form identical to MACRO-10 machine language. It is also possible to enter various numbers and

forms of text.

Octal values may be typed in as octal integers with no decimal point. Numeric strings

with numbers following the decimal point imply decimal floating-point numbers. The E-notation may

also be used on floating-point numbers. Some examples are:

Octal: 1234 777777777777 -6 0

Decimal integers: 6789 99999999. -25. 0.

Floating-point numbers: 78.1 0.249876E-10 -4.00E+20 0.0

Incorrect formats: 76E+2 76.E+2 instead write 76.0E+2

To enter ASCII text (up to five characters left justified in a word), type a double quote (")

followed by any printing character to serve as a delimiter, then type the one to five ASCII characters

and repeat the delimiter. For example:

"7ABCDE/ (/ is the delimiter)

"ABCDA (A is the delimiter)

Note that the mode of a quantity typed in is determined by the user's input format and is

unaffected by any type-out mode settings.

7259) SYMBOLS

The user's symbol tables are loaded by the Linking Loader when it loads programs and DDT.

However, initially DDT is set to treat only global symbols (created by INTERNAL and ENTRY pseudo-

ops in MACRO-10) as being defined. This means that only global symbols will be used for relative

|

544

address typeouts and, likewise, only these globals can be referenced when typing in symbolic modifica-

tions. In order to make the local symbols within a particular program available to DDT, the user types

the program name (this comes from the MACRO-10 TITLE statement or the FORTRAN IV SUBROUTINE

or FUNCTION statement) followed by ALTMODE and a colon ($:). For example, the command

AKC TANS 3

will unlock the local symbols in the program named ARCTAN. This provision in DDT permits the user

to debug several related subroutines simultaneously and reference the local symbol table of each inde-

pendently without fear of multiply-defined local symbols. If the user's program is not titled, the com-

mand MAIN. .$: will unlock the local symbol table.

The user may also insert symbols into the symbol table. To insert a symbol with a particular

value, type the value, followed by a left angle bracket (<), the symbol, and a colon (:). Some

examples are

TOT<CONS? 27<X?: l2 e1E+2<NUMEE ADK+12<ADKX:

To assign a symbol with a value equal to DDT's location pointer, simply type the symbol

followed ae colon. For example,

AFEK+4/ JRST @ TABL(3) BKNCH:

will cause BRNCH fo be defined with the value XFER+4.

2.6 EXPRESSIONS

DDT permits the user to combine symbols and numeric quantities into expressions by using

the following characters to indicate arithmetic operators.

4 The plus sign indicates 2's complement addition

- The minus sign indicates 2's complement subtraction

* The asterisk indicates integer multiplication

: The single quote or apostrophe indicates integer division (remainder
discarded) -- slash cannot be used to indicate division since it has
another use in DDT.

As usual in arithmetic expressions, the evaluation proceeds from left to right with multipli-
cation and division performed before addition and subtraction.

Deh. BREAK POINTS

The breakpoint facility in DDT provides a means of suspending program operation at any
desired point to examine partial results and thus debug a program section by section. The simpler
facts about breakpoints are presented next; the use and control of conditional breakpoints is deferred

to Paragraph 4,2.

2-4

545

Dave Setting Breakpoints

The programmer can automatically stop his program at strategic points by setting as many as

eight breakpoints. Breakpoints may be set before the debugging run is started, or during another break-

point stop. To set a breakpoint, the programmer types the symbolic or absolute address of the word at

the location point in which he wants the program to stop, followed by $B. For example, to stop when

location 6004 is reached, he types, .

600455

Breakpoint numbers are normally assigned by DDT in sequence from | to 8. The user may

instead assign breakpoint numbers himself when he sets a breakpoint by typing,

SNB

where n is the breakpoint number (1< n< 8), for example,

CAT+3$4B DOG+157B 6943 6B

When the programmer sets up a breakpoint he may request that the contents of a specified

word be typed out when the breakpoint is reached. To do this, the address of the word to be examined

is inserted, followed by two Sonne) before the breakpoint address. Some examples are

DCG»»CATS3B AClssLO00P+2$5 X»s»6004S8L

2.7.2 Breakpoint Restrictions

The locations where breakpoints are set may not

a. be modified by the program

b. be used as data or literals

c. be used as part of an indirect addressing chain

d. contain the user mode Monitor command, INIT.

2.3 Breakpoint Type-Outs

When the breakpoint location is reached, DDT suspends program execution without executing

the instruction at the breakpoint location. DDT then types the breakpoint number and the Program

Counter value at the time the breakpoint is reached (this value will differ from the typed-in breakpoint

address if the breakpoint is executed by an XCT instruction elsewhere in the program). The format of

this typeout is as shown in the following examples:

G4 >> CAT+3 £7K >> DOG+1 Fb >> GEKA

If the user requested that a specified address be examined at that breakpoint, it will be

opened; for example,

$3B >> CAT DOG/ SOJGE 32GO0AT+6

2.7.4 Removing and Reassigning Breakpoints

The user may remove a breakpoint by typing,

QOSNB

where n is the number of the breakpoint to be removed. For example,

O9$2B

removes the second breakpoint. All| assigned breakpoints are removed by typing

$B

The user may reassign a breakpoint without formally removing it. Thus, if he has set breakpoint No. 2

at location ADR (via the command ADR$2B) he may reassign No. 2 to LOC+6 by typing LOC+6$28B.

Zoli Proceeding From a Breakpoint

Program execution may be resumed (in sequence) following a breakpoint stop by typing the

proceed command, $P. :

If the user does not wish to stop until the nth time that this breakpoint is encountered he

types,

NSP.

Then this breakpoint will be passed n-1 times before a break occurs.

2.8 STARTING THE PROGRAM

The program is started by typing

$G

This starts the program at the previously specified starting address in location JOBSA. (Typically this

is the address from the MACRO=10 END statement.) The programmer may start at any other location

by typing that address followed by $G. For example,

4A GASG

starts the program at the instruction stored at location 4000. BEGIN$G starts the program at the sym-

bolic location BEGIN.

The start command may also be used to restart from a breakpoint stop when it is not desired

to continue in sequence from the point where program execution was suspended.

259 DELETING TYPING ERRORS

Any partially typed command may be deleted by pressing the RUB OUT key. This causes

DDT to ignore any preceding (unexecuted) partial command, and DDT types XXX. The correct Jta-

mand may then be retyped.

547

2,10 ERROR MESSAGES

If the user types an undefined symbol which cannot be interpreted by DDT, U is typed back.

If an illegal DDT command is typed, or a location outside the user's assigned memory area is referenced

? is typed back.

2.11 © SUMMARY

As was said in the beginning, these basic commands are sufficient for debugging many

programs. Complete descriptions of all DDT commands are explained in the following chapters.

548

CHAPTER 3

DDT COMMANDS

When DDT is initialized, it is set to type out in the symbolic instruction format with relative

addresses, and to type out numbers in octal radix.

3.1 EXAMINING THE CONTENTS OF A PROGRAM STORAGE WORD

To type out the contents of a storage word, the programmer types the address, followed imme-

diately by a slash (/). For example, to examine the contents of a word whose symbolic address is ADR,

the user types,

ADK/

DDT types out the contents on the same line. In this manual, information typed out by DDT is under-

lined.

ADR/ MOVE A>;CC1

The word labeled ADR is now considered to be opened, and DDT continues to point to this address.

The point, or period, character (.) represents DDT's location pointer, and may be used to type out ifs

contents, as in the following command.

ef MOVE As CCl

Since we did not change the contents, they are the same, but we used the location pointer to re-

examine the currently opened word. Similarly, the programmer may use the period (.) as an arithmetic

expression component, such as

°+5S/ SOJGE 2sADK+3

DDT's location pointer is set to a new value by the / command when preceded by an address. For

example,

2017 8

sets the location pointer to 201. If the user types / without typing an address, the contents of the loca-

tion addressed in the last typeout are typed.

667/ MOVE 156 / HOS

o/ MOVE 156

Location 667 contains the instruction MOVE 1,6. The second slash displays the contents of Accumu-

lator 6, which is zero. This does not change the location pointer, which is still pointing to location 667.

ADR/Z MOVE AsCC1 7 ADD 25SUM+7

It should also be noted that the spaces which occur after DDT complete the typing of the con-

tents of ADR are automatically produced by DDT, not the user.

3-1

549

The left square bracket (p)! has the same effect as the slash, (the address immediately

preceding the [will be opened). However, [forces the typeout to be in numbers of the current radix.

ADRs b= COCTAL)

ADR lo =9iek (DECIMAL)

The right bracket (])* has the same effect as the slash except that it forces the typeout to be in sym-

bolic instructions.

ADR+23 J] MOVE 15sLIST+2

The exclamation point (!) works like the slash except that it suppresses type out of contents

of locations until either /, [, or] is typed by the user. The LINE FEED (+) commands DDT to type

out the contents of ADR+1.

ADR! MOVE AC25554 (1)

ADK+1!) (2)

ADR/ MOVE AC2555 (3)

Thus, in step (1) of the example the contents of ADR are not typed out, but the address is opened to

modification and MOVE AC ,555 has been typed in by the user.

Step (2) of the example shows that the location pointer has been incremented by one and the

contents of ADR+1 are not typed out. This is because the exclamation point is still in effect and will

continue to take effect until /, [, or] is typed in by the user. In this case, the slash terminates the

effect of the exclamation point.

Step (3) shows that the modification (MOVE AC,555) of ADR typed in Step (1) has been

accomplished .

32 CHANGING THE CONTENTS OF A WORD

After a word is opened, its contents can be changed by typing the new contents following

the type out by DDT, followed by a carriage return. For example,

ADR MOVE A»CC1 MOVE A;CC2)

The carriage return closes the open word, but does not move the location pointer. A LINE FEED (1)

command could also be used to make this modification. A LINE FEED causes a carriage return, adds

ton Teletype Models 33 and 35 the left square bracket ([) is produced by holding the SHIFT key down

and striking the K key. The right square bracket (J), is produced by holding the SHIFT key down and

striking the M key.

550

one to DDT's location counter (moves the pointer), types out the resulting address and the contents of

the new address. Thus, if we conclude our last example with a LINE FEED

ADRZ MOVE AsCC1l MOVE AsCEC2 {

ADR+1/7 ADD 3,CC3

ADR+1 is now open, and may be modified by the user.

The vertical arrow (1)! works similarly, except that one is subtracted from the location

pointer. The open word is closed (modified if a change is given) and the new address and contents are

typed out.

ADR+1/7 ADD 3 ,CC3t

ADKZ MOVE A»sCCe2

Since the vertical arrow subtracts one from the pointer, the resulting address ts ADR, and

the contents now show the change made in the previous example.

3.3 INSERTING A CHANGE, AND EXAMINING THE CONTENTS OF THE LAST TYPED
ADDRESS

The horizontal tab (-+|) causes a carriage-return line feed, then sets the location pointer to

the last address typed (the new. address if a modification was made) of the instruction in the register

just closed. Then DDT types this new address, followed by a slash and the contents of that location,

as shown below. .

ADRS/Z JKST ADR1 JKST ADK >|

ADR MOVEM B»CC2

C27 666 |
The backslash (\)* opens the word at the last address typed and types out the contents.

However, backslash does not change the location pointer. The backslash closes the previously opened

word and causes it to be modified if a new quantity has been typed in.

ADR/ MOVE AsCC2@: JRST X \ MOVE AC33

The use of the backslash accomplishes two things. First it changes ADR by replacing its contents with

JRST X. Second, the backslash causes DDT to type out the contents of X, namely, MOVE AC,3. The

location pointer continues to point to ADR, but now location X is open and may be modified if desired.

1
t is produced by SHIFT=N on Teletype Models 33 and 35. The backspace key may be used instead of
t on Teletype Model 37.

aoe produced by SHIFT-L on Teletype Models 33 and 35.

3-3

551

If the line-feed control character and the vertical arrow were used in conjunction with the

. >
N

backslash, the results would be as follows.

ADR/ MOVEM BsCC2 MGVE A2CC1 \ 1057764

ADR+1/7 MOVE AsC t

ADK/ MOVE AsCC1 \ 105776

The following is a summary in table form of these special control characters and their cor-

responding functions. For example, the chart shows that the forward slash (/) will examine the con-

tents of an address, type out in the current mode, open the address, change the location pointer to the

address just opened, but it does not cause a new quantity to be inserted in that address.

Table 3-1

Special Character Functions

1 Insert New
Qty If New

Qty Has Been
Typed

Change

Location

Pointer

Command Type Out Address

Character Contents Opened

Current

Numeric

Symbolic

Current Yes

TAB (|) Current Yes

t or backspace Current Yes Yes (-1)

Line-feed (4) Current Yes Yes (+1)

Carriage None No No

return ()) (closes)

A ? typed by DDT when examining a location indicates that the address of the locationis ,

outside the user's assigned memory area. A ? typed when depositing indicates that the location cannot

be written in, because it is either outside the assigned memory area or inside DDT or inside a write-

protected memory segment.

Me a user-typed quantity preceded.

“Tf | has not suppressed typeout.

552

3.4 STARTING THE PROGRAM

The program is started by typing

$G

This starts the program with the instruction beginning at the user's previously specified starting address
taken from location JOBSA. The programmer may start at any other instruction by typing the address of
that instruction followed by $G. For example,

490@$G OR ADR+5$6

starts the program at the instruction stored at location 4000 or, in the second part, at the symbolic
address ADR+5. The start command may also be used to restart from breakpoints when the user does not
wish to proceed to the next instruction.

»

3.5 ONE-TIME TYPEOUTS

These commands cause a single typeout of the opened word in the mode indicated.

Sede Type Out Numeric

Although DDT is initialized to type out in syrnbolic mode, it is often useful to change to
numeric typeout. When the programmer types the equal sign (=), the last expression typed is retyped by,
DDT in the current radix (initially octal). This is useful when a symbolic typeout is meaningless. Since
this usually indicates that numeric data is stored in that word, the user can verify this by typing = and
checking the value.

Sade Type Out Symbolic

If a typeout is numeric, and the user wants to examine it in symbolic mode, he types the left
arrow (+). The last typed quantity is retyped as a symbolic instruction. The address mode is determined
by $A or $R.

O.on0 Type Out in Current Mode pA ree eee eee eh

To retype a typeout in the current mode, the user types a semicolon (;). This may be used,
for example, if the user has changed the typeout mode. For example,

TEXT/ ANDM 13342212 °(€10) 6$Ts3 ABCDE = ee eC sea

3.6 SYMBOLS

Before DDT commands can be used to reference local symbols in the program Symbol Table,
the user must type the program name as specified in the MACRO-10 TITLE statement, or the FORTRAN IV

3-5

553

SUBROUTINE or FUNCTION statement, followed by a dollar sign and a colon. For example,

MAINS:

makes the local symbols in the program called MAIN available. Since the user can debug several

related subroutines simultaneously, reference to several independent symbol fables is permitted, each

of which may use the same local symbols with different values. Global symbols, such as those specified

in MACRO-10 INTERNAL statements, may always be referenced.

The user may insert (or redefine) a symbol in the symbol table by typing the symbol, followed

by a colon. The symbol will have a value equal to the address of the location pointer (.).

ky ADDI 3.N TAG:

causes TAG to be defined with the same value as X. All user defined symbols are global.

The user may also directly assign a value to a symbol by typing the value, a left angle

bracket (<) and the symbol, terminated by a colon. This is the equivalent of a MACRO-10 direct ;

assignment statement. Some examples are,

7107<CONS:?: 12-1E+2<NUMB?

27<Xs 191<MIL?:

Shay TYPING IN

To change or modify the contents of a word, the user may type symbolic instructions, numbers,

and text characters. Type-ins are interpreted by DDT in context. That is, DDT tests the data typed in

to determine whether it is to be interpreted as an instruction, a number (octal or decimal), or text.

Typeout mode settings, such as $5, $C, and $nR, do not affect typed input.

The user may type the following:

a. Symbolic Instructions

b. Numbers

(1) Octal integers

(2) Fixed-point decimal integers

(3) Floating-point decimal mixea numbers

Game Lext

(1) Up to five PDP-10 ASCII characters, left justified in a word

(2) Up to six SIXBIT characters, left justified in a word

(3) Avsingle PDP-10 ASCII character, right justified in a word

(4) A single SIXBIT character, right justified in a word

d. Symbols

Anything that is not a number or text is interpreted by DDT as a symbol.

554

)s7hes! Typing In Symbolic Instructions

In general, a new symbolic instruction is written for insertion by DDT, in the same way the’
instruction is written as a MACRO-10 source program statement. For example,

X/ _@ ADD ACI DATE

where a space terminates the operation field, and a comma terminates the accumulator field. For
example: (1) In DDT, the operation code determines the interpretation of the accumulator field. If
an I/O instruction is used, DDT inserts the 1/O device number in the correct place, and (2) indirect

and indexed addresses are written, as in MACRO-10 statements, where @ precedes the address to set
the indirect bit, and the index register specified follows in parentheses.

X/@ ADD 4s@NUM (17)

To type in two 18-bit halfwords, the left and right expressions are separated by two commas.
For example,

X/ Oo AssB

This is similar to the MACRO=10 statement

XWD A>B

SEZ Typing In Numbers

A typed-in number is interpreted by DDT as octal if it does not contain a decimal point.
The following examples are octal type-ins:

1234 -190101

772 LMT ALES

Fixed-point decimal integers must contain a decimal point with no digits following.
1234. = CIES 877. :

Floating-point numbers may be written in two formats. With a decimal point and a digit following the
decimal point:

101 «1 1234-5 999.6 -2.71828

Or as in MACRO=10, with E indicating exponentiation:

12-¢0E+2 77.-90EF+5 12.34k2 31+4159E-1

3.7.3 Typing In Text Characters

To type in up to five PDP-10 ASCII characters, left justified in an opened word, the user
types a quotation mark, followed by any printing delimiting character, then the text characters, and

. terminated by the delimiting character. The following examples are legal:

ATX, “ABCDEFA In these cases, / and A are
the delimiting characters

555

Lower case letters are converted to upper case. Characters outside the SIXBIT set are illegal, and DDT

types a ?

To type in up to six SIXBIT characters, left justified in an opened word, the user types ge

followed by any delimiting character, then the text characters, and terminated by repeating the de-

limiting character. The two examples below are SIXBIT type ins.

B'/DIVIDE/ S*EXXXXXKE c

To type in a single PDP-10 ASCII character, right justified in an opened word, the user

types a quotation mark, followed by a single ASCII text character, then by an ALT MODE.

EO hese SA eB

To type in asingle SIXBIT character, right justified in an opened word, the user types an

ALT MODE, followed by a quotation mark, a single SIXBIT text character and terminated by an ALT

MODE.

$"OS S"°MS S"SS

3.7.4 Arithmetic Expressions

Numbers and symbols may be combined into expressions using the following characters to

indicate arithmetic operations.

+ The plus sign means 2's complement addition.

- * The minus sign means 2's complement subtraction.

* — The asterisk means integer multiplication.

' The single quote means integer division with any remainder discarded. (The Slash has

another function.)

Symbols and numbers are combined by +,-,*,' to form expressions. Examples:

6+2

S$°2.51+BASE

2x3 +1

3.8 DELETE

Any partially typed command may be deleted by pressing the RUB OUT key. This causes

DDT to ignore any preceding (unexecuted) partial command and DDT types XXX. The correct command

may then be retyped.

3.9 ERROR MESSAGES

If the user types an undefined symbol which cannot be interpreted by DDT, U is typed back.

If an illegal DDT command is typed, ? is typed back. Examining or depositing into a location outside

ee. \

3-8

556

the user's assigned memory area causes DDT fo type a ? Depositing in a write-protected high memo g y yp P P ry
segment also results in a ? typeout.

3.10 UPPER AND LOWER CASE (TELETYPE MODEL 37)

DDT will accept alphabetic input in either upper or lower case. Lower case letters are

internally converted to upper case, except when inputting text where they are taken literally as ex-

plained in Section 3.7.3.

DDT output is in upper case, except for text which is taken literally.

557

CHAPTER 4

MORE DDT-10 COMMANDS

This chapter describes other type-out modes , ‘conditional breakpoints, searches and additional

features. Commands are available to reset the initial settings so that numeric data can be typed out in

a radix chosen by the user, in floating-point format, in RADIX50 format, as halfwords (two addresses)

and as bytes of any size. The contents of a storage word may also be typed out as 7-bit PDP-10 ASCII

text, or SIXBIT text characters. (See MACRO-10 Manual, Appendix 5s)

Searches can be made in any part of the program for any word, not-word (inequality), or

effective address. The user specifies the instruction or data to be searched for and the limits of the

search.

Breakpoints can be set conditionally, so that a program stop occurs if the condition is satis-

fied. In addition, a counter can be set up allowing the user to specify the number of times a break-

point is passed before a program stop occurs.

4,1 CHANGING THE OUTPUT RADIX

Any radix (> 2) may be set by typing $nR, where n.is the radix for the next typeout only, and

n is interpreted by DDT as a decimal value. The radix is permanently changed when the double dollar

sign is used in the command $$nR. To change the type-out radix permanently to decimal, the user

types,
$519R

When the output radix is decimal, DDT follows all numbers with a point.

4.2 TYPE OUT MODES

When DDT-10 is loaded, the type-out modes are initialized to produce symbolic instructions

with relative addresses. For numeric typeouts, the radix is initially set to octal.

These modes may be changed by the user. The duration, or lasting: effect of a type-out mode

change is also set by the user. Prevailing modes, which are semipermanent, are preceded by a single

dollar sign. In addition, some mode changes effect only one typeout, such as the equal sign, Which

causes DDT to retype the last typed quantity in numeric mode.

In general, prevailing modes are changed by replacing them with another prevailing mode or

by reinitializing the system. Temporary modes remain in effect until the user types a carriage return

(2), or re-enters DDT. One-time modes apply only to a single typeout.

/

4.2.1 Primary Type-out Modes

SS COR $$S)

$A COR SSA)

$R COR $$R)

$C COR $$C)

SF COR SSF)

$T (COR SST)

$6T COR $S6T)

$5T (OR $$5T)

SH (OR SSH)

SNO COR $SNO)

558

}
(

Type out symbolic instructions. The address part interpretation
is set by $R or $A.

$S ADR/Z ADD AC1s,TABLE+3

Type out the address parts of symbolic instructions, and both
addresses when the mode is halfword, as absolute numbers in the
current radix.

$A ADR/ ADD 4002.
Type out addresses as relative addresses.

Type out constants, i.e., as numbers in the current radix.

$C ABLE/ 254111554059

If the output radix octal and the left half is not 0, the word will
be divided into halves separated by commas.
Type out the contents of stordge words as floating-point numbers.

SF X/ #821751 6230E-45

The number sign (#) indicates the number is unnormalized.

Type out as 7-bit ASCII text characters. Left-justified charac-
ters are assumed unless the leftmost character is null. If the
leftmost character is null, then right-justified characters are
assumed. :

$T REX/ \ABCDE

Type out as SIXBIT text characters.

$6T HEX/ ABCDEF

Type out symbols in radix 50 mode. (See MACRO=10 Manual,
Appendix 6.)

$ST 13774/ 4 CREF *® 4000355261556

This command causes the typeout to be in halfwords, the left
half separated from the right half by double commas. The ad-
dress mode interpretation is determined by $R or $A.

SA SH Z/ 4593534502

$R SH Z/ TABL+14s55TABL+13

Type out in n-bit bytes, where n is decimal. (Use the letter ©);
not zero).

$60 BYTS/ 223235 1s 735 Sl» 46

As in all DDT typeouts, leading zeros are suppressed.

559

4.3 BREAKPOINTS

4.3.1 Setting Breakpoints

The programmer can automatically stop his program at strategic points by setting up to eight

breakpoints. Breakpoints may be set before the debugging run is started, or during another breakpoint

stop. To set a breakpoint, the programmer types the symbolic or absolute address of the word at the

location which he wants the program to stop, followed by $B. For example, to stop when location

A002 is reached, he types,

, 400258

If all eight breakpoints are in use, DDT will type a question mark. The user may assign breakpoint

numbers when he sets a breakpoint by typing ADR $nB, where n is the breakpoint number (1<n<8). For

example,

SYM$S3B ADRS7B

If n is not entered DDT will assign 1 through 8 in sequence. In the previous example, when

ADR is reached, DDT types,

$7B >> ADR

indicating that the break has occurred at location ADR, and breakpoint No. 7 was encountered. The

break always occurs before the instruction at the breakpoint address is executed.

If the instruction at the breakpoint location is executed by an XCT instruction, the typeout

will show the address of the XCT instruction, not the location of the breakpoint. The program stops at

each breakpoint address, and the programmer can then type other commands to examine and debug his

program.

When the programmer sets a breakpoint, he may request that the contents of a word be typed

out when a breakpoint is reached. Todo this, the address of the word to be examined is inserted,

followed by two commas, before the breakpoint address.

Xx »s498252B

When address 4002 is reached, DDT types out,

‘$2B>>4902 X/ ADP AC» Y+2

where ADD AC, Y+2 is the contents of X. Location X is left open at this point. Location 0 may not

be typed out in this way because a zero argument implies no typeout.

4.3.2 Removing Breakpoints

The user may remove a breakpoint by typing,

OSNB

4-3

where n is the number of the breakpoint to be removed. Therefore,

O$2B

removes the second breakpoint. All assigned breakpoints are removed by typing

$B

The nee may reassign a breakpoint. If he has set breakpoint No. 2 at location ADR (ADR$2B), he may

reassign No. 2 to ADR+1 by typing ADR+1$2B.

4.3.3 Restrictions for Breakpoints

Breakpoints may not be set on instructions that are

a. Modified by the program

b. Used as data or literals

c. Used as part of an indirect addressing chain

d. The user mode Monitor command, INIT

A breakpoint at any other Monitor command will operate correctly, except that if
the Monitor command is in error, the Monitor will type out an error and the Program

Counter, but the Program Counter will be internal to DDT and meaningless to the
user.

4.3.4 Restarting After a Breakpoint Stop

.To resume the program after stopping at a breakpoint, the user types the proceed command,

$P

The program is restarted by executing the instruction at the location where the break occurred. If the

user types n$P, this breakpoint will be passed n-1 times before a break can occur; the break will occur ’

the nth time. If nis not specified, it is assumed to be one. If the user proceeds by typing $$P (or

n$$P), the program will proceed automatically when the program breaks again. If DDT encounters an

XCT loop or the Monitor command INIT when proceeding, a question mark will be typed.

Alternatively, the user may restart at any location by typing the start command,

ADRSG

where ADR is any program address, or $G, which restarts at the previously specified starting address in

location JOBSA.

4.3.5 Automatic Restarts from Breakpoints

If the user requests DDT to type out the contents of a word and then continue program execu-

tion without stopping, he types two ALTMODES when specifying the breakpoint address.

AC » sADRSSB

4-4

561

When ADR is encountered, the contents of AC are typed out and program execution contin-

ues. To get out of the automatic proceed mode, remove the breakpoint or reassign it with a single $;

it may be necessary to use | C and DDT > to get back to DDT to do this. In executive mode, hit any

teletype key during the typeout.

4.3.6 Checking Breakpoint Status

The user may determine the status of a breakpoint by examining locations $nB, $nB+1, and

$nB+2.

$nB contains the address of the breakpoint in the right half; the address of the location to be

examined in the left half. If both halves equal zero, the breakpoint is not in use.

$nB+1 contains the conditional breakpoint instruction. (See Paragraph 4.3.7.)

$nB+2 contains the proceed count.

4.3.7 Conditional Breakpoints

Breakpoints may be set up conditionally in two ways. The user may provide his own tastes

tion or subroutine to determine whether or not to stop, or he may set a proceed counter which must be

equal to or less than zero in order for a break to occur.

When a breakpoint location is reached, DDT enters its breakpoint analysis routine consisting

of five instructions.

SKIPE SNB+1 ; Is the conditional break instruction 0?

XCT SNB+1 ; No, execute conditional break instruction

SOSG SNB+2 ; Decrement and test the proceed counter

JRST break routine

JRST | proceed routine

If the contents of $nB+1 are zero (indicating that there is no conditional instruction), the

proceed counter at $nB+2 is decremented and tested. If it is less than or equal to zero, a break occurs;

if it is greater than zero the execution of the user's program proceeds with the instruction where the

break occurred.

If the conditional break instruction is not zero, it is executed. If the instruction (or the

closed subroutine) does not cause a program counter skip, the proceed counter is decremented and tested

as above. If a program counter skip does occur, a break occurs. If the conditional instruction is a call

to a closed subroutine which returns skipping over two instructions , execution of the user's program pro-

ceeds.

4-5

562

If the user wishes a break to occur based only on the conditional instruction, he should set

the proceed counter to a large number so that the proceed counter will never reach zero.

4.3.7.1 Using the Proceed Counter = If the user wishes to proceed past a breakpoint a specified

number of times, and then stop, he inserts the number of passes in $nB+2, which contains the proceed

count,

The proceed counter may be set in two ways. The first way is by direct insertion. For

example,

SNB+2/7 0 26

sets the counter to 20. The second method is as follows. After stopping at a breakpoint, the proceed

count may be set (or reset) by typing the count before the proceed command:

205P

4.3.7.2 Using the Conditional Break Instruction - The user inserts a conditional instruction, or a call

to a closed subroutine at $nB+1. For example,

$3B+1/ @ CAIGE ACCs15)

or

$4B+1/ @ JSA 16s TEST)

When the breakpoint is reached, this instruction or subroutine is executed. If the instruction does not

skip or the subroutine returns to the next sequential location, the proceed counter is decremented and

tested, as explained in Paragraph 4.2.7. If the instruction skips or the subroutine returns skipping over

one instruction, the program breaks. If the subroutine causes a double skip return, the program pro-

ceeds with the instruction at the breakpoint address.

Examples of Conditional Breakpoints

If address 6700 is reached and DDT's No. 4 breakpoint registers are as follows:

$4B/ AC1 >» 26700

$4B+1/ CAIE AC! -100

$4B+2/ 208

AC] contains 100, and DDT types

$4B>670% ACiI/ 108

Since ACI contains 100, the compare instruction skips and the program breaks. If AC] did not contain

100, $48+2 would be decremented by one and the user's program would continue running.

4-6

563

If the conditional break instruction transfers to a subroutine which, after the subroutine is

executed, returns to the calling location +3, a break will never occur regardless of the proceed counter.

Example: If the internal DDT breakpoint registers ($2B and $2B+1) have the following contents, a break

would not occur unless accumulator 3 contains 100.

$2B/ ADR

$2B+1/ JSR TEST (contains PC when JSR to subroutine TEST/ 0 TEST is made)
TEST+1/ AOS TEST

TEST +2/ CAIE 35100

TEST+3/ AOS. TEST

TEST+4/ JRST @ TEST

The subroutine TEST causes a double skip (the return is to the third instruction after the call) in DDT if

accumulator 3 does not equal 100. A break will never occur at address ADR (regardless of the proceed

counter) unless accumulator 3 contains 100.

4.3.8 Entering DDT from a Breakpoint

When a break occurs, the state of the user's program is saved, the JSR breakpoint instructions

are removed, and the programmer's original instructions are restored to the breakpoint locations. DDT

types out the number of the breakpoint and a symbol indicating the reason for the break, >for the con-

ditional break instruction, >>for the proceed counter and the address in the user's program where the

break occurred.

Example: If address ADR is reached in the user's program and DDT's breakpoint registers contain:

$2B/ ADR

$2B+1/ ie

$2B+2/ o (proceed counter contains zero)

DDT stops the program and types,

$2B>>ADR

4.4 SEARCHES

There are three types of searches: the word search, the not-word search, and the effective

address search.

Searches can be done between limits. The format of the search command is,

W Word search

ac$ N Not-word search

E Effective address search

4-7

564

where:

Is the lower limit of the search; 0 is assumed if this argument and its delimiter are not
present.

|Q

b Is the upper limit of the search. The lower numbered end of the symbol table is assumed
if this argument and its delimiter are not present.

c Is the quantity searched for.

The effective address search (E) will find and type out all locations where the effective

address , following all indirect and index-register chains to a maximum depth of 644 levels, equals

the address being searched for.

Examples:

4517<S0Q00>XSE

INPUT <S@00>700SE

Examples of DDT output, when searching for X in the above example, are as follows.

4517/ SETZM X

4721/7 MOVE 25x

(indirectly addresses Xx through

The word search (W) and the not-word search (N) compare each storage word with the word

being searched for in those bit positions where the mask, located at $M, has ones. The mask word con-

tains all ones unless otherwise set by the user. If the comparison shows an equality, the word search

types out the address and the contents of the register; if the comparison results in an equality, the word

search will type out nothing. The not-word search types nothing if an equality is reached. It types the

contents of the register when the comparison is an inequality.

Examples:

INPT <INPT+10>NUMSW

INPT<INPT+10>Q05N

“SM/ This command types out the contents of the mask register, which is then
open. The contents of the mask register are ordinarily all ones unless
changed by the user.

NSM Inserts n into the mask register.

4.5 MISCELLANEOUS COMMANDS m

$0 $Q represents the value of the last quantity typed.

ADRZ 100 $Q+1)

ADR/ 101

INSTSX Causes the instruction INST to be executed.

4-8

Example:

565

JRST ADR$X would cause the user's program to be started at ADR.

There are a number of circumstances when the user will want to zero out certain memory

location(s). The following command provides this capability:

FIRST<LAST $$Z This command will zero out the memory locations between the
indicated FIRST address and LAST address inclusively. If the
FIRST address is not present, the location 0 is assumed. If
the LAST address is not present, the location before the low-
numbered end of the symbol table is assumed. In no case
will locations 20-137 nor any part of DDT or DDT's symbol
table be zeroed.

4-9

566

CHAPTER 5

SYMBOLS AND DDT ASSEMBLY

A symbol is defined in DDT as a string of up to six letters and numbers including the special

characters period (.), percent sign (%), and dollar sign ($). Characters after the sixth are ignored. A

symbol must contain at least one letter. If a symbol contains numerals and only one letter, that letter

must not bea B, D, or an E. These letters are reserved for binary-shifted and floating-point numbers.

Certain symbols can be referenced in one program from another. These symbols are called

"global." Those which can only be referenced from within the same program are called "local" or

"internal." Any symbol which has been defined as global by MACRO~10 (using the INTERNAL or

ENTRY statements) will be considered as global by DDT-10 when it is referenced. FORTRAN sub-

routine entry points and COMMON block names are globals. Al | symbols which the user defines via

DDT are considered to be global.

The user may want to reference a local symbol within a particular program. In order to do

this he must first type the program name followed by $:. Thus, if a user wishes to use a symbol local

to program MIN, he types the command,

MINS 3

This command unlocks the symbol table associated with MIN. The program name is that specified in the

MACRO=10 TITLE statement. In FORTRAN, the program name is either MAIN, the name from the

SUBROUTINE or FUNCTION statement, or DAT. for BLOCK DATA subprograms.

5.1 DEFINING SYMBOLS

There are two ways to assign a value to a symbol.

NUMERIC VALUE < SYMBOL: This command puts SYMBOL into DDT-10!'s symbol
table with a value equal to the specified NUMERIC
VALUE. SYMBOL is any legal symbol defined or
undefined.

Example:

» 305<KVAR?:

XVAR has now been defined to have the value 305.

TAG: This command puts TAG into DDT-10's symbol table
with a value equal to the address of the location
pointer.

Example: :

40@/ ADD 2, 120125 xX:

This puts the symbolic tag X into DDT-10's symbol

5-1

Be DELETING SYMBOLS

567

table and sets X equal to 400, the address of the
last register opened.

There are times when the user will want to restrict or eliminate the use of a certain few

defined symbols. The following three ways give the user of DDT-10 these capabilities.

SYMBOL $$K

SYMBOL $K

$D

5.3 DDT ASSEMBLY

SYMBOL is killed (removed) in.the user's symbol table. SYMBOL

can no longer be used for input or output.

Example

XSSK

This command removes the symbol X from the symbol table.

This command prevents DDT from using this symbol for typeout; it
can still be used for typein. For example, the user may have set
the same numeric value to several different symbols. However,
he does not wish certain symbol(s) to be typed out as addresses or
accumulators.

X/ MOVE J» SAV JSK * MOVE Ns» SAV NSK + MOVE ACsSAV

Since the user does not wish’ J to be typed out as an accumulator,

he types in J$K, followed by a left arrow to type out the con-

tents of X again and MOVE N,,SAV is typed out. He then re-

peats the above process until the desired result, namely AC, is

typed out. Any further symbolic typeouts with the same number

in the accumulator field of the instruction will type out as AC.

The last symbol typed out by DDT has $K performed on it. The

value of the last quantity output is then retyped automatically.

For example,

A/ MOVE AC»sLOC $D MOVE ACsABC+1

When improvising a program on-line to the PDP=10.0n a Teletype, the user will want to use

symbols in his instructions in making up the program. In this and in other situations, undefined symbols

may be used by following the symbol with the number sign (#). The symbol will be remembered by DDT

from then on. Until the symbol is specifically defined by the use of a colon, the value of the symbol is

taken to be zero. Successive uses of the undefined symbol cause DDT to type out #, Appending * to

all subsequent uses of the symbol enables the user to readily identify undefined (not yet defined by a

colon) symbols.

568

Example:

MOVE 2sVALUE#

VALUE is now remembered by DDT and may be used further without the user appending the #. If subse-

quent instructions are given involving VALUE, DDT appends a # automatically to that symbol . Thus

VALUE will always appear as VALUE followed by the # (until VALUE is defined).

Example:

START! MOVE 2sVALUE# | (user types the *)

START+1! ADDI 25 50 |

START+2! MOVEM 2 VALUE |

(DDT types *)

START+3! JRST VALUE+#1{ (DDT types # after the plus sign be-
cause only at that point does DDT
realize the symbol VALUE is complete.)

Undefined symbols can be used only in operations involving addition or subtraction. The undefined

START+4!

symbols may be used only in the address field.

Example: .

MOVEI 223*UNDEF#

This is an illegal operation ~ multiplication with a symbolic tag (UNDEF) which has not pre-

viously been defined.

The question mark (?) is a command to DDT to list all undefined symbols that have’ been used

in DDT up to that point in the program.

Example:

i

VALUE

UNDEF

5.4 FIELD SEPARATORS

The storage word is considered by DDT to consist of three fields: the 36-bit wholeword field;

the accumulator or I/O device field; and the address field. Expressions are combined into these three

fields by two operators:

Space The space adds the expression immediately preceding it (normally an op

code) into the storage word being formed. It also sets a flag so that the
expression going into the address field is truncated to the rightmost 18
bits.

5-3

569

Single Comma The comma does three things: the left half of the expression is
added into the storage word; the right half is shifted left 23 bits

(into the accumulator field) and added into the storage word. If
the leftmost three bits of the storage word are ones, the comma
shifts the right half expression left one more place (I/O instruc-
tions thus shift device numbers into the device field). The comma
also sets the flag to truncate addresses to 18 bits.

Double Comma Double Commas are used to separate the left and right halves of

a word whose contents are expressed in halfword mode.

The address field expression is terminated by any word termination command or character.

Ja EXPRESSION EVALUATION

Parentheses are used to denote an index field or to interchange the left and right halves of

the expression inside the parentheses. DDT handles this by the following generalized procedure.

A left parenthesis stores the status of the storage-word assembler on the pushdown list and

reinitializes the assembler to form a new storage word. A right parenthesis terminates the storage word

and swaps its two halves to form the cecil inside the parentheses. This result is treated in one of two

ways:

a. If+,-,', or * immediately preceded the left parenthesis the expression is treated as

a term in the larger expression being assembled and therefore may be truncated to 18 bits if part of the

address field.

b. If+,-,', or * did not immediately precede the left parenthesis, this swapped quantity

is added into the storage word.

Parentheses may be nested to form subexpressions, to specify the left half of an expression, or

to swap the left half of an expression into the right half.

5.6 SPECIAL SYMBOLS

The @ sign sets the indirect bit in the storage word being formed.

Example:

MOVE AC »@X

570

CHAPTER 6

PAPER TAPE.

6.1 PAPER TAPE CONTROL

$L This command causes DDT to punch a RIMIOB loader on paper tape
RIM10B loader. (See Macro-10 manual, Chapter 6.) Thus, if
the user wishes to punch out a program on paper tape he gives a
$L command first in order to get a loader punched on the same
tape as the program. Later when the user wishes to read in the
program from the paper tape, the hardware READ-IN feature will
load the RIM10B loader into the accumulators and then the pro-
gram will be loaded by the RIMIOB loader.

2
FIRST<LAST (APE This command punches out checksummed blocks in RIMIOB format

on paper tape from consecutive locations between FIRST and LAST
address inclusively. For example, this command will punch out a
program existing in core memory in its present state of check-out
for later use. :

Example:

40902 <20009

FIRST<LAST $ (TAPE Similar to the preceding command, except that locations whose
contents are zero are not punched out whenever more than two
consecutive zeroes are detected.

ADR$J This command punches a 2-word block that causes a transfer to
address ADR after the preceding program has been loaded from
paper tape. If ADR is not present, a JRST 4, DDT is punched as
the first word.

The following succession of steps will punch a program on paper tape ready to be used as an

independent entity.

a. $L

b. 5000<20000(TAPEr
c. 6800$J5 (Transfer to address 6000 after program is loaded.)

1
‘ othe paper tape functions are not available in the time-sharing user mode version of DDT.

is a single control key on the Teletype, and is identical to t R.

6-1

571

Typed in: Beginning of Tape

RIM10B
LOADER

$L

-WC + FA-1

CHECKSUM

DATA
BLOCK

DATA
BLOCK

JRST SA

tape feed

FIRST ADDRESS <

LAST ADDRESSGAPE

Checksum includes pointer word
WC = word count

transfer block

SAS SA = starting address

Figure 6-1 RIM10B Block Format

572

APPENDIX A

SUMMARY OF DDT FUNCTIONS

Type Out Modes

To set the type-out mode to: Type this Sample Output(s)

Symbolic instructions $S ADD 4» TAG#1
ADD 45 4092

Numeric, in current radix $C 696

195

Floating point SF @-125E-3

7-bit ASCII text ST PQRST

SIXBIT text S6T TSRQPC

RADIX50 $5T 4 DDTEND

Halfwords, two addresses $H AQB2 > 54005
X+1lso9X+4

Bytes (of n bits each) SNO $80 COULD YIELD
0145237512350

Address Modes

To set the address mode for typeout of
symbolic instructions and halfwords
(see examples above) to

Relative to symbolic address $R TAG+1

Absolute numeric address SA ABO5

Radix Change

To change the radix of numeric type-outs
to n (for n>2), type $NR $2R COULD YIELD

161011000980 1090600069000111001011H9 —

Permanent vs Temporary Modes ee Sat ee AA

To set a temporary type-out or address
mode or a temporary radix as shown
in the commands above, type $ $C

S$1HR

To instead set a permanent type-out or
address mode or a permanent radix, in
the commands above, substitute $F SSC

$510R

573

To terminate temporary modes and
revert to permanent modes, or re-
enter DDT, type a carriage return. »)

Initial permanent (and temporary)
modes are $$S

SSR

$$8R

Examining Storage Words

To open and examine the contents of
any address in current type-out mode adr/

To open a word, but inhibit the type
out of contents adr!

To open and examine a word as a number
in the current radix adr[

To open and examine a word as a
symbolic instruction adr]

To retype the last quantity typed
(particularly used after changing
the current type-out mode)

Examining A Related Storage Word

To close the current open word (making
any modification typed in) and to open
the following related words, examining

them in the current type-out mode:

To examine ADR+1 4 (line feed)

To examine ADR-1 t (or backspace,
on the Teletype
Model 37)

To examine the contents of the location
specified by the address of the last
quantity typed, and to set the location
pointer to this address ->| (TAB)

To examine the contents of address of

last quantity typed, but not change

the location pointer \ (backslash)

To close the currently open word, without

opening a new word, and revert to per-

manent type-out modes.) (carriage return) .

LOC /

Loc!

LOC € 254920553454

LOC € JRST @DDTEND

SF 3

S6T 3

#5-4999646E+11

S20 <8

574

One-Time Only Typeouts posited cecanriee et dteei 3
To repeat the last typeout as a number nber

in the current radix =

To repeat the last typeout asa
symbolic instruction (the address
part is determined by $A or $R) t

To type out, in the current type-out
mode, the contents of the location

specified by the address in the open
instruction word, and to open that

location, but not move the location

pointer. v4

To type out, as a number, the con-
tents of the Idcation specified by the
open instruction word and to open that
location, but not move the location
pointer. [

To type out, as a symbolic instruction,
the contents of the location specified
by the open instruction word, and to
open that word, but not move the
location pointer.]

Typing In

‘Current type-out modes do not affect
typing in, instead

To type in a symbolic instruction ADD AC1s@DATEC17)

To type in half words, separate the
left and right halves by two commas. 40255493

To type in octal values 1234

To type in a fixed-point decimal
integer 99.

re

To type in a floating-point number 101.11
17 -OE+2

To type in up to five 7-bit PDP-10
ASCII characters, left justified,
delimited by any printing character. "'/ABCDE/

To type in one PDP-10 ASCII character,
right justified NS

To type in up to six SIXBIT characters,
left justified, delimited by any
printing character S$" ABCDEFGA

To type in one SIXBIT character,
right justified S'S

(/ is delimiter)

($ must be ALT MODE)

(A is delimiter)

($ must be ALT MODE)

575

Symbols

To permit reference to local symbols
within a program titled name, type

To insert or redefine a symbol in the
symbol table and give it the value

n, type

To insert or redefine a symbol in the
symbol table, and give it a value
equal to the location pointer (.),

type

To delete a symbol from the symbol
table

To kill a symbol for typeouts (but still
permit it to be used for typing in)

To perform $K on the last symbol typed
out and then to retype the last
quantity

To declare a symbol whose value is to
be defined later ‘

To type out a list of all undefined
symbols (which were created by #),
type

Special DDT Symbols

To represent the address of the location
pointer

To represent the last quantity typed

To represent the indirect address bit

To represent the address of the search
mask

To represent the address of the saved
flags, etc., (see Appendix D)

To represent the pointers associated with,
the nth breakpoint

name$:

n<symbol:

symbol:

symbol$$K

symbol $K

$D

symbol#

. (point)

$Q

@

$M

$nB

Arithmetic Operators Permitted in Forming Expressions
cd Macau see ne SEE Soo sl he Wee wae ee

Two's complement addition

Two's complement subtraction

Integer multiplication

Integer division (remainder discarded)

a

*

' (apostrophe)

MAINeS*

14<TABL3:

SYM:

LPCTSSK

TBITSSK

JRST AJAX#

576

Field Delimiters In Symbolic Type-Ins

To delimit op-code name, type one
or more spaces.

To delimit accumulator field, type

To delimit two halfwords, type
left, , right

To delimit index register ()

To indicate indirect addressing @
Breakpoints

To set a specific breakpoint n (I<n<8) adr $nB

To set the next unused breakpoint adr$B

To set a breakpoint with automatic
proceed adr$$nB

adr$$B

To set a breakpoint which will auto- x, ,adr$nB

matically open and examine a x,,adr$B

specified address, x x, ,adr$$nB

x, ,adr$$B

To remove a specific breakpoint O$nB

To remove all breakpoints $B

To check the status of breakpoint n $nB/

To proceed from a breakpoint $P

To set the proceed count and proceed n$P

To proceed from a breakpoint and $$P
thereafter proceed automatically n$$P

Conditional Breakpoints

To insert a conditional instruction

(INST), or call a conditional

routine, when breakpoint n is $nB+1/
reached. =A $2B+1/ 0.

If the conditional instruction does not

cause a skip, the proceed counter is

decremented and checked. If the
proceed count <0, a break occurs.

If the conditional instruction or
subroutine causes one skip, a break
occurs.

If the conditional instruction or sub-
routine causes two skips, exécution

of the program proceeds.

CARS 8B

303 5B

CARSS$&B

3935$B

AC3,,Z+6$5B
AC4, ,ABLE$B
AC3, ,Z+6$$5B
AC4,,ABLE$$B

0$8B

$B

INST

CAIE 35100

Starting the Program

To start at the starting address
in JOBSA

To start, or continue, at a specified

address

To execute an instruction

_ Searching

To set a lower limit (a), an upper
limit (b),a word to be searched
for (c), and search for that word

To set limits and search for a not-

word

To set limits and search for an

effective address

To examine the mask used in searches

(initially contains all ones)

To insert another quantity n in the
mask

Instruction Execution

$U
$Y

Zeroing Memory

To zero memory, except DDT,

locations 20-137, and the symbol
table

To zero memory locations FIRST
through LAST inclusive

Special Characters Used in DDT Typeouts
Se eee

Breakpoint stops
Break caused by conditional break
instruction.

Break because proceed counter <0

Undefined symbol cannot be assembled

Half-word type-outs

577

$G

adr $G

inst $X

ac$W

ac$N

ac$E

$M/

n$M

$$Z

FIRST<LAST $$Z

>

>>

U

left, ,right

SG

LOC SG

JKST 2s @JOBOPCSEX

returns to program after
tC and DDT commands

200 <250>05W

351<731>05N

401<471>LOC+6SE

SM/ 1

TTTOOBTTTTT7S™

49122402

578

Unnormalized floating-point number #1 .234E+27 #1 -234E+27

To indicate an integer is decimal .

The decimal point is printed $10R 77=63.

Illegal command ?

If all eight breakpoints have been
assigned ?

RUBOUT echo XXX

Paper Tape Commands (Available only in EDDT)

To punch a RIMI10B loader $L
t

To punch checksummed data blocks
where ADR1 is the first, and

ADR2 is the last location of the ADRI<ADR2 (TAPE
data ((TAPE) is 1R)

To punch a one-word block to cause
a transfer to adr after the preceding
program has been loaded from paper
tape adr$J

579

APPENDIX 8B

EXECUTIVE MODE DEBUGGING (EDDT)

A special version of DDT, called EDDT, is available for debugging programs in the executive

mode of the PDP-10. In general, EDDT performs the same debugging functions as user mode DDT. All

of the paper tape commands are available in EDDT (those in DDT are marked by an asterisk in Chapter 5).

The paper tape !/O routines in EDDT are optional at assembly time.

EDDT is used to debug Monitor programs, diagnostic programs, and other executive (or

privileged) programs. EDDT performs its own I/O ona Teletype and controls the Priority Interrupt sys-

tem. It does not check JOBREL for boundary limits as DDT does.

In EDDT the symbol table pointer is in location 36. EDDT does not check location 37, which

contains the highest valid address, before address examination. If the NXM Stop switch is ON, the

machine will hang up if nonexistent memory is referenced. If this happens, EDDT may be restarted by ,

pressing START, or the CONTINUE switch may be pressed.

The first address of EDDT is DDT; the last is DDTEND.

The $$Z command will not zero locations 20 through 37. (In the user mode version, $$Z does

not zero locations 20 through 137. See Section 4.5.)

B-1

580

APPENDIX C

STORAGE MAP FOR DDT

<—=— _ JOBREL (points to highest location in user area)
—— JOBDDT (XWD DDTEND, DDT)

<=— JOBSYM (XWD - WC, Ist address of symbol table)

<—<——__§l|st address is DDT

BERLE ROG

DDT Vier wa <— Lost address is DDTEND Area

<———_Ist address of symbol table
User's Symbol Table

<—— _ Highest location in user area

The permanent symbol table, which contains all

PDP-10 instructions and Monitor UUOs, is an integral

part of DDT.

If the user's symbol table is overwritten, DDT can

= still interpret all instructions and UUOs. It will not

interpret 1/O device mnemonics, internal $ symbols

($M,$1, $1B through $8B, DDT and DDTEND or the
following:

JOV

JEN

HALT

581

APPENDIX D

OPERATING ENVIRONMENT

Entering and Leaving DDT

When control is transferred to DDT, the state of the machine is saved inside DDT:

a. The accumulators are saved.

be The status of the priority interrupt system (the result of a CONI PI, $1) is stored in the

right half of register $1.

c. The central processor flags are saved in the left half of register $1.

d ry The PI channels are turned off (by a CONO PI, @$I+1) if they have a bit in register

$i+1.

bs The Teletype PI channel is saved in the right half of register $1+2. The teletype buffer

is saved in the left half of $1+2 but can never be restored. The character in the output buffer will have

been typed on the Teletype.

f. Then using the Monitor command DDT) , the old PC is saved in the right half of loca-

tion JOBOPC, with the flags in the left half.

When execution of a program is restarted, the following happens:

a. The accumulators are restored.

be Those PL channels which were on (when DDT was entered) and which have a bit equal to

1 in register $I+1 are turned on.

(C($1)yA C ($1+1)g) V2000 ~PI SYSTEM

(logical AND (A), logical OR (v))

ee The Teletype PI channel is restored.

0 + TTIDONE + TTI BUSY ~ TTO BUSY

TTO done is set to 1 if either TTO busy or TTO done was on when DDT was entered. Otherwise,

0 + TTO done.

d. The processor flags are restored from the left half of register $I.

e. To return to a program interrupted by tC, the user types:

JRST 25 © JOBOPCSX TO RESTORE THE PC AND FLAGS +

——

Functions not available in the time-sharing user mode.

D-1

582

Loading and Saving DDT

How to load and save DDT.SAV (PDP-10) or DDT.DMP (PDP-6) in 2K of core:

Instructions Example

Load DDT in 4K of core. 2R LOADER 4
DTA1:DDTs7146G (ALTMODE
LOADER

EXIT
tC

» Enter DDT. 2ST

Type out, in halfword mode, the contents $$H JOBSYM/ =162557616
of JOBSYM.

Open register 6 and put (JOBSYM)py 6! 7616553616
into the left half of 6; put (JOBSYM)py - 4000
into the right of 6. 6

Perform a block transfer until you reach
address 37779. BLT 6537778X

Open up JOBSYM. Leave the left half as is, . JOBSYM! -162553616
and change the right half to 4000. less than
it was. , \

Zero memory except DDT. $5Z

Open up JOBSA and check that left half = JOBSA/Z @ssDDT DDTEND» »DDT
DDTEND; if not, change left half to DDTEND.

Change back to symbol type-out mode. $$S

Return to the Monitor. tC

Reduce core to 2K. CORE 2

Reenter DDT. ST

CHECK JOBREL. JOBREL/ 3777

Return to the Monitor. tC

Save DDT. 2SAVE DTA1 DDT

Explanation - The DDT saved file must be saved in 2K (minimum amount of core needed i

it). Also, a starting address must be set up for DDT as location 140. To get DDT into 2K, the DDT

symbol table must be moved down to the upper end of the first 2K of core. Any unused locations in DDT

should be set to zero ($$Z) and JOBSYM should be set to the new location of the start of the DDT symbol
table. Before saving the resulting file, a CORE 2 request should be given to the Monitor to ensure that

DDT is saved as a 2K core image.

Book 6

Utility Programs
Peripheral Interchange Program

(PIP)

Source Compare
(SRCCOM)

Binary Compare
(BINCOM)

DECtape Utility Program
(TENDMP)

File Update Generator
(FUDGE 2)

Cross-Reference Listing
(CREF)

Global Symbol Cross Reference List

(GLOB)

PERIPHERAL INTERCHANGE PROGRAM (PIP)

PIP transfers data files from any standard I/O device to any other standard 1/O device and, additionally,

performs simple editing and magnetic tape control functions. PIP1, a compact version of PIP, performs

a subset of PIP functions. PIP handles all data formats, and eliminates the need for a satellite computer

to handle off-line data conversions.

Requirements

PIP Minimum Core: 3K Additional Core: 1K if disk is one of the I/O devices;

any core above that required is used

for extra I/O buffers. ;

Equipment Handled: DECtape, disk, magnetic tape, paper tape reader,

paper tape punch, card reader, line printer, and

teletype.

PIPI Minimum Core: 1K Additional Core: Any core greater than IK is used

- for extra input buffers.

Equipment Handled: DECtape, disk, magnetic tape, paper tape reader,

paper tape punch, card reader, line printer, and

teletype.

Initialization

.R PIP) or .R PIPI > Loads PIP (or PIP1) into core.

Ss. PIP is ready to receive a command; an asterisk

is typed after each requested action has been

completed.

586

Commands

General Command Format

destination-dev:filename .ext «source-dev:filename.ext,.. -Source=n)

destination-dey: The destination device, to which the data is to be
source-dev: transferred; the source device(s), from which the

data is to be read

NOTE

If logical device SYS (the CUSP device) is a
DECtape, it must not be modified using the
/R or /D switches or any other request re-
quiring it to be initialized for input and out~
put at the same time.

DTAn: (DECtape)
PTR: (paper tape reader)
PTP: (paper tape punch)
DSK: (disk)

CDR: (card reader)

MTAn: (magnetic tape)

LPT: (line printer)
TTY: or (Teletype)
TTYn:.

If more than one file is to be transferred from a magnetic
tape, card reader, teletype, or paper tape reader, dev:
is followed by a comma for each file after the first;
these devices can also be followed by * or *.* to in-
dicate all files are to be transferred.

filename .ext (DSK: and DTAn: only)
The filename and filename extension to be assigned
to the file on the destination device; the filename
and filename extension of the file(s) to be read from
the source device.

An asterisk can be used for source files as follows.

filename .* ~ Transfer all files having the
‘ specified filename.

* ext - Transfer all files having the
specified extension.

a - Transfer all files.

* - Transfer all files with null
extensions.

587

The destination descriptors and the source
descriptors are separated by the left arrow

symbol (+).

Disk File Descriptor Format

DSK:filename .ext [proj ,prog] <protection >

[proj ,prog] Project-programmer number assigned to the disk

area to be used, if other than the user's project-

programmer number.

<protection > Protection value to be assigned to the destination

file. If omitted, the standard protection is assigned.

NOTE

Standard protection (055) designates that the
owner is permitted to read or write, or change

the protection of, the file while others are
permitted only to read the file.

Standard Assumptions

Unless otherwise changed by switches, all files which are on directory devices and which have a file-

name extension of .REL, .SAV, .DMP, or .CHN are copied in binary; all other files are assumed to be

in ASCII line mode. Magnetic tape files, unless otherwise changed by switches, are read in odd parity

and written in odd parity at 556 bpi.

Examples

Command Function

sR PIP? Loads and starts PIP.

Transfer the file named FILE! from DTA]
#¥LPT:©DTAL:FILE) P

to the line printer.

Transfer all files with null extensions from

DTA1 to the line printer.

Transfer the file named FILE] .TMP to DTA2

and give it the name FILE2.

+LPTi<DTA1 2 ¥* 32

¥DTA2 :F ILE@“DTA1:FILE1-TMPD

588

Command

*DTA2 :F ILE3*DTA1 :FILE1>FILE2 2

4DTA2 SF ILE3*DTA1 :F ILE] ,DTA3:FILE2 2

*DSK:FILE1«MTA1: 2

DSK?F ILE1<177>«MTA1 : 2

ADSK2FILEICI531+«MTAIs> 2

#*PTP2+©PTRio55>3

Switches

Function

Transfer the files named FILE] and FILE2

from DTA] to DTA2, combining them as one
file under the name FILE3.

Transfer the file named FILE1 from DTA1 and
the file named FILE2 from DTA3 to DTA2,
combining them as one file under the name
FILES. -

Transfer the next file from the present
position of MTA1 to the user's area on the
disk, call it FILE1, and assign the standard
protection of 055.

Transfer all files from MTA (starting at
the current position of the read head) to the
user's area on the disk, combining them into
one file called FILE], and assign protection
177.

Transfer the next two files from the present
position of MTAI to area 1,3 on the disk,
combining them into one file called FILE1,
and assign the standard protection (055).

Transfer five files from the paper tape reader,
combining them as one file on the paper tape
punch.
Return to Monitor.

Dot indicates that user is at Monitor level.

Nonmagnetic-tape switches, when used, are preceded by a slash (if more than one is specified, they
may be enclosed by parentheses instead) and can appear anywhere in the command string; however, if

the command string contains commas, the switches must be specified prior to the first comma.

Magnetic tape switches are enclosed by parentheses and must appear immediately following the device

or file to which they refer.

Switches are used to specify:

a. Particular files for transferral or deletion;

b. Editing;

c. Mode of transfer;

d. Directory manipulation (DECtape and DSK); and

e. Magnetic tape control.

589

A listing of PIP switches can be obtained by typing

* output-dev:/Q~+ }

where output-dev: may be either LPT: or TTY:

PIP Switch Options

Line blocking

Process file in Binary mode.

Suppress trailing spaces and Convert multiple spaces to tabs.

Delete the file. :

Treat Ending (card) columns 73 through 80 as spaces.

List the directory in short form for DSK: or DTAn: only. (Filenames
and extensions only.) Useful when disk directory cannot be listed with /Lsw.

Ignore I/O errors.

Process file in image binary mode.

Process file in Image mode.

List the directory (DSK: or DTAn: only)

Magnetic tape switches. A string of one or more magnetic tape
switches begins with an M and is enclosed in parentheses .

#nA Advance the tape n files. E Even parity.

Backspace the tape n files. -F Mark End of File.

#nD Advance the tape nrecords. T Skip to logical end of Tape.

Backspace the tape n records.

200 bpi density.

556 bpi density .

800 bpi density. Rewind tape and Unload.

Advance tape one file. Rewind the tape.

Backspace tape one file.

NOTE

MTA switches always apply to the device or file immedi-
ately preceding the switches. MTA switches should be
used only in specific situations. For a more detailed treat-
ment, see PIP Programmer's Reference Manual .

590

PIP Switch Options

Delete the sequence Numbers from a file. N

Same as /S switch except sequence numbers are incremented by 1 (One).

FORTRAN output file format assumed-as input. Convert format control
characters for line Printer listing.

Print this list of switches.

Rename the file.

Add Sequence numbers to the file or resequence a file already containing
Sequence numbers; Sequence numbers are incrémented by 10.

Suppress Trailing spaces.

Copy blocks 0, 1 and 2 of a DTA file. Commonly used to transfer TENDMP.

Count unmatched angle brackets < >.

Copy specified files only.

Perform a RIM DTA to PTP conversion.
Source extension: Destination format:

 RTB RIM Loader, RIM1OB File,
XFERWD

.SAV RIM10B File only.
- RMT RIMI0

Zero out the directory (DTAn: or DSK: only).

NOTE

Switches A, B, N, S, and Z are available for use in PIP].
Y is an optional switch obtained by setting RIMSW = 1 at
assembly time (see PIP, OPR file for explanation of PIP
assembly and loading procedures) .

Examples

591

«R PIP?

DSK2/X“DTA1:.* 2

#DSK:(DX)«DTA1:FILE1,*-REL 2

*MTA2:/S<CDR? 2

*LPT:/P<DTA1>FILE1 2

xDTA2:FILE1/1I¢PTR: 2

*xTTY:/L©DTA1:2

nnnn FREE BLOCKS LEFT 2
filename.ext no. blocks creation date

#DTA1 :/Z+ 2

AMTAG : (MSE) «MTA1 : (MES) P)

+MTA2': (MW © 2

*LPT:<MTA1:(M2W) >» (MA) >» ?)

*MTA1 3 (M#4A «CDR? P

eae >

Load and run PIP.

Transfer all files from DTA! to DSK,
keeping them separate and retaining
their filenames.

Transfer all files, except FILE] and
any files with the extension. .REL,
from DTA to DSK, keeping them
separate and retaining their filenames.

Transfer a file from the card reader to

MTA2 and add sequence numbers.

Take FILE] (a FORTRAN output print’

file), interpret the carriage control
characters, and print the file using specified
carriage control.

Initialize both DTA2 and the paper tape
reader in image mode and transfer one.
file from the paper tape reader to DTA2,
calling it FILE].

List the directory of DTA on the
teletype.

Zero the directory of DTAI.

Transfer a file from MTA to MTA2 in
800 bpi, even parity mode. t

Rewind MTA2.

Set MTAI to 200 bpi, odd parity,
rewind the tape, and transfer the first ,
third, fourth, and fifth files to the

printer.

Advance MTA four files before trans-

ferring a file from the card reader.

Return to the Monitor.

Diagnostic Messages

PIP Diagnostic Messages

24K NEEDED

?DECTAPE I/O ONLY

?DEVICE dev:DOES NOT EXIST

?DEVICE dev: NOT AVAILABLE

DIRECTORY FULL

DISK DIRECTORY READ

?DISK OR DECTAPE INPUT REQUIRED

?DTA TO PTP ONLY

FAILURE DURING (/X, /Z,/D,/R)
REQUEST

?FILE filename .ext ILLEGAL

EXTENSION

?FILE filename .ext ILLEGAL FORMAT

?filename.ext (3) FILE WAS BEING
MODIFIED

?filename.ext (0) FILE WAS NOT

FOUND

AK is not currently available but is needed
when a disk is present in the system.

I/O device for copy block 0.(/U) must be
a DECtape.

Either device name has been misspelled
or there is no such device.

‘ The device has been assigned to another
job.

There is no room for an entry in a DEC-
tape directory.

This message is nonfatal if the /G switch
is used; otherwise, it is fatal and is pre-
ceded by a ?. A second message follows
(see Table 6-3).

This command requires a directory device
for input.

DTA input and PTP output must be speci-
fied for JY.

Each file requested does exist, but one or
more was unavailable for processing. This
message is never fatal .

Extension for /Y request must be .RMT,
-RTB, or .SAV.

. Zero-length file; or

. Requisite job data info not available; or

. Block overlaps previous block (RIM 10) or

. EOF found when data was expected, or

. A pointer word was expected but not
found in the source file.

Disk file named is currently being processed
by another job.

Filename .ext not found during LOOKUP.

PIP Diagnostic Messages

filename .ext (0) ILLEGAL FILE NAME

filename .ext (1) NO SUCH PROJECT-
PROGRAMMER NUMBER

INPUT DEVICE dev: FILE filename .ext

LINE TOO LONG

?LOAD POINT BEFORE END OF
(MB) OR (MP) REQUEST

2NO BLOCK 0 COPY

?NO FILE NAMED filename .ext

?NO FILE NAMED QPIP

OUTPUT DEVICE dev: FILE filename .ext

?PIP COMMAND ERROR

? filename .ext (2) PROTECTION FAILURE

? filename .ext (4) RENAME

FILENAME ALREADY EXISTS

? filename .ext (5) RENAME ERROR

?filename .ext (6)

?filename .ext (7)

Indicates that
1. No filename was specified for DTA
output file; or
2. A reject occurred on a /R request
for disk file; or
3. Illegal filename was specified for a
/R request on DTA.

The project-programmer number specified
for a DSK file is incorrect.

This message is nonfatal if the /G switch
is used; otherwise, it is fatal and is pre-

ceded by a ?. A second message follows
(see Table 6-3).

A line >140 characters was detected in

the source file.

Load point on a magnetic tape file has
been reached before the tape has been
backspaced the number of files or records
specified in (M'nB), (MénP).

/U given but PIP assembled without
provision for this.

No such file found during PIP directory
search.

The data file for the /Q switch is not
available. ‘

Followed by a second message (see Table
6-3) .

1. Illegal format for command string; or
2. Nonexistent switch requested; or
3. Filename .ext other than
* (or *.*) requested for a non-
directory device; or
4. The illegal switch combination RX.

Same as FAILURE DURING ... message
except that the processing halts.

Tried to rename file with already
existing name.

LOOKUP or ENTER not done.

Error not yet defined.

Error not yet defined.

594

PIP Diagnostic Messages

?TERMINATE /X MAX of 999 FILES The /X switch specified for nondirectory
PROCESSED device source files has processed the

maximum number of files (999).

?TOO MANY REQUESTS FOR dev: Conflicting parity/density requests have
been given for a magnetic tape.

TRY PIP During a PIP] run, a switch or function —
which is not present in PIP] has been
requested.

NOTES

All fatal diagnostic messages are preceded by a question
mark (?).

Message types are:

Cc Command string error

FR File reference error
1/o 1/O error
RIM Readin Mode specification error
S Other types of errors.

Table 6-3
Secondary PIP I/O Diagnostic Messages

BINARY DATA INCOMPLETE Length of block disagrees with word
count (nonfatal if the /G switch has
been specified) .

DTA link number 1101.

Read or write error (nonfatal if the /G
switch has been specified) .

BLOCK TOO LARGE

CHECKSUM OR PARITY ERROR

DTA

All

INPUT BUFFER OVERFLOW All except DTA | Block too large for buffer (nonfatal if the
/G switch has been specified).

DEVICE ERROR All The data control unit has detected the

loss of data (nonfatal if the /G switch has
been specified) .

595

Secondary PIP I/O Diagnostic Messages

PHYSICAL EOT MTA The end of tape has been reached (nonfatal
if the /G switch has been specified) .

WRITE (LOCK) ERROR DTA,DSK,MTA Attempt has been made to write on a write-
locked file.

7-9 PUNCH MISSING CDR Binary card lacks 7-9 punch (nonfatal if the
/G switch has been specified).

1K Version of PIP (PIP1) Limitations

The following limitations apply to PIP1:

a. Zand MW requests ignore all source devices.

b. B switch included since REL,SAV,DMP, and CHN files are not automatically copied in

36-bit bytes.

c. Error messages assume all I/O devices are DECtape.

d. Neither project-programmer numbers nor protection can be specified for disk files.

e. The * cannot be used for filenames or extensions.

f. SAV files cannot be successfully copied with PIP1.

Monitor Commands

The following Monitor commands perform PIP-type operations.

Desired Result \ Monitor Command Equivalent CUSP Commands

To type the contents . TYPE dev:filename .ext } =R PIP 2

of a file on the TTY. *TTY: <dev:filename.ext)

To list the eontents of . LIST dev:filename .ext } .R PIP?

a file on the line printer. aLPT: #deydilename.exth

To type the directory DIRECT dev: 2 .R PIP?
of a device on the TTY.: ATTY: =deys/t2

To list the directory of «DIRECT dev:/L } .R PIP)
a device on the line printer. *LPT: +dev:/L)

596

Desired Result Monitor Command

To delete a file. .DELETE dev:filename .ext

To rename a file. RENAME dev:newfn =oldfn

NOTE

Equivalent CUSP Commands

.R PIP)
*dev:filename .ext/D~ }

.R PIP)
*dev:newfn/R ~oldfn)

If dev: is omitted in the Monitor commands, DSK: is assumed.

597

FILE UPDATE GENERATOR (FUDGE2)

FUDGE2 updates files containing one or more relocatable binary programs, and permits the user to

manipulate individual programs within progrom files.

Requirements

Minimum Core: 2K

Additional Core: Dynamically allocates its buffers to utilize as much core as is made available.

Equipment: Two input devices, one for the master file and one for the transaction file;

one output device for the updated file. The input device(s) and output

device can be the same device (DSK:). The two input devices can be the

same DECtape.

Initialization

.R FUDGE2 2 Loads the File Update Generator program.

FUDGE2 is ready to receive a command.

598

Commands

General Command Format

new-dev ::filename .ext + master-dev:filename .ext < prognamel ,progname2,..progname >, 2

transaction-dev:filename .ext < prognamea,prognameb, ...prognamez > (commands) $

new-dev: The destination device, on which the updated
file is written.

DTAn:

DSK:

MTAn:

PTP:

master~dev: The device containing the file to be updated.

DTAn:

DSK:

MTAn:

PTR:

NOTE

If more than one file is to be transferred
from a magnetic tape or paper tape
reader, dev: is followed by a colon (:)
for each file after the first.

transaction-dev: The device containing the file of programs to
be used in the updating process.

DTAn:
DSK:
MTAn:
PTR:

NOTE

If more than one file is to be transferred

from a magnetic tape or paper tape

reader, dev: is followed by a colon (:)

for each file after the first.

More than one transaction device, with its

associated filenames and program names, can
be specified in certain instances (see
Switches).

filename .ext (DSK: and DTAn: only) The filename .ext of the new, updated version
of the program file.

The filename .ext of the program file con-
taining the programs to be deleted, replaced,
or augmented.

599

The filename .ext of the program file con-
taining the programs to be used in performing
additions or replacements to the master file.

If no .ext is given, .REL is assumed.

<progname,..... >(DSK: and Program names must be specified in the same
DTAn: only) relative order in which they appear in the

file.

Program names are grouped together within
angle brackets <> and are separated by
commas.

If it is desired to append, replace, insert,
or extract all programs within a file, only
the filename.ext need be specified.

Program names cannot be specified for the
output file.

The new output file is separated from the
master and transaction files by the left
arrow symbol (~).

Command Codes

The function to be performed by FUDGE2 is selected by including one of the following command codes

at the end of the command string. Command codes are enclosed within parentheses (or preceded by a

slash) and one (and only one) must appear in every command string.

FUDGE2 Command Codes

Meaning

Append one or more programs from the transaction file(s) to the master file

and write out the new file. The command string is as follows:

new-file «+ master-file,transaction-file,..... (A) ¢

Delete one or more programs from the master file and write out the new
file. The files (and programs) to be deleted are listed after master—dev: .

The command string is as follows:

new-file + master~file<file(s) to be deleted>(D) $

Extract the specified files (and programs) from one or more input files and
create a new output file. If program names are not specified for a file,
the entire file is extracted. The command string is as follows:

new-file + masterfile<file(s) to be extracted>(E) $

600

FUDGE2 Command Codes

— SSS SS Se

L Commend Meaning

| '

i

Insert programs from one or more transaction files onto the master file and
write out the new file. The programs from the transaction file(s) are in-
serted immediately before the specified programs on the master file. The
command siring is as follows:

new-file + master-file<file(s) to be inserted before>, transaction-file(s) (I) $

iL List all relocatable programs within a file and print the listing on the output
device, which musj,be either TTY: or LPT: The command string is as follows:

listing-device « file{L) $

Replace the named program(s) on the master file with the named program(s)

from the transaction file, and write out the new file. The command string
is as follows: ;

apc
new-file + master-file<file(s) to be replaced >, transaction-file<replacement
File(s)>(R) $

NOTE

Only one operation can be specified per command
string. Thus, to delete a file and replace some other
one, two command strings are required.

Examples

+R FUDGE2)
#LPT?*DTA1:LIB4@¢(L) oP) List all relocatable programs (.REL)

from the file LIB40, located on

DTA] on the line printer.

#DTA2:LIB4AA <DTA1:LIB4Q<EXP -2>(D)$ 3 Delete the program EXP.2 from the

file LIB40 on DTA; write the new
file on DTA2 and call it LIB4AA.REL.

xDSK?LIB4BB<D7A2:LIB4AA <EXP-3sEXP-3C>>2 Replace programs EXP.3 and EXP.3C
D7A1:F1<EXP+3AsEXP-3B>(R) Sp located in file LIB4AA on D7A2, with

programs EXP.3A and EXP.3B in
File F4 on D7A9; write out the new

LIB4AA file on disk and call it
LIB4BB.

*#PTP:+DSK:LIB4BBsDTA4:SCIENC<COSRTE>/A $) Append the program COSRTE, located

in file SCIENC on DTA4, to the file

LIB4BB on disk; write out the updated
LIB4BB file on the paper tape punch.

*

601

ADTA1:NFILE“DSK:MPILE<M1.M2>M3>M4>) Insert into MFILE the programs TAt

. and TA2 from TFILEA and TB! and

DTA3:TF-ILEA<TA1»TAG> 2 TB2 from TFILEB. Create NFILE with

DTA4:TFILEB<TB1,TB2>/1 $ 2 the following order: :
TAI,M1,1TA2,M2,TB1,M3,1TB2,M

Insertion is on a one-to-one basis. If
there are more programs to be inserted

than specified programs before which
they are to be inserted, the extra files
are ignored. ‘

+DTA1 SNF ILESDSK:MFILE<Mi »M2sM35M4>) However, in this example (where

DTA3:TFILEAD TFILEA and TFILEB contain the pro-~

DTAA:TFILEB/I $3 grams TAI and TA2 and TBI and TB2,
respectively) create an NFILE with the
following order:
TA1,TA2,M1,1B1,1B2,M2,M3,M4

*1C 2 Return to the Monitor.

Switches

Switches are used to manipulate file directories and to position magnetic tape. They are either preceded

by a slash or enclosed in parentheses and can appear anywhere in the command string.

FUDGE2 Switch Options

Backspace magnetic tape one file.

Advance magnetic tape one file.

Rewind magnetic tape.

Clear directory of destination device (DTAn: only).

Examples

«R FUDGHE D
ADTAZ:TESTASMTAI1S (WK) sMTAG: 3(ZA) &) Clear the directory of DTA2; rewind

i MTA] and advance the tape one fila;
append the first two program files from
MTA2 to the second file on MTA! and
write out the resultant file on disk,

calling it TESTA.

#tCQ : : Return to the Monitor.

602

Diagnostic Messages

FUDGE2 Diagnostic Messages

Message Meaning

?CANNOT DO I/O AS REQUESTED Input cannot be performed on one of the devices
specified for input (it is an output only device) or
output cannot be performed on the device
specified for output.

'

?DEVICE ERROR ON OUTPUT DEVICE A write error has occurred on the output file.

DIRECTORY FULL ON OUTPUT DEVICE No more files can be added to the file directory
on the output device (the directory is full).

?ENTRY BLOCK TOO LARGE, The entry block of program xxxxxx is too large
PROGRAM xxxxxx for the FUDGE2 entry table, which allows for

32 entry names. FUDGE2 can be reassembled
with a larger table.

?FUDGE SYNTAX ERROR The command string is illegal (e.g., the left
arrow was omitted, a program name was specified
for the output file, or some meaningless command
was entered).

°®x IS AN ILLEGAL CHARACTER An illegal character has been encountered in the
command string.

?x IS AN ILLEGAL SWITCH An illegal or otherwise meaningless switch has

been encountered in the command string.

?dev NOT AVAILABLE The device either does not exist or has been

assigned to another job.

?2NOT ENOUGH ARGUMENTS An insufficient number of files of one type or
another has been specified.

?dev filename.ext progname NOT FOUND Either the filename.ext or the program name was
not found on the device (or in the file) specified.

If a program name is printed, this may indicate

that the program names in the command string
appear in a sequence different from their sequence
within the file; thus, the program may actually
exist in the named file but was missed because of
the incorrectly entered sequence in the command
string.

?PROGRAM ERROR WHILE RESETTING Either FUDGE2 cannot find the master device or
MASTER DEVICE cannot find the program name on the master

device.

603

FUDGEZ2 Diagnostic Messages

2?TOO MANY FILE NAMES OR More than 40 program names or file names were
PROGRAM NAMES given in a command string. Break the job into

several segments and rerun.

2TRANSMISSION ERROR ON A transmission error has occurred while reading

INPUT DEVICE dev data from device dev.

?UNEQUAL NUMBER OF MASTER An unequal number of master and transaction

AND TRANSACTION PROGRAMS programs (or files) has been specified with a

Replace request.

604

CROSS-REFERENCE LISTING (CREF) (VERSION CREF .V32 AND LATER)

CREF produces a sequence-numbered assembly listing followed by one to three tables, one showing cross

references for all operand-type symbols (labels, assignments, etc.), another showing cross references

for all user defined operators (macro calls, OPDEFs etc.), and another (if the proper switch is specified)

showing the cross references for all op codes and pseudo-op codes (MOVE,XALL, etc.). A number sign

(#) appears on the definition line of all symbols. The input to CREF is a modified assembly listing file

created during a Macro-10 assembly or FORTRAN IV compilation when the /C switch is specified in the

command string.

CREF provides an invaluable aid for program debugging and modification.

605

Requirements

Minimum Core: 2K

Additional Core:

Equipment:

Takes advantage of any additional core available, as necessary.

One input device (normally disk) which contains the modified assembly
listing file; one output device (normally the line printer) for the listing.

Initialization

-R CREF

Commands

General Command Format

output-dev: + input-dev:filename. ext

output-dev:

input-dev:

. filename.ext (DSK: or DTAn:only)

Disk File Command Format

DSK :filename.ext [proj ,prog]

[proj, prog]

Loads the Cross-Reference Listing program into

core.

The program is ready to receive a command.

The device on which the assembly listing and
cross-reference tables are to be printed (LPT: is
assumed if device is not specified).

The device on which the modified assembly list-
ing was written during Macro-10 assembly (DSK:

is assumed if device is not specified) .

The filename and filename extension of the modi-

fied assembly listing file (CREF.LST is assumed
if filename.ext is not specified).

4

The output device and the input device are
separated by the left arrow symbol .

Project-programmer number assigned to the disk

area to be searched for the source file if other
than the user's project-programmer number.

606

Examples

-R MACRO? Loads the Macro-10 Assembler into core.

4PTP t>/C*“DTAL :TXCALC) Assembles the program TXCALC from DTA]; writes
THERE ARE NO ERRORSD the object program coding on the paper tape punch;

writes a modified assembly listing on DSK: (as-
PROGRAM BREAK IS 0037712 sumed) and assigns it the filename CREF.LST.

7K CORE USED?

AIC D Return to the Monifor.

2R CREF 2 Loads CREF into core.
4

*> Selects the default assumptions of:
a output-dey: ERIE

input-dev: DSK:
filename.ext CREF .LST

*TC 2
eras Return to the Monitor.

Switches

Switches are used to specify such options as magnetic tape control and list selection. All switches are

preceded by a slash (/).

CREF Switch Options

Switch

Advance magnetic tape reel by one file. /A may be repeated.

Backspace magnetic tape reel by one file. /B may be repeated.

Kill listing of references to basic symbols (labels, assignments, etc.).

Suppress listing of references to user-defined operators (Macro calls,
OPDEFs, etc.).

Allow listing of references to machine and pseudo-operation codes
(MOVE, XALL, etc.).

Requests (by typing out RESTART LISTING AT LINE:) the line number at
which the listing is to Restart. (Such action might be necessary if the
line printer ran out of paper, or jammed, etc.) The user types the line
number followed by a carriage return.

Suppress program listing (list only the selected tables).

607

CREF Switch Options

Examples

+R CREF)

+/MeMTAL2/W 2

*ADTAS 2SAVE1/Z+ 2

*TC D

Diagnostic Messages

Skip to logical end of magnetic Tape.

ReWind magnetic tape.

Zero the DECtape directory (DECtape must be output only).

Loads CREF into core.

Rewind MTA1 and process the first file, listing
only the cross references for operand-type sym-
bols (labels, assignments, etc.).

Process the file named CREF.LST in. the user's
area of disk; write the program listing and
operand-type cross references on DTAS and call
the file SAVE1.

Return to Monitor

CREF Diagnostic Messages

2dev NOT AVAILABLE
CANNOT ENTER FILE fnme.ext
?CANNOT FIND FILE fnme.ext
2?COMMAND ERROR
2? DATA ERROR DEVICE dev:
ERROR READING COMMAND FILE
2IMPROPER INPUT DATA
?INPUT ERROR ON DEVOCE dev:

? INSUFFICIENT CORE

Device is assigned to another job.

DTA or DSK directory is full; file cannot be entered.

The file cannot be found on the device specified.

Error in last command string entered.

READ or WRITE error.

Disk data error while reading nnnCRE.TMP (see below).

Input data not in CREF format.

READ error has occurred on the device.

Additional core is required for execution but none is

available from Monitor.

608

Monitor Commands

~ CREF-format listing files generated by COMPILE, LOAD, EXECUTE, and DEBUG commands (using the

/CREF switch) can be printed on the line printer by typing

= CREF)

The CREF command will print out all listing files that are specified in the CCL command file,

nnn CRE. TMP (where nnn is the user's job number). After completion of this operation, nnnCRE. TMP

is deleted to preclude the listing files being listed again by the next CREF command.

609

GLOBAL SYMBOL CROSS REFERENCE LIST (GLOB) VERSION #002 OR LATER

GLOB reads multiple binary program files produced by Macro and F40 and generates an alphabetic

cross-referenced list of all global symbols encountered.

Requirements

Minimum Core: 2K

Additional Core: Requests additional core from the Monitor as required.

Equipment: An input device for each binary file to be scanned for global symbols and
one or more listing devices for output.

Initialization

-R GLOBD Loads the Global Cross-Reference Listing
program.

* The program is ready to receive a command.

Commands

Input Command

dev:filename.ext,....filename.ext,dev:filename.ext,....filename.ext,..2

dev: The device(s) containing the binary program files

to be scanned.
MTAn: (magnetic tape)
DTAn: (DECtape)
DSK: (disk)
PTR: (paper tape reader)

610

filename. ext (DSK: and DTAn: only)

The filename and filename extension of each binary
program which resides on either disk or DECtape.

Output Command

dev: -$

dev: The device on which the global symbol listing is to
be printed.

LPT: (line printer)
TTY: (Teletype)

Other output devices can be specified if desired.

More than one output command can be given if it
is desired to produce several types of listings on

several different devices. Each new output com-
mand is typed after the previous request has been
completed.

Examples

ish GLOB 2

#DSKiF 1 »F2,DTA3 CALC! sCALCS D The binary program files to be scanned are Fl and
F2 on DSK, and CALC] and CALC5 on DTA3.

All global symbols in these programs are to be
listed on the printer. Printed with each symbol

KLPT: « $3) are its value, the name of the program in which
ig it was defined, and the names of all the programs

in which it was referenced (i.e. , declared
external).

#10 2 Return to the Monitor.

Switches

The switches available in GLOB are used to determine the types of global symbols to be listed on each ©

of the specified output devices. If no switches are typed, all global symbols are listed. There are also

three separate switches (L, M, and X) which act independently .
'

All switches are either preceded by a slash or enclosed in parentheses and can appear anywhere in the

output command string. However, only the most recently specified switch (except L, M, or X, which

always take effect) is in effect at any given time.

GLOB Switch Options

All global symbols are to be listed (assume if no switch is given).

List erroneous (multiply defined or undefined) symbols only.

List fixed (nonrelocatable) symbols only.

Turn on Library Search Mode (that is, only scan programs if they contain:

globals previously defined and not yet satisfied) .

Turn off Library Search Mode.

List only those symbols which are never referred to.

List relocatable symbols only.

List multiply specified (i.e. , symbols defined in more than one program,

but with non-conflicting values) only.

Omit printing of listing title when output is other than TTY. Include

printing of listing title when output is TTY.

NOTE

Normally, the title is printed on all devices except the

Teletype.

Examples

+R GLOB 2

#DTA1 :TEST1 -REL»SUBRTE»DSK:ARITHI ») The binary programs to be scanned are

*SC IENC RETEST 2 files TEST1.REL and SUBRTE on DTAI,

and ARITH1, SCIENC, and RETEST on

disk.

xLPTi©/R 52 List only relocatable symbols on the

printer.

*TTY:¢/E 5&2

ae = Printer listing is completed.: Enter com-

mand to print all erroneous symbols on

the Teletype.

(U = Undefined; EXTSYM is the unde-

fined symbol; SUBRTE is the program in

which EXTSYM appears.)

Return to the Monitor.

U EXTSYM SUBRTE

Diagnostic Messages

612

GLOB Diagnostic Messages

2COMMAND SYNTAX ERROR

? DESTINATION DEVICE ERROR

?DIRECTORY FULL

?dev NOT AVAILABLE

?filename.ext NOT FOUND

?TABLE OVERFLOW - CORE UUO
FAILED TRYING TO EXPAND TO xxx

An illegal command string has been entered.

An I/O error has occurred on the output device.

No more files can be added to the directory of
the output device. -

The device either does not exist or has been as-

signed to another job.

The filename.ext cannot be found in the directory
on the device specified.

GLOB requested additional core from the Monitor,
but none was available.

GLOB Error Flags

Multiply defined symbol (all values are shown).

Never referred to (i.e., was not declared external in any of the binary
programs).

Multiply specified symbol (i.e., defined in more than one program, but
with non-conflicting values). In the listing, the name of the first pro-
gram in which the symbol was found is followed by a plus sign.

Undefined symbol.

613 ©

SOURCE COMPARE (SRCCOM) (VERSION 013)

SRCCOM compares, line by line, two versions of a source file coded as lines of ASCII characters and

outputs any differences . ‘

Requirements

Minimum Core: 2K

Additional Core: The minimum core allows for comparing files with minimal differences .

SRCCOM automatically requests more core from the Monitor when it

needs it. Major differences can usually be handled in 3K, but for

comparing two completely different files, enough core is required to

store all of both files simultaneously.

Equipment: User teletype for control; two input devices for the two files to be

compared; one output device for listing the differences.

Initialization

=R SRCCOM Loads the Source Compare routine.

Source Compare is ready to receive a command.

614

Commands

General Command Format

list-dev:filename.ext ~input 1-dev:filename .ext, input2-dev:filename .ext >

list-dey: The device on which the differences are to be
listed.

LPT: (line printer) (Any device
TAN: (teletype) that can output
MTAn: (magnetic tape) ASCII characters)
DTAn: (DECtape)
DSK: (disk)

input -dev: _ The devices on which the two source files to
be compared are located.

‘MTAn: (magnetic tape) (Any device
= DTAn: (DECtape) that can input

DSK: (disk) ASCII characters)
PTR: (paper tape reader)

filename .ext (DSK: and DTAn: only)

The filename and extension of either of the input
source files.

The filename and extension to be assigned to the
output list file. (SRCCOM.LST is assumed if no
filename is specified.)

The output device is separated from the input source
file devices by the left arrow symbol .

Default Conditions

dale: is assumed as the output device if no other device is specified.

DSK: _ is assumed as both input devices if no other devices are specified.

A dot is necessary in filename #2 to explicitly indicate a null extension if the extension for filename# 1

is not null.

Example:

LPT: ~DRAn:FORSE .MAC ,DSK:FORSE. (FORSE has a null extension.)

The filename and extension for input file #1 is assumed to be the filename and extension for filename #2
unless another filename or extension is specified.

615

The filename and extension for the output file is assumed to be SRCCOM.LST unless another filename

or extension is specified.

Switches

Switches are used to specify the manner in which the comparison is to be done. All switches consist

of a single character preceded by a slash (/), anywhere in the command string.

Source Compare Switches

Enables the comparing of Blank lines. Normally blank

lines are completely ignored.

Comments (all text on a line after a semicolon) are

ignored. /C will not cause a line consisting entirely

of a comment to become a blank line which will be

ignored, /S is also implied.

Spacing (spaces and tabs) is ignored.

(n=1, 2,...,9) A match consists of n lines. (n is

normally 3) n successive lines must be found identical

in the two input files for a match in the two files to be

found. When a match is found, all differences between

the current match and the previous match are listed.

The first line of the match is also listed to make the

location in the file easier to find.

Examples

»R SRCCOM 2
*LPT :<DTA2 :SOURCE -091 »DTAS: Compare the source file SOURCE .001

SOURCE +002) on DTA2 with the source file
SOURCE .002 on DTA and list all
differences on the line printer.

¥LPT $<DSK:TRY1 »DSK:TRY2 > Compare the two files, TRY] and TRY2,

both of which are on the disk, and list
the differences on the printer.

*TC 2D Return to the Monitor.

616

Example of Source Compare Output

SRCCOM output File 1 input File 2 input

page | page |

FILE #1
FILE #2 FILE #1 FILE #2

FILE #1
A

FILE #2
A

\

D
E
i
G
H

I
J
K
L
M \

1

2

3
N

RRKKKKKEKEKRKKEKREK

1)2t W
ReKK

2)21

RRKEKEKKKEKERERERERK

N<x<l<caux~p7OZ7

N<xx<bhalkecavzagr0OZ7

tThese numbers in the SRCCOM listing are page numbers referring to the input files.

TTA line identical to both input files is listed'to help find the location of the differences within
the two files. ;

617

Diagnostic Messages

Source Compare Diagnostic Messages

22K CORE NEEDED AND NOT
AVAILABLE

BUFFER CAPACITY EXCEEDED

AND NO CORE AVAILABLE

?COMMAND ERROR

2DEVICE dev:NOT AVAILABLE

?FILE 1 READ ERROR

FILE 2 READ ERROR

?INPUT ERROR - filename .ext

FILE NOT FOUND

2NO DIFFERENCES ENCOUNTERED

?OUTPUT DEVICE ERROR

POUTPUT INITIALIZATION ERROR

SRCCOM needs 2K fo initialize IO devices

and the core is not available from the Monitor

The buffer is not large enough to handle the
number of lines required for looking ahead and
no more core is available from the Monitor.

Error in last command string entered.

One of the input devices cannot be initialized;
generally, the device either does not exist or
has been assigned to another job.

An error has occurred on the first input device
specified in the command.

An error has occurred on the second input device

specified in the command.

The specified filename cannot be found.

No differences were found between the two

source files.

An error has occurred on the output device.

The output device cannot be initialized; the

device either does not exist or has been assigned

to another job, the device is not an output device

or the filename could not be entered on the device.

BINARY COMPARE (BINCOM)

618

BINCOM compares, word by word, two versions of a binary (.REL) program file and outputs any
differences.

Requirements

Minimum Core:

Additional Core:

Equipment:

Initialization

.R BINCOM)

/

1K if output device is other than DTAn:, MTAn:, or DSK:;
otherwise 2K .

See Minimum Core.

Two input devices for the two files to be compared; one output
device for listing the differences. Both input files can be on
disk.

*

Commands

General Command Format

Loads the Binary Compare routine.

Binary Compare is ready to receive
a command.

list-dev: filename .ext «input 1-dev:filename .ext, input2-dev: filename .ext A

The device on which the differences are to be listed.

line printer)

MTAn: (magnetic tape)
DTAn: (DECtape)

If list-dev:filename .ext «is omitted, TTY: is assumed.

list-dev:

LPT (
TTY: (teletype)

DSK: (disk)

inputl-dev: The devices on which the two binary files to be
compared are located

DTAn: (DECtape)
DSK: (disk)

CDR: (card reader)

PTR: (paper tape reader)
MTAn: (magnetic tape)

filename .ext (DSK: and DTAn: only)

The filename and extension of either of the input
binary files.

The filename and extension to be assigned to the
output list file.

Command

Examples
+R BINCOM 2

*LPT:<DSK:PROG1 -REL>

DTA1:PROG1-REL 2

NO ERRORS ENCOUNTERED 2

DYA1l:BINA»DTA2:BINB 2

loc filel-word file2-word XOR

Diagnostic Messages

619

Function

NOTE

If .ext is omitted, null extension is assumed.

The output device is separated from the input
binary file devices by the left arrow symbol.

Compare the binary program file PROG1.REL in the
user's area of the disk with a binary program file,
PROGI.REL, on DTA1, and list all differences on

the line printer.

No differences were found between the two files.

Compare the binary program file BINA on DTAI
with the binary program file BINB on DTA2 and
list all differences on the teletype.

NOTE

.REL is assumed as the extension name for both

BINA and BINB.

Return to the Monitor.

Binary Compare Diagnostic Messages

Message Meaning

?COMMAND ERROR

?DEVICE dev: NOT AVAILABLE

?END OF FILE PHASE ERROR

Error in last command string entered.

Device has been assigned to another job or does
not exist.

One input file is longer than the other.

620

Binary Compare Diagnostic Messages

Message Meaning

?FILES BEING COMPARED ON
SAME INPUT DEVICE

?INPUT ERROR filename .ext

NOT FOUND

NO ERRORS ENCOUNTERED

Files cannot be compared from the same input
device unless that device is DSK:.

The file specified could not be found on the
input device.

No differences were found between the two

binary program files.

?2OUTPUT INITIALIZATION ERROR | The file cannot be entered.

Error Differences

Whenever a difference is encountered between the two files being compared, a line is printed on the

listing device in the following format:

octal loc. filel-word file2-word XOR of both words

621

TENDMP is a utility program, used to save and restore core images on DECtape. It is

compatible with the PDP-10 time-sharing system's directory-structured DECtape format, and with the

format of a SAVE file.

. TENDMP operates in executive mode only, and will run on a PDP-6 or a PDP-10 computer

with either a.TD-10 or 551/136 DECtape system. (If a PDP-10 is used, the KE-10 Extended Order

Code option is required.)

lie TENDMP FUNCTIONS

TENDMP has the following functions:

1) Selection of DECtape unit.

2) Listing of directory of DECtape.

3) Loading a program into core.

4) Zeroing of directory.

5) Merging a program from tape into core, leaving other areas untouched.

6) Dumping nonzero regions of core onto tape.

7) Deleting a particular file from a tape.

8) Specifying a starting address to be saved with a core image.

9) Starting a program loaded from tape.

All of the above functions can be performed by commands from the console Teletype, or by

calling TENDMP as a subroutine and providing a command string in core.

2. ~ COMMANDs!

Pe3)| Unit Selection

To select a unit, type n G) where n is a number from 0 through 7 (unit 0 means 8, as usual).

Ve the command formats which follow, certain conventions apply.

a. The symbol ($) represents the ALTMODE character (ASCiI code 033, 175, or 176). ALTMODE

echoes back as a dollar sign ($).

b. Alphabetic characters in commands and filenames can be typed in either upper or lower case; they

are considered to be in upper case.

c. Filenames consist of a 6-character name and a 3-character extension. A space (not a period)

separates the name from the extension. All printing characters are legal in filenames. If the space

and extension are omitted, a null extension is assumed. SAVE files created by Monitor normally

have the extension "SAV."

d. The character RUBOUT or DELETE erases the entire command currently being typed.

622

This command causes TENDMP to read the directory block from DECtape unit n into core, ana

defines that unit as the current unit. This unit and directory are remembered in core, and need only

be specified once during a sequence of operations, perhaps including running other programs, if the

storage in core from 37177 through 37757 is not disturbed. 2

252 Listing a File Directory

To list the file directory of the current unit, type

F®
The name and extension of each file will be listed.

2.3 Loading and Starting a Program

To load and start a program, type the filename followed by a carriage return. If the ex-

tension is null, it may be omitted.

Examples:

file ext g)

or

fileg)

This command causes core to be cleared from location 40 through location 37176, the pro-

gram to be read from tape, and the program to be started at the address which was specified when the

program was dumped (see below).

2535 Variations on the Above Loading - To load a program without starting it, that is with control

remaining in TENDMP, type:

LO File gl

This command clears core from 40 through 37176, and loads the program into core.

The clearing of core can be inhit*t2d, and a program merged with existing core, as follows: |

M@file g)

This causes only those areas for which information is present on tape to be modified. For

instance,

. M@EDDT SAV,)

would allow EXEC DDT to be used to examine a current core image, or to share-core with a radinientnee
\

or diagnostic program.

Location 40 is cleared before the merge is done.

2
All addresses given in this document assume the 16K version of TENDMP. Translation of these figures

for other versions is a simple matter.

623 5s

25322 Starting the Program - The command to go to the current starting address (that last specified

by loading or merging a program or set by the operator (see below)) is:

2.4 Zeroing a Directory

To clear the directory of the current unit, type

To put a clear directory on a virgin DECtape, type

tS Z

The first command is necessary to specify the current unit, and it will read the contents of

the directory block into core, even though the contents may be unspecified. However, the 2S) com-

mand will discard that information, create a legitimate, clear directory in core, and write it on the

tape.

A clear directory reserves blocks 1, 2, and 144 (octal) with file code 36, and clears all

filenames.

The last word in the directory, which is the tape identifier, is not cleared. If a tape does

not have an identifier, one may be added manually by depositing it in location 37376, and then per-

forming a ZG), dG), or command.

P25) Dumping a Program Onto Tape

When a program is dumped, a starting address is dumped with it. Therefore, a starting ad-

dress must be specified before dumping.

The current starting address is set each time a program is loaded from tape; it may be left

alone if the same address is to be dumped. Otherwise, the command

where n is the new current starting address is used.

Since this is the same format as the unit selection command, the restriction is imposed that

the starting address must be greater than seven. In fact, it should be 20 or greater, since the accumu-

lators are all used by TENDMP, and are not dumped with a file.

Dumping a file is accomplished as follows:

: file ext

This causes the contents of core, from location 20 through 37174, to be dumped with the name "file ext"

on the current unit, and with the current starting address. Sequences of two or more zeroes are omitted

624

from the file. If a file of that name already exists, it is superceded. The correct core size informatior

is put into the directory, but the contents of the date field are unpredictable. The directory is then

written onto the tape. Control remains in TENDMP.

2.6 Deleting a File from the Tape

To delete a specific file, type .

K® file ext

The specified file will be deleted (killed) and the directory will be written back out onto tape

3. DIAGNOSTIC MESSAGES

As core space in TENDMP is at a premium, there is only one error indication - the Teletype

bell is rung. The user should then be able to diagnose the error by examining the last command typed

and checking the list of possible errors given below.

a. The directory may not have been read in from the DECtape as yet, or it may have been
clobbered after being read in.

b. The filename ext. specified in a <6) L® or MG) command cannot be found on the
current DECtape.

c. There is no room either in the directory or on the DECtape to dump another file. In the
latter. case, the directory in core may be in an intermediate state, so that rereading the directory from
tape by an n@) command is advisable.

d. There are either no units or there is more than one unit dialed to the current unit number.

e. The write-lock switch was on for a D@), KG), or ZG) command.

f. A tape read or write error occurred.

g- The tape has run into the end zone (position the tape manually if this is the case).

4, TENDMP VERSIONS

The user should’ be aware that there are several versions of TENDMP and should check the

label of the paper tape version to be used for the following parameters:

a. Which DECtape contro! is used - TD-10 or 551.

b. What memory size is handled. 16K or 32K are the usual cases.

c. What paper tape format is used - HRI (Hardware Readin Mode - also called RIM10B) or
RIM (Readin Mode - read by a special subroutine located in the shadow accumulators on the PDP-6).
HRI is preferred for PDP-10.

The creation of these versions is explained in "Assembly Instructions" below.

\

625

Se ASSEMBLY INSTRUCTIONS

Assembling a copy of TENDMP from the source is straightforward. The output is normally in

RIM10B format, and is, of course, absolute.

The normal assembly is for a 16K machine, and for the TD-10 DECtape control.

Conditional assemblies are provided to modify the above standards.

The normal assembly command string to MACRO is:

*PTP:, LPT: @ TTY:, DIAx: TENDMP .MAC g

To modify the standards, add some of the following at assembly time:

MODE=1 ° ;for 551 control version.

MODE is normally zero, representing a TD10 TENDMP.

CORE=1 ;for an 8K version

CORE=4 ;for a 32K version

CORE is normally 2, and is the number of 8K blocks of core for this version of TENDMP.

DEFINE RIM1OB RIM ;for PDP-6 paper tape format

Example:

*PTP:, LPT: 4 TTY:, DTAx: TENDMP .MACg)

CORE=4
Az
END OF PASS 1

Wa

6. STORAGE ALLOCATION

TENDMP, when loaded, occupies the upper end of available memory. The figures below

are given for a 16K memory; translation of these figures for other core sizes should be obvious.

Locations Contents

37175, 37176 Cleared

37177 through 37376 Directory of the current DECtape

37377 through 37757 Actual coding and temporary storage areas

37760 through 37776 Area reserved for command string (not

modified)

37777 Byte pointer to the ASCII command string
which may be in locations 37760 through
37776

In addition to these locations, TENDMP also modifies the contents of all accumulators (location 0

through 17).

626

Since the actual code occupies locations 37400 through 37757, TENDMP can fit into two

DECtape blocks and can theréfore be located in and bootstrapped from blocks 0 and 1 of a properly

prepared DECtape, using the Hardware Readin foie of the PDP-10/TD-10.

TENDMP's starting address is 37400.

Ue CALLING TENDMP AS A SUBROUTINE

TENDMP can be called from a'program by the following procedure:

Place a series of commands, in ASCII format, in the reserved core area (37760-37776), omit-

ting line feeds after carriage returns. Place a byte pointer to this command string in location 37777

such that an ILDB 37777 will retrieve the first character. Transfer to 37401. The commands will be

executed. If the last command does not cause a transfer out of TENDMP, a RUBOUT should be the last

character. This causes a carriage return line feed to be typed out, and conirol to be switched to the

Teletype. |

If an error occurs during these commands, the Teletype bell is rung, and control switches

immediately to the Teletype.

TENDMP Command Summary

oe n must be in the range 0 to 7.

Zero the directory of the current
DECtape. |

Dump nonzero areas of core and D @ file ext) The core image file is assigned
the current starting address onto the name "file ext."
the current DECtape.!

n@

z@

n©

Clear core, load a program from file ext) "file ext" is the name of the core
the current DECtape, and start it. image file to be loaded. |

Clear core, load a program from L® file ext)

the current DECtape, but do not |
start it.

‘The new directory is written onto the DECtape.

Select a DECtape unit, read in
its directory, and designate it as
the current DECtape.

Specify a new starting address n is at least greater than 7 but
prior to dumping or before giving
the G $ command.

i
should be greater than 17,. |

627

TENDMP Command Summary

Merge a program from the current
DECtape; leave the remainder of

ie ae file ext

core undisturbed.

Delete (kill) a file from the current = file els
DECtape. |

List the file directory of the cur-
rent DECtape.

othe new directory is written onto the DECtape.

CREDITS:

The basic structure of TENDMP was suggested by

MACDMpP, a program written at the Project MAC PDP-6

installation at MIT. This guidance is gratefully

acknowledged.

628

ADDENDUM

Post Assembly Instructions to Generate a Self Starting TENDMP

When a paper tape TENDMP is assembled with MACRO (version 008) it is not self starting,

i.e., after reading the paper tape the operator Te depress the "CONTINUE" switch to commence

operation at the CTY.

In order to generate a self starting version from the assembler output:

1. Load a monitor with exec DDT

2. Then load assembler paper tape of TENDMP (either 16K or 32K)

3. Enter exec DDT (start at 141) and type

$L $ = ALTMODE

37400 <37757 t R tR = Control R

37400$J

The above instructions pertain to 16K TENDMP, for the 32K version the first digit of each

number will be 7 instead of 3.

KAI10

KM10

KTI0A

629

APPENDIX A

PDP-10 Equipment List

Processor and Processor Options

ARITHMETIC PROCESSOR: central pro-

cessing unit for all PDP-10 systems with float-

ing point and byte manipulation instructions

and including:

—300 character/second photoelectric paper

tape reader

— 50 cps paper tape punch

—10 cps console teleprinter, LT35A (LT37

furnished when available)

— functional operator console

— multiplexed Input/Output Processor (IOP)

with seven levels of priority interrupt

— real time clock

FAST REGISTERS: sixteen 36-bit integrated

circuit registers used as multiple accumulators

and/or index registers and for highly iterative

program loops. Replaces the first 16 locations

of main core memory.

DUAL MEMORY PROTECTION & RELO-

CATION REGISTERS: provide multipro-

gramming hardware for automatic protection

and relocation of reentrant and non-reentrant

code. (Required for time-sharing.)

Core Memory

Core memories are available in various sizes and speeds.

Each memory stores 36 data bits plus a parity bit and each

operates asynchronously with respect to the central pro-

cessor.and channel, establishing its own independent tim-

ing cycle.

MAI0

MAIOA

MCI10

MD10

CORE MEMORY: 16,384 words, 1.00 ps

cycle time. Each is supplied with one memory

port with cables. Up to three MC10 Additional

Memory Access Ports may be added, allowing

access to a total of four processors and/or

channels.

CORE MEMORY: 8,192 words, 1.00 ps cycle
time. Each is supplied with one memory port

with cables. Up to three MC10 Additional

Memory Access Ports may be added, allowing

access to a total of four processors and/or

channels.

ADDITIONAL MEMORY ACCESS PORT:

provides the additional cables and logic to con-

nect an additional processor/channel to a

MAI0, MAIOA, or MB10 memory port.

CORE MEMORY: 32,768 words, 1.80 ys

cycle time. Supplied with four memory access

ports and a memory cable set for one of these

ports. Up to three additional BS10A memory

cable sets are optional.

MDI0E

BSLOA

DFI10

RC10

RD10

RBIOA

RB10C

RP10

RPO2

RPO2P

CORE MEMORY EXPANSION MODULE:

32,768 words, 1.80 js cycle time. Up to three

may be added to each MD10.

ADDITIONAL MEMORY CABLE SETS:

for the MD10.

DATA CHANNEL: permits data transfers

between high speed devices and core memory.

It will service up to eight high speed devices

such as RC10, RB1O, and RP10.

Disk Systems

SWAPPING DISK CONTROL: provides

control for up to 4 RD10 disk files. It gon-

nects to the DF10 data channel which provides

a direct path to memory and requires at least

one RD10.

SWAPPING DISK FILE: stores 512,000 36-

bit words. Average latency time, 17 ms. Trans-

fer rate is 13.3 ys per 36-bit word.

The RD10 provides high speed swapping of

programs directly in and out of core memory

in timesharing systems. The RD10 can also be

used for user file storage. Up to 4 RD10’s can

be connected to one RC1O disk control unit.

STORAGE DISK FILE (dual positioning) :

stores from 20,971,520 to 104,857,600 36-bit

words in multiples of 8,388,608 words. Aver-

age access time is 190 ms. Transfer rate ranges

from 22.5 ps to 72 1s per word depending on
zone being accessed. Dual head positioning

arms permit overlapping of data transfer and

seek operations. Basic unit includes six disks

and RA10 Disk Control.

ADDITIONAL DISK: a maximum of 20

disks (each with a capacity of 4,194,304

words) can be added to the basic RBI1O.

(Please specify in even multiples of two

RB10C’s.)
DISK PACK CONTROL: provides control of

up to eight RPO2 Disk Pack Drives. Requires

the DF10 data channel which provides a direct

path to memory. Also requires at least one

RPO2,

DISK PACK DRIVE: The RP02 provides

storage for up to 5,196,800 36-bit words on

interchangeable disk packs. Average access

time is 62.5 ms, including 12.5 ms average

rotational latency. Transfer rate is 15 jys/
word. Requires RP10 Control. Includes one

RPO2P pack.

DISK PACK: Pack for RPO2 Disk Pack

Drive.

TD10

TUS5

TMI0A

TM10B

TM10C

TU20A

TU20B

TU30A

TU30B

Magnetic Tape Systems

DECtape CONTROL: provides control for up

to eight TUS55 DECtape transports. Requires
at least two TUS5 transports. (One TD10

control is required with every PDP-10

system.)

DECtape UNIT: reads and writes magnetic

tape at a 15K characters/second rate. (Tapes

are 34% in. diameter, 260 ft. long and % in.

wide.) Tape units are bi-directional and re-

dundantly recorded. Each tape has a directory,

allowing random access to user files. (Two

DECtape units are required per PDP-10

system.) :

MAGNETIC TAPE CONTROL: controls up

to eight tape transports. Permits reading either

7 or 9 channel (or combination of both)

industry standard tape.+ Requires at least one

DEC magnetic tape unit of the types shown

below. Magnetic tape unit types may be inter-

mixed on a single control.

MAGNETIC TAPE CONTROL: same as

TMIOA but provides for data channel opera-

tion. Requires a DF10 data channel.

TM10B MODIFICATION KIT: provides

necessary components for converting a

TMI10A Magnetic Tape Control to a TM10B. :

MAGNETIC TAPE UNIT: reads and writes

9-channel USASI standard} magnetic tape at

45 inches/second and a density of 800 bits/

inch.

MAGNETIC TAPE UNIT: reads and writes .

7-channel industry standard tape at 45 inches/

second and densities of 200, 556, and 800

bits/inch (36K characters/second).

MAGNETIC TAPE UNIT: reads and writes

9-channel USASI standard} magnetic tape at

75 inches/second and density of 800 bits/

inch (60K characters/second).

MAGNETIC TAPE UNIT: reads and writes

7-channel industry standard tape at 75 inches/

second, and densities of 200, 556 and 800

bits/inch (60K characters/second).

Input/Output Devices

Punched Card Equipment

CRI0A CARD READER: reads 80-column punched

cards at 1,000 cards/min (800 cards/min in

systems using 50 Hz power). Card Hopper

and stacker capacities are 1,000 cards.

+USASI X3.22-1968 Recorded Magnetic Tape for Information Interchange.

630

CP10A CARD PUNCH: punches cards at a rate of

200 cards/min when punching in all 80

columns. A maximum rate of 365 cards/min

is possible when only the first 16 columns are

punched. Card Hopper and stacker capacities

are 1,000 cards. ‘

Line Printers
Lines/ Columns/ ©

Characters Minute Line

LPIOA LINE PRINTER 64 300 132

LP10C LINE PRINTER 64 1,000 132

LP10D LINE PRINTER 96 600 132

LP10E LINE PRINTER 128 500 132

Plotters

XY10 PLOTTER CONTROL: interface for Cal-

Comp 500 and 600 series digital incremental

plotters.

XYIOA PLOTTER AND CONTROL

Cal Comp Speed Width
Plotter Step (Steps/ (Inches)
Model Size Minute) Paper

XY10(565) 0.0linches 18,000 12

0.005 inches 18,000

0.1 mm. 18,000

XY10B PLOTTER AND CONTROL

XY10(563) 0.01 inches 12,000 31

0.005 inches 18,000

0.1 mm. 18,000

Data Communication Equipment

Data Line Scanner

Data Line Scanner provides on-line servicing of up to 64
communication lines. Accommodates any device which uses

eight level serial teletype code at speeds up to 100 kilobaud.
Full duplex with local copy, and half duplex data modes are
available on each line serviced.

DCIOA CONTROL UNIT: the scanner and control

unit for the DC10 communication controller

provides 4 units of cabinet space and power

supplies for various combinations of line

equipment.

DC10B 8-LINE GROUP UNIT: provides teletype

interface for up to 8 local lines, full duplex.

May be used with duplex or full duplex with

local copy data sets. When used with data sets,

communications must be established, main-

tained, and terminated manually, unless

DC10E Expanded Data Set Control Units are

provided. Requires one unit of cabinet space

in a DCIOA or DCIOF.

8-LINE TELEGRAPH RELAY ASSEM-

BLY: provides conversion from local to long

lines using full or half-duplex facilities. Re-

quires two units of cabinet space in a DCI0A

or DC1OF.

TELEGRAPH POWER SUPPLY: the stan-

dard line voltage supply used with DC10C

(120V dc at 2 amperes). No additional cabinet

space required.

EXPANDED DATA SET CONTROL: pro-

vides expanded control of eight data sets in

the DC10 system. Requires two units of cabi-

net space in a DCIOA or DCIOF.

EXPANDER CABINET: provides eight units

of cabinet space and power supplies for ex-

pansion beyond capacity of DCIOA.

DCLOC

DC10D

DCIOE

DC10F

‘680/I Data Communication System

680/I Data Communication System provides on-line ser-

vicing of up to 63 communication lines. System handles 8

level serial teletype code at speeds of 110, 150, or 300 baud.

Terminals may be local or remote via modems (data sets).

To configure a 680/1 system, determine the number of lines,

both local and data set. Add to the basic communication

system enough M750 dual serial line adapters for the total

line capacity. (The maximum number of lines is 63.) A

680/I system must include one DCO68A. If there are any

local teletypes, a DCO8B is required. If there are more than

48 local teletypes, a second DCOS8B is required. Each data

set line requires one 689LM. If there are I to 32 data set

lines, one 689AG is required. If there are more than 32

data set lines, a second 689AG is required.

BASIC COMMUNICATION SYSTEM: in-

cludes hardware common to any 680/I system

for PDP-10 use. Additional options listed

below are required to implement a specific

number of local or data set lines. The DC68A

basic system includes one DA10 PDP-8/

PDP-10 interface, one PDP-8/I-D computer

(rack mounted with 4K of memory with

MP8/I parity option, and an ASR33_ tele-

printer), one DWO8A negative bus adapter,

one DL8/I serial line adapter, one DCO8A

serial line multiplexor, and DCO8Y clocks for

110, 150, and 300 baud.

DC68A

M750 DUAL SERIAL LINE ADAPTER: imple-

ments two full duplex channels in the basic

communication system. One unit is required

for every two local or data set lines.

DCO8B LOCAL LINE PANEL: accommodates up to

48 local terminals suitable for direct 680/1

connection.

631

- 689AG MODEM INTERFACE: provides control

interface and mounting space for up to 32

689LM’s.

689LM MODEM INTERFACE AND CONTROL:

provides complete interfacing to and control

of one BELL 100 series modem (data set)

or equivalent.

Teletypes and Terminals

For Local DC10 Use

LT33A TELEPRINTER: 33TS machine (KSR33,

friction feed).

LT33B TELEPRINTER: 33TY machine (ASR33,

sprocket feed, automatic reader control XON/

XOFF feature).

LT35A TELEPRINTER: VSL312HF machine

(KSR35, sprocket feed).

LT37AC TELEPRINTER: KSR37, sprocket feed, 60

Hz Operation only. Also suitable for use with

Bell System 103-type data set or equivalent.

For Local 680/I Use

TELEPRINTER: 33TS machine (KSR33,

friction feed).

TELEPRINTER: 33TY machine (ASR33,

sprocket feed, automatic reader control XON/

XOFF feature).

TELEPRINTER: VSL312HF machine -

(KSR35, sprocket feed).

LT33C

LT33H

iss

Display Systems

PRECISION INCREMENTAL CRT DIS-

PLAY: plots points, lines, vectors, and char-

acters on a 9% in. square raster of 1,024

points along each axis. 142 ps is required per

point in vector, increment, and character

modes. Random point plotting rate of 35s.

A 370 high-speed Light Pen is included.

CHARACTER GENERATOR for 346/340B

PRECISION POINT PLOTTING DISPLAY:

operates at a maximum plotting rate of 20 KC

or one point every 50 ys on a 9% in. x 9%

in. display area. Number of addressable points

along each axis is 1024. A 370 high-speed

Light Pen is included.

POINT PLOTTING DISPLAY CONTROL:

operates at either of two maximum plotting

rates. Low rate is 10 KC (one point every

100 ps). High rate is 50 KC (one point every

20 ps). Number of addressable points along

each axis is 1024. Control interfaces to a cus-

tomer supplied oscilloscope (Tektronix Type

RMS503~or equivalent) or to a CRT display.

HIGH SPEED LIGHT PEN: for use with

VP10.

346/340B

342B

348/VR30

VP10

370

® 632

Miscellaneous

DA10 PDP-8 or PDP-9 to PDP-10 INTERFACE GP10 GENERAL PURPOSE INTERFACE TO
PDP-10 I/O BUS: includes cabinet, two 728
power supplies, one 844 power control, indi-
cators, end panels, fan, convenience outlet DK10 PROGRAMMABLE REAL TIME CLOCK: with fans, and BS10A/15 ft. cable set. Logic
provides a status register, device decoding,
read-in gating and line buffering.

unit is supplied with a crystal oscillator which

provides a resolution of 10 ps.

CENTRAL
1/0 BI

PROCESSOR seus
MEMORY MODULE
(16,384 woRDs)

LINE
PRINTER

MEMORY MODULE a |
(16,384 WORDS) ie

STING

CONTROL
ae

1
1 up TOs | DISK FILES TAPE UNITS DEC TAPES MOLEHEKGe ae

DATA
CHANNEL

DISK PACKS
TOTAL MEMORY TO
262,144 WORDS

' (OVER 1.3 BYTES)
UP TO8

[2] cio aovitional MEMORY Access PORT
@)ss10A ADDITIONAL MEMORY CABLE SET

TYPICAL PDP-10 SYSTEM CONFIGURATION

633

Appendix B

PDP-10 Software

Table B-1l shows the DEC-supplied system software

(CUSPs) currently available to PDP-10 users.

Table B-l

PDP-10 Software

See description in PDP-10

User's Bookshelf in Appendix C.

BATCH ' See PDP-10 User's Bookshelf

in Appendix Ci

BINCOM . Documented in this handbook.

*CHKPNT Saves current charge file and

initiates a new one.

CODE See PDP-10 User's Bookshelf

(supplementary documents) in
Appendix C..

*COMPIL Documented in this handbook.

COPY See PDP-10 User's Bookshelf

(supplementary documents) in
Appendix C.

Documented in this handbook.

Loads system to disk from
DECtape.

Documented in this handbook.

Snapshot of disk.

EDITOR Documented in this handbook.

*FATLSAFE Saves the contents of disk
on magtape and later restores
these contents back onto the

dusk.

634

Table B-1 (cont)

PDP-10 Software

———————— On

*FILDDT Debugging aid for the Monitor.

See PDP-10 User's Bookshelf

in Appendix C.

LOADER Documented in this handbook.

*LOGIN Documented in this handbook

*LOGOUT Documented in this handbook.

MACRO Documented in this handbook.

Prints selected system files.

Alters system accounting file
(login numbers and codes).

*STACK See PDP-10 User's Bookshelf
in Appendix C.

*SYSTAT : Snapshot of time-sharing system

TECO 3 ' Documented in this handbook.

TENDMP Documented in this handbook.

*Currently available in disk systems only

octo users loookshelF
A Bibliography of PDP-10 Programming Documents OCTOBER, 1969

Software documents in this bibliography can be obtained from Digital Sales Offices or by sending a written request (with check
or money order) to Program Library, Digital Equipment Corporation, Maynard, Massachusetts 01754. The following key, which
indicates the current status of software manuals and their relationship to preceding editions, is designed to help the reader de-
termine whether the present content of a given manual meets his needs.

(1) New signifies that the manual is being
published for. the first time (desig-
nated by a box).

(2) Major Revision _ signifies that new capabilities and/
or changed procedures have been
incorporated in the manual (desig-
nated by an asterisk).

(3) Minor Revision — signifies that the manual remains
essentially the same as its predeces-
sor.

(4) Manuals that are unchanged since the last bibliogra-
phy are shown with only the date of publication after
the title. -

Minor Revision

‘ August, 1969
An indexed programmer’s handbook that describes the PDP-
10 processor and the basic instruction repertoire. Following
an. introduction to the PDP-10’s central processor structure,
general word format, memory characteristics, and assembler
source-programming conventions, this manual presents the
specific instruction format, mnemonic and octal op codes,
functions, timing formulas, and examples of each of the basic
instructions. Several helpful appendices, including mnemonic
op code tables, algorithms and timing charts, complete the
manual. : :
Order No. DEC-10-HGAC-D $5.00

*Time-Sharing Monitors:
Multiprogramming Monitor (10/40) Major Revision
Swapping Monitor (10/50) August, 1969

A complete guide to the use of the PDP-10’s two powerful,
real-time, multiprogramming, time-sharing Monitors. Both
Monitors schedule multiple-user time sharing of the system,
allocate facilities to programs, accept input from and direct
output to all system I/O devices, and relocate and protect
user programs in storage. This manual details user interac-
tion with the Monitors, from both a programming and oper-
ating viewpoint, and contains several quick-reference tables
of commonly used Monitor commands and parameters, as
well as examples of user coding.
Order No. DEC-T9-MTZA-D $3.00

AID (Algebraic Interpretive Dialogue) October, 1968

A ‘hands-on’ guide to the use of AID at the Teletype console.
AID, a PDP-10 version of JOSS 4, is an on-line system which
provides each user with a personal computing service utilizing
a conversational algebraic language. This manual describes
the use of the Teletype, the syntax and general rules governing
the AID language, and each of the AID commands, with ap-
propriate examples.
Order No. DEC-10-AJBO-D $3.00

1JOSS is a trademark and service mark of the RAND Corporation
for its computer program and services using that program.

PDP-10 System Reference Manual

Single-User Monitor Systems November, 1968
A complete guide to the use of the Single-User Monitor, which
performs fast job-to-job sequencing, provides I/O service for
all standard devices, and is upward compatible with the Time-
Sharing systems. This manual contains the same type of help-
ful information as the Time-Sharing manual described above.
Order No. DEC-10-MKDO-D | $2.00

Batch Processor (Batch) and Job Stacker (Stack)
May, 1969

An indexed manual containing all information required -to
prepare and run user jobs under control of the Batch Proces- _
sor in either a single-user or time-sharing environment. Batch
supervises the sequential execution of a series of jobs with a
minimum of operator attention, yet allows the operator to in-
terrupt, skip, repeat, or prematurely terminate one or more
of the jobs in the series at any time. Job Stacker is used in
conjunction with Batch to (1) transfer job files to the Batch
input device and stack them there for subsequent input to
Batch, (2) transfer Batch output job files from the Batch out- .

put device to some other device, (3) list job file directories,
(4) delete job files, and (5) list directories with selective file '

deletion or transfer.
Order No. DEC-10-MBAC-D $1.00

*System User’s Guide Major Revision, Available
August, 1969

A fact-filled operations guide designed for handy reference
at the user’s Téletype console. Contains the basics of Tele-
type usage and complete operating procedures for all Com-
monly Used Service Programs (CUSP’S). Includes complete

write-ups on DECtape Editor, Advanced BASIC, LINED,

CCL (Concise Command Language), and Linking Loader. A
typical chapter includes a brief description of the program,
its operating environment, initialization procedures, command
string formats, special switches, diagnostic messages, and in-
depth examples. The manual is tab-indexed for the user’s con-
venience.
Order No. DEC-10-NGCC-D $10.00

COBOL LANGUAGE August, 1969
A reference manual designed to aid the user in writing
COBOL programs for the PDP-10. Each COBOL language
element is accorded a detailed treatment that explains and
demonstrates its use in a variety of programming contexts.
The four major divisions of a COBOL program and their
conventional formats are clearly described and effectively
illustrated. Other subjects given extended coverage in this
manual are the COBOL library, COBOL reserved words,

and the CALL procedure. Each chapter contains numerous
examples of the efficient use of the components of a COBOL
program. Indexed.
Order No. DEC-10-KC1A-D - $6.00

TECO (Text Editor and Corrector) Minor Revision,
August, 1969

This programmer’s reference manual describes the powerful '
context editor for the PDP-10. Editing is done on a character,
line or variable character string basis. Describes more than
30 commands for inserting, deleting, appending, searching for,
and displaying text.
Order No. DEC-10-ETEC-D $1.50

fo

FORTRAN IV September, 1968
This manual describes statements and features of FORTRAN
IV on the PDP-10. Includes descriptions of library functions,
calling library subroutines from the Science Library, and the
FORTRAN IV operating System. An appendix contains lan-
guage differences for those using the small (5.5K) PDP-10
FORTRAN Compiler.
Order No. DEC-10-AFCO-D $2400

ADVANCED BASIC Minor Revision, August, 1969
A valuable guide to the BASIC® commands needed for a more
efficient expression of scientific, business, and educational
problems. The manual contains complete tutorial explanations
of these additional features: (1) matrix computations; (2)
alphanumeric information handling; (3) program control and
storage facilities; (4) program editing capabilities; (5) for-
matting of Teletype output; and (6) documentation and de-
bugging aids.
Order No. DEC-10-KJZB-D . $3.50

PIP (Peripheral Interchange Program) November, 1968
Explains how PIP is used to transfer data files between stand-
ard peripheral devices. Shows how command strings are writ-
ten, describes switches available for optional functions, tech-
niques for handling file directories, error messages and other
features,
Order No. DEC-10-PPCO-D $1.00

Science Library and Fortran Utility Subprograms
4 October, 1968

A general reference manual covering Science Library arith-
metic function and utility subprograms and FORTRAN IV
nonmathematical utility subprograms (e.g., CHAIN, PDUMP,
DATE, TIME). A functional description followed by the call-
ing sequence, list of external subprograms called, entry points,
and subprogram length, is given for each subprogram. In
addition, the type of argument(s) and result, a description of
the algorithm used, and a discussion of the accuracy of the
algorithm are given for each function. Appendices contain
information on error analyses, double-precision format and
input conversion, a bibliography, and average run times.
Order No. DEC-10-SFLC-D $4.00

MACRO-10 Assembler Minor Revision, October, 1969
The programmer’s reference manual for the PDP-10 assembly
system. Explains format of statements, use of pseudo-oper-
ations, and coding of macro instructions which make MACRO-
10 one of the most powerful assemblers available.
Order No. DEC-10-AMZA-D $3.00

PDP-10 Reference Card May, 1968
A handy pocket-sized guide to instruction mnemonics, hard- a re

® Registered: Trustees of Dartmouth College

ware and software (Monitor system) word formats, and in-
struction codes.

Order No. DEC-10-J 00 A-D $0.25

PDP-10 Interface Manual May, 1968

A complete guide to the process of interfacing any type of
experimental apparatus, special purpose I/O devices, or other
user-constructed items to the PDP-10 system. This manual
details user time-sharing, I/O bus, console, memory bus, and
channel bus requirements and provides other information use-
ful to both the novice experimenter and the advanced logic
designer.

Order No. DEC-10-HIFB-D $10.00

Minor Revision,
; April 1969

This reference manual describes the dynamic debugging pro-
gram used for on-line checkout and testing of MACRO-10
and FORTRAN programs. The commands of DDT are
grouped so that they can be used easily and effectively by
both the uninitiated user and the experienced programmer.
Included in the appendices is an informative summary of all
DDT functions.
Order No. DEC-10-CDDC-D $1.00

DDT-10 (Dynamic Debugging Technique)

The following supplementary documents are also available
from the Program Library.

Concise Command Language
(CCL) for the PDP-10
Time-Sharing Monitors

CHAIN (Reads CHAIN Files
into Core and Links Them

DEC-10-RWDA-D $1.00

to Resident Programs) DEC-10-LOVB-D 1.00
PDP-10 ASCII/BCD Code :

Conversion Program .
(CODE) ; DEC-10-YNZA-D 1.00

PDP-10 DECtape Copy
Program (COPY) DEC-10-RPTA-D 1.00

FAILSAFE—Disk Save and ;
Restore Program DEC-10-YPDA-D 1.00

FORTRAN IV Software

Maintenance Memos DEC-10-KF1A-D 1.00
GLOB (Global Symbol

Cross-Reference List) DEC-10-YRZA-D 1.00
LINED—A Line Editor for

PDP-10 Disk Files DEC-10-EZDA-D 1.00
Linking Loader V.27 DEC-10-LLZA-D 1.00
MACRO V.24 Addendum

(Supplements MACRO-10 No
Assembler Manual) DEC-10-AMBO-DN _ Charge

FORTRAN IV Utility Sub-
programs (RELEAS,
MAGDEN, BUFFER,

IFILE, and OFILE) DEC-10-FIYB-D 1.00
TENDUMP—DECtape

Utility Program DEC-10-LZYC-D 1.00
PDP-8 Scan 680 for PDP-10 DEC-10-RSCB-D 1.00
DCO8A/689AG Data Line

Scanner for PDP-10 DEC-10-RWVA-D 1.00
Software Manual Update,

August 1969 (Insert
Pages for Updating
PDP-10 Software

Documents) (No Order No.) 1.00

MASTER INDEX/GLOSSARY

Page numbers are those which appear in
boldface at the top center of each page.

Absolute address:
An address that is permanently
assigned by the machine designer
to a storage location. See Moni-
tor 354.

Absolute binary programs, 250
Absolute coding:

Coding that uses machine instruc-
tions with absolute addresses.

AC, 20
Access: ®

See random access, remote access,
serial access.

Access time:
(1) The time interval between the
instant at which data are called
for from a storage device and the
instant delivery is started.
(2) The time interval between the

instant at which data are rer
quested to be stored and the in-
stant at which storage is started.
(3) See page 15

Accumulator, 9, 15, 354

ADDyls/pee Ss
Address:

(1) An identification, as repre-
sented by a name, label, or number,

for a register, location in stor-

age, or any other data source or
destination such as the location

of a station in a communication
network.
(2) Loosely, any part of an in-
struction that specifies the loca-
tion of an operand for the instruc-
tion.

Address assignments, 205-207

indexing, 206
indirect, 206
literals, 206
location counter, 205,361

Address break, 98, 106, 107

-Address format:
The arrangement of the address
parts of an instruction.

Address mode,

absolute, 211

relocatable, 211

Addressing, 9, 48

AID, 635
Algorithm:

A prescribed set of well-defined

rules or processes for the solu-
tion of a problem in a finite num-
ber of steps, e.g., a full state-

ment of an arithmetic procedure
for evaluating SINX to a stated
precision, Contrast with heuris-

(ener,
(1) fixed point, 176-181
(2) floating point, 181-186

Allocation:
See storage allocation.

Allocation of devices, 315
Alphabet:

(1) An ordered set of all the
letters and associated marks used

in a language.
(2) An ordered set of letters

used in a language, e.g., the 128

characters of the USASCII alpha-

bet. ;

Alphanumeric:
Pertaining to a character set that
contains both letters and digits
and usually other characters such
as punctuation marks. Synonymous

with alphameric. :
AND, 38
ANDCA, 38
ANDCB, 39

ANDCM, 38
AOBJN, 59

AOBJP, 59

AOJ, 62
AOS, 63
APR, OL; 97, LOL
AR (address register), 8

Argument:
An independent variable, e.g., in
looking up a quantity in a table,
the number, or any of the numbers
that identifies the location of
the desired value.

Arithmetic and logical operations,
203

shift, 44, 49

testing, 59-64
Arithmetic testing, 59-64
Array:

An arrangement of elements in one

or more dimensions.
AS (address switch register), 7, 8

ASCII:

Same as USASCII.

Standard, 220, 240

ASCIZ, 220

ASH, =427 59.
ASHC, 42, 50

Assemble:

To prepare a machine language pro-
gram from a symbolic language pro-
gram by substituting absolute
Operation codes for symbolic op-
eration codes and absolute or re-
locatable addresses for symbolic
addresses. See MACRO-10.

Assembler: ;
(1) A:computer program which
accepts symbolic code and trans-
lates it into machine instruc-
tions, item for item. See
MACRO-10.
(2) evaluation of statements
and expressions, 267
(3) interpretation of Macros, 271

Assembler statements, 211
allocation of storage, 224
control statements, 227
processing, 223

Assembling TENDMP, 625
Assembly

Listing, 247
Output, 247

ASSIGN command, 316, 348
ASSIGN SYS command, 348, 425
Asynchronous:

The PDP-10 hardware does not rely
on an internal clock to indicate
by signal that one Operation has
been executed before beginning a
second operation.

ATTACH command, 345, 348
$s

B operator (binary shift), 202°
Background Job Control Monitor Com-

mands
ATTACH job, 345
CCONT, 344

CSTART, 344

DETACH, 344
PJOB, 344

Background processing:
The automatic execution of lower
priority computer programs when
higher priority programs are not
using the system resources,

Base:

(1) A reference value.
(2) A number that is multiplied
by itself as many times as indi-
cated by an exponent.
(3) Same as radix.

Base address:
A given address from which an abso-
lute address is derived by combina-
tion with a relative address. See
memory protect, virtual memory.

BASIC (Advanced), 636
Batch, 635
Batch processing:

Pertaining to the technique of
executing a set of computer pro-
grams such that each is completed
before the next program of the set

is started.
Loosely, the execution of computer
programs serially.

Bell character: i
A communication control character
intended for use when there is a
need to call for human attention.
It may activate alarm or other
attention devices. Abbreviated
BELL. :

Benchmark problem:
A problem used to evaluate the per-
formance of computers relative to
each other,

Binary:
(1) Pertaining to a characteristic
or property involving a selection,
choice, or condition in which there
are two possibilities.
(2) Pertaining to the numeration
system with a radix of two.
(3) See 89, 111, 112, 116
(4) arithmetic, see 10.

Binary code:

A code that makes use of exactly
two distinct characters, usually
0 and 1.

Binary-coded decimal notation:
Positional notation in which the
individual decimal digits express-
ing a number in decimal notation
are each represented by a binary
numeral, e.g., the number twenty-
three is represented by 0010 0011
in the 8-4-2-1 type of binary-
coded decimal notation and by
10111 in binary notation. Synony-
mous with BCD,

Binary Compare, 618-620
commands, 618-619
diagnostic messages, 619-620
initialization, 618
On CUSP, 634
requirements, 618

Binary digit:
In binary notation, either of the
characters, 0 or l. Abbreviated
Joyniie & :

Binary program output
absolute, 247, 250
relocatable, 248

Binary shifting, 201
BINCOM, see binary compare
Bit:

(1) A binary digit.
(2) See parity bit,
(3) Position determination, see
200.

Bits, file status, 398
BLK1, 88, 190, 193
BLKO, 88, 193
BLOCK, 221

Block:
(1) A set of things, such as
words, characters, or digits

handled as a unit.
(2) A collection of contiguous
records recorded as a unit.
Blocks are separated by interblock
gaps and each block may contain
one or more records.
(3) A group of bits, or binary
digits, transmitted as a unit over
which an encoding procedure is
generally applied for error-control
purposes.

Block gap:
An area on a data medium used to
indicate the end of a block or
record, Synonymous with inter-

‘block gap.
Block I/O, 88
Block length:

A measure of the size of a block,
usually specified in units such
as records, words, computer words,
or characters. .

Block transfer:
The process of transmitting one
or more blocks of data where the

data are organized in such blocks.

See 28.
Block types,
BLT, 28
Boolean, 35
Bootstrap:

A technique or device designed to
bring itself into a desired, state
by means of its own action, e.g.,
a machine routine whose first
instructions are sufficient to
bring the rest of itself into the
computer from an input device.
See 15.

BR (buffer register), 9

Branch:
(1) A set of instructions that
are executed between two succesive
decision instructions.
(2) To select a branch as in
(3) A direct path joining two
nodes of a network or graph.
(4) Loosely, a conditional jump.

Branchpoint:
A place in a routine where a
branch is selected.

Breakpoint:
A place in a routine specified by
an instruction, instruction digit,

or other condition, where the
routine may be interrupted by
external intervention or by a
monitor routine. See DDT-10 for
use of breakpoints in debugging.

Buffer:
A routine or storage device used
.to compensate for a difference in
rate of flow of data, or time of
occurrence of events, when trans-

mitting data from one device to

249-251

(1).

639

another. See 127, 128.

Buffer header, 401

Buffer structure,

Buffers
Monitor generated, 402
user generated, 403

396

Bug:
A mistake or malfunction.

Busy (I/O), 89, 112, 116, 117, 119,

128, 134, 140, 142

BYTE 2u7

Byte:

(1) An aggregate of bits whose

size lies between that of a word

and that of a single bit. On the

PDP-10 the byte size is controlled

by the programmer.

(2) manipulation, 33-35

(3) size, altering, 217

size manipulation,

(4) pointer, 33
(5) unpacking subroutine, 257

Byte interrupt, 73, 75, 104
——————_——

218

CAI, 60
CAI, 229
Calculating the logarithm of a com-

plex argument, 256

Cals:
(1) To transfer control to a

specified* closed subroutine.
(2) In communications, the action

‘performed by the calling party, or

the operations necessary in mak-
ing a call, or the effective use
made of a connection between two

stations.
(3) Synonymous with cue.

CALL and CALLI Monitor operations,- 372

Calling sequence:
A specified arrangement of instruc-

tions and data necessary to set up

and call a given subroutine.
Calls, macro (see macro calls)

CAM, 61 : ‘4

Card codes, 162
Card in punch, 141
Card punuh, 1407-144,442

codes, 162-164
data modes, 442
interrupts, 141, 142

operation, 144
timing, 143

Card reader, 136-140,
card codes, 443

codes, 162-164
data modes, 441
interrupts, 137,
operation, 139

timing, 138

Carries, 44
Carry 0, 44,

Carry 1 44, 63, 64, 73

CCONT command, 344, 375,

CDP (card punch), 140-142

44]

138

63, 64, 73

376

Central processing unit:
A unit of a computer that includes
the circuits controlling the inter-
pretation and execution of instruc-
tions. Synonymous with main
frame.

Central processor, 102-109
indicators, 102
operating keys, 105
operating switches, 107

CHAIN, 636

Chained list:

A list in which the items may be
dispersed but in which each item
contains an identifier for locat-
ing the next item to be considered.

Chaining search:

A search technique in which each
item contains an identifier for
locating the next item to be con-
sidered.

Changing the local radix, 215
Channel:

(1) A path along which signals
can be sent, e.g., data channel,
output channel.

(2) A partially autonomous por-
tion of the PDP-10 which can over-
lap I/O transmission while compu-
tations proceed simultaneously.

Character:

A letter, digit, or other symbol
that is used as part of the organi-
zation, control or representation
of data. A character is often in
the form of a spatial arrangement
or adjacent or connected strokes.

Character(s) (MACRO-10)
interpretations, 265
strings, 198

Character codes, 48

Character handling in macros, 271
Character string:

A string consisting solely of
characters.

Check bit:

A binary check digit, e.g., a
Pamity spas.

Check character:

A character used for the purpose
of performing a check.

Check sum, 114, 115

CHKPNT, 634 ;

CLEAR (see SETZ), 36

Clear:

To place one or more storage loca-
tions into a prescribed state,

usually zero or the space charac-
ter. Contrast with set.

Clock:

(1) A device that generates
periodic signals used for syn-
chronization.
(2) A device that measures and
indicates time.

(3) A register whose content
changes at regular intervals in
such a way as to measure time.

(4) See 98, 107 (interrupt)

Clock - hardware option programmable,

632
CLOG (sample MACRO program), 256
CLOSE programmed operator, 418
Closed subroutine:

A subroutine that can be stored at
one place and can be connected to
a routine by linkages at one or
more locations. Contrast with
open subroutine.

COBOL (COmmon Business Oriented
Language) :
A business data processing language.

COBOL language
manual, 635

CODE, ASCII-BCD conversion program,
636

Code:
(1) .A set of unambiguous rules
specifying the way in which data
May be represented, e.g., the set
of correspondences in the standard
code for information interchange.
(2) To represent data or a com-
puter program in a symbolic form
that can be accepted by a data
processors

Code set:
A finite and complete set of
representations defined by a code.

Codes
error, 241

text, 269

Collating sequence:
An ordering assigned to a set of
items, such that any two sets in
that assigned order can be col-
lated.

Command execution, 313

Command format
command arguments, 311
command names, 311

Command language:
A source language consisting
primarily of procedural operators,
each capable of involing a func-
tion to be executed.

Commands, DDT

breakpoints, 544-545, 559-563
changing output radix, 557

defining symbols, 566
deleting symbols, 567

miscellaneous, 564-565
modify storage, 542, 549-551

searches, 563-564

typein, 554
EYPCOUES, -552,— 2597-950

Commands, TECO

conditional, 514, 517

delete text, 510

editing, 507

*

insert text, 510
I/O, 506

iteration, 514,

macro, 514, 517

magnetic tape positioning, 505
numeric values and arguments,

opening an I/O file, 509
output data, 510

pointer positioning,
Q-Register, 513, 517,

read a page, 509
search, 512,513,

select I/O device,
termination, 517
typing text, 511

Commands, ‘“TENDMP,

Comments field, 17, 197

COMMON (Subroutine), 380
Communication hardware options

control unit, 630
data line scanner, 630
expanded cabinet, 631

expanded data set control,
telegraph power supply, 631
telegraph relay, 631

Communications system model 680/I

Seley,

515

510
518

SyIEY/
503- 04

626

631

basic system, 631
dual serial line adapter, 631
local line panel, 631

modem interface, 631

Communication with Monitors, 210

COMPIL, 335, 634

Compile:
To prepare a machine language pro-
gram from a computer program
written in another programming
language by making use of the
overall logic structure of the
program, or generating more than
one machine instruction for each
symbolic statement, or both, as

well as performing the function of
an assembler.

Compiler:
A computer program more powerful
than an assembler. A compiler
accepts symbolic code which it
then translates and expands.
Examples in PDP-10 systems:
FORTRAN and COBOL.

COMPILE command, 324

Compile switches, 329
Complement, 10, 37, 38,
Concatenation:

(1) The joining of two strings of
characters to produce a longer

39, 40

string often used to create symbols
in macro defining. See 237
(2) Sof “macros, 272

Conditional assembly, 222
Conditional jump:

A jump that occurs if specified
criteria are met.

Configuration Table entries,
Configuration for PDP-10, 632

381

641

CONE, Si, SS
CONO, 86, 89,
Conservation

memory, 217

storage, 220

CONSO, 88

Console,
data transfers, 91

user's, 309

CONSZ, 87, 88

CONT

command, 339, 375,

instruction, 105
Context switching:

The saving of key registers prior
to switching between jobs, as in
in time sharing.

Control characters, 430
Control count, persia

89, 376
D0; 22

376

COPY, 636

CORE command, 317

Core control, 420
Core memory hardware options

additional access port, 629
cable sets, 629

data channel, 629

expansion module,
Core storage check,

Counter:
A device such as a register or
storage location used to represent
the number of occurrences of an

event.

CPA (see APR), 97
CBU

Central Processing Unit
CR (card reader), 136-138

Create:
A file is created when it has been
opened for writing, written upon,
and closed for the first time.
Only one user may be creating the
file at a time. A segment is
created by the CORE or REMAP UUO.
Logically, GET, R, and RUN comr
mands also do core UUO's.

CREATE command, 321

Created symbols, 235
CREF command, 324
CREF, see cross reference listing

CRE.TMP, 336
Cross reference listing, 604-608

commands, 605-606
diagnostic messages, 607

initialization, 605

monitor commands, 608

requirements, .605
switches, 606-607

CRT display:
Cathode ray tube display.

CSTART command, 344
CTEST command, 348

Current address, 17

CUSP (Commonly Used Systems Programs,

e.g., FORTRAN, PIP, etc.)
CUSP command level, 303, 304

629
312.

' Data blocks,

642

CUSP I/O level,
Cylinder:

A disk can be considered to be a
set of cylinders with one cylinder
corresponding to each position of
the disk arms.

303%, 304

340
364

D command,

D switch,

Data bank:
A comprehensive collection of
libraries of data. For example,
one line of an invoice may form
an item, a complete invoice may
form a record, a complete set of
such records may form a file, the

collection of inventory control
files may form a library, and the
libraries used by an organization
are known as its data bank.
Synonymous with data base.

252
Data channel, 400
DATAI, 87, 88, 90
Data missed, 136,
Data modes

buffered,

unbuffered,
DATAO, 87-90

Data ready,
Data request, 140-143
Data transmission, 412

DAYTIME command, 346

DDT (Dynamic Debugging Technique) :
A program used for on-line testing
and debugging of object programs,
304
command, 339
submode, 432

DDT-10, 537-582
assembly, 567

breakpoints 544-545, 559-563
commands, see commands, DDT

defining symbols, 566
deleting symbols, 566
deleting typing errors, 546, 555
EDD 5/9

entering and leaving, 581
error messages 547, 555
expressions, 544

field separators, 568,
learning to use, 539
loading and saving, 582
loading procedure, 539
paper tape control, 570
proceed counter, 562

137 138

394, 413
394, 413

136-138

569

special character functions, 551,
569

starting the program, 546,552
580
552,

storage map,
symbols, 543,
type in modes, 543,
type out modes, 541,
upper and lower case,

DD10, 633

566-569
553
552
Dil:

DEASSIGN command, 316
Debug:

To detect, locate, and remove mis-

takes from a routine or malfunc-

tions from a computer. Synonymous
with troubleshoot. See 224

DEBUG, Monitor command, 325
Debugging CUSPs, 342
DEC, Macro-10 pseudo-op, 215

Decimal print routine, 83

Decision table:
A table of all contingencies that
are to be considered in the
description of a problem,
together with the actions to be
taken. Decision tables are some-
times used in place of flowcharts
for problem description and docu-
mentation.

Decode:
To apply a set of unambiguous
rules specifying the way in which
data may be restored to a previous
representation, i.e., to reverse
some previous encoding...

DECtape:
A DEC development of convenient,
pocket-sized reels of random
access magnetic tape.
block format, 446

compatibility between DEC
computers, 481

data modes, 445
directory format,
file format, 448

_, programmed operators,

DECtape control, 630

DECtape Editor, 493-497
commands, 493-495

diagnostic messages, 497
examples, 495

initialization, 493
requirements, 493

DECtape unit, 630
DEFINE, 233
Defined symbol,

deletion, 224

Defining and calling macros, 271
DELETE command, 324

Deleted symbols, 199
Deleting file from tape, 624
DEPHASE, 213 &
DEPOSIT, 106

DEPOSIT NEXT, 106

DETACH command, 344
DETACH dev command,
Device code, 17
Device dependent functions,
Device names

logical,
physical, 315,
redefining, 229

Device requirements (MACRO - 10), 195
Device summary, 427
Devices

446

449

TOW:

344, 348

427

318
318

315;

directory, 393
non-directory, 393

Devices, allocation of, 315

DFN, 55

Direct addressing, 13, 16
Direct assignment statements, 199

DIRECT command, 323

Directory device:
A storage retrieval device such as
disk or DECtape which contains a
file describing the layout of
stored data (programs and other

files).
Directory name:

(1) “Project-programmer number"
pair which uniquely identifies a
directory.
(2) The device name in the case
of DECtape or magtape.

Directory, zeroing a, 623

Disk, 461
data modes, 461

structure of files, 462
user programming, 468

Disk hardware options
additional disk, 629

disk pack control, drive, 629
storage file, 629

swapping control, 629
swapping file, 629

Dismissing an interrupt, 93

Display system hardware options
character generator, 631

high-speed light pen, 475, 476, 631
precision incremental CRT, 631
precision point plotting, 631

DIV, 47

Done (1/0),
P28 7 os

Dormant Segment:
Description of a sharable high
segment kept on swapping space and
possibly core which is in no user's
addressing space.

Double equal sign, 199
Double length numbers, 11
Double precision:

(1) Pertaining to the use of two
computer words to represent a

number.
(2). floating point, 85

DPB, 34, 218
DS (register) 7
DSKLST, 634

Dump: ‘

A listing of all variables and
their values or a listing of the
values of all locations in core.

Dumping program onto tape, 623

SOA eal Gell O), = E21,

E, effective address, 13, 19
Monitor command, 339

EDDT, see Dynamic Debugging Technique
EDIT command, 321

EDITOR, see DECtape Editor

643

EDS.TMP, 336

EDT.TMP, 337

Effective address: :
(1) The actual address used, that
is the specified address as modi-
fied by any indexing or indirect
addressing rules.
(2) see 13, 43,
86, 96
(3) MACRO-10,

END, 223, 252
End block, 250
End of card, 136-143
End of file, 137

End of transmission block character

(ETB)

A communication control character

used to indicate the end of a
block of data where data are
divided into blocks for trans-
mission purposes.

Entering data, 214
changing local radix, 215
two half words, 219
under prevailing radix, 214

ENTER programmed operator, 403

495,25, 12, hy

206

ENTER (UUO), 318

ENTRY, 231
Entry block, 249
EOT:

The end of transmission character.

EQV, 41
Error codes (MACRO-10), 241

TNS Dye a dey see
MM, SN, - Olek, 242
OpueR See Ur iy eS

detection, ‘241
Error message:

An indication that an error has
been detected. See 127, 129

ETX:
The end of text character.

EXAMINE NEXT, 105

EXAMINE THIS, 106

Excess 128 code, 11

EXCH, 27 3
EXECUTE command,

Executive mode,
EXP, 216
Exponent overflow, underflow, 53=59

Expressions, 203
evaluating, 204
nested, 204
priority of operations, 204

relocatable, 245
Extended instructions,
EXTERN, 231

External symbol,

325
365

229

230

Facility allocation Monitor commands
ASSIGN, 316

CORE, 317
DEASSIGN, 316

FINISH, 317

REASSIGN, 316

RESOURCES, 318
TALK, 317

FAD, 56

FADR, 53

FAILSAFE, 634, 636
Fast memory, 9
FDV, 58

FDVR, 54
Field:

In a record, a specified area used

for a particular category of data,
e.g., a group: of card columns used
to represent a wage rate or a set

of bit locations in a computer
word used to express the address
of the operand.

FILDDT, 634

File:
A collection of related records
treated as a unit. In the PDP-10,
a named or unnamed collection of
36 bit words (instructions and/or
data). Length is not restricted
by size of core. One of the uses

of files is to initialize segments
when they are created with in-
structions and/or data. See 392
owner, 408
protection, 408
protection key, 409
selection, 403

status bits, 398

File extension:
1 to 3 alphanumeric characters
usually chosen by the program to
describe the class of information
in file.
extensions, 319
Sie Orpos 0

File manipulation Monitor commands
. COMPILE, 324

CREF, 324
DEBUG, 325

DELETE, 324

DIRECT, 323
EXECUTE, 325

WiSiy S25

LOAD, 325
RENAME, 324

TYPE, 323
File, Monitor handling of

comparison with segments, 307
created, 306

names, 306
superseded, 307

updated, 307
Filename:

1 to 6 alphanumeric characters
chosen by the user to identify
the file. See 319

File structured device:
A device on which data is given
names and arranged into files;
the device also contains
directories of these names.

File update generator, 597, 603
commands, 598-599
diagnostic messages, 602-603
initialization, 597
requirements, 597
switches, 601

Files (temporary)
CRE,TMP, 336
EDS.TMP, 336

EDT.TMP, 337

FOR.TMP, 336

MAC.TMP, 336
PEP TMP, 336

SVC. TMP, 335

FINISH command, 317
Fixed point, 10

arithmetic, 44-50, 64
decimal numbers, 202
double length, 44

Flag:

(1) Any of various types of
indicators used for identifica-
tion,

(2) A character that signals the
occurrence of some condition,
such as the end of a word.
(3) xrestoration, 77

BLAS, (lip eid eo Oi Ovo mal O AP OS:
115

address break, 98, 106, 107

binany 289), edd Moi Tang

busyqi(l/O) ie COpmeleea, 1G ele peer
1287 1384). 140 kao

byte interrupt, 73, 75, 104
card in punch, 141 :
carry 0, 44, 63, 64, 73
Carty 1, «44,7 63, 64,793
clock, 98, 107
data missed, 136, 137, 138
data ready, 136, 137, 138
data request, 140-143
done (I/O), 89, 112, 116, 119,

A287 28 es 4
end of card, 136, 143

ende ots tele amlkoi7,
CErOr sy 27129

floating overflow, 51-58
floating underflow, 51, 52, 53,

SO ieee Oe
interrupt enables, 136
Memory protection, 98, 100
no divide) 517, 154,058) 145 Lod
nonexistent memory, 98, 106, 108
overflow, 44, 49, 51, 52, 53, 54,

DO pe eC yerO Sy AOA) M2 eO8
parity error, 94, 95, 97, 107
power failure, 97
punch on, 140, 142, 143
pushdown overflow, 31, 80, (by SOs)

104

reading card, 136, 138
‘ready to read, 136-138
Stop, §137

tape, 112-114

trap offset, 98
trouble yaks, 1 87,0140; 4

user, 73, 101
user in-out, 74, 86, 96, 98, 104

Floating overflow, c.51-58, 73, 98
Floating point representation, ‘

(1) A numeration system in which
each number, as represented by a
pair of numerals, equals one of
those numerals times a power of an
implicit fixed positive integer
base where the power is equal to
the implicit base raised to the
exponent represented by the other
numeral. See ll
(2) arithmetic, 50-59, 64
(3) decimal numbers, 202
(4) double length, 12, 85

Floating underflow, bi 5'6.,

FMP, 58
FMPR, 54
Foreground processing:

The automatic execution of high
priority programs that have been
designed to preempt the use of the
computing facilities.

Formats, 167
Format characters, rules for handling,

327
FOR. TMP,
FORTRAN

(FORmula TRANslating system):
A language primarily used to ex-

press computer programs by arith-
metic formulas.

FORTRAN IV source programs

creating or modifying, 493, 497

HSBye OW,
RoBi oS

Ho, 52
FUDGE2, see File Update Generator
Full duplex software, 429

Full word data transmission,

Functions, device dependent,
Functions (TENDMP), 621

Cee aIEEEnSnEnIEEEEEEEn

74, 104

336

BYP
427

GET command, 338

GLOB, see global symbol cross

reference list ;
Global request:

Request to the loader to link a

global symbol to a program. A

global request points to the

last reference in the program at

which the global symbol was used.

Each reference in the program

points to the previous reference

to the requested global. Such a

chain is terminated by a non-

relocatable zero address in the

program. Chained globals are

restricted to references appearing

in the address part of a storage

word, Symbolic references to the

AC or index fields cannot be

chained. Locations containing

645

global symbol references must not

be loaded into twice, as unpre-

dictable loader actions may

result.

Global symbol:
Any symbol accessible to other

programs. See 230 ;

Global symbol cross reference list:

609-612
commands, 609, 610

diagnostic messages,
initialization, 609

requirements, 609
switches, 610, 611

612

—————————— ET

Half word data transmission, 20=27
HALT, instruction, 77, 100, 230

HALT command, 339, 370
Handling bytes, 218
Hardcopy equipment, 123-144
Hardware:

Physical equipment, as opposed to

the computer program or method of
use, e.g., mechanical, magnetic,

electrical, or electronic devices

Contrast with software (2).

Heuristic:
Pertaining to exploratory methods

of problem solving in which solu-
tions are discovered by evaluation
of the progress made toward the
final result. Contrast with

algorithm.
High segment:

(1) In the PDP-10 that segment of

the user's core which generally
contains pure code and which can
be shared by other jobs; usually

write protected. (e.g., FORTRAN

compiler).
(2) Block load into,

HISEG pseudo-op, 312
HISEG statements, 232

Hn ay ee Olea
HLLE, 22
HLLO, 22
Hiazipeeeel
HER, 20, 25
HLRE, 26

HLRO, 26
HLRZ, 26
Hollerith:

Pertaining to a particular type
of code or punched card utilizing
12 rows per column and usually
80 columns per card.

HRT eee Olpae ce
HRLE, 23
HRLO, 23
HRLZ, 23

HRR, 20, 24
HRRE, 25
HRRO, 25

HRRZ, 24

249

H switch @oader), 361

EBP 34, 28

Identification, 378

EDEV, 47
Idle segment: :

A sharable high segment which no users in

core are using, however, at least one

swapped-out user is using, else it would

be a dormant segment. /

EDPB, S429

TE 222
IDE A)
IFIDN, 222
TLDB, 34,- 218
Immediate mode addressing:

Process through which the right
half of a word gives the operand

and not the address.
Impure code:

That code which is modified during
the course of a run, e.g., data

tables.

Impure segment, 99
IMUL, 46

Indefinite repeat, 237
Indexing, 206, 208

index xregusiters!, 97 2b3%— 14 E56 27 7279

Indicators, 102
MEMORY STOP, 104

PI ON, 104

PROGRAM STOP, 104

RUN, 103
USER MODE, 104

Indicator panels, 172
Indirect address:

A single instruction address that
is at once the address of another
address. The second address is

the specific address of the data
to be processed. If the second

address is also an indirect
address, it is known as second-

level indirect addressing, and so
on to other levels.

Indirect addressing, 3,14,16,49,51,77,206
Information retrieval:

The methods and procedures for re-

covering specific information from
stored data.

INIT (UUO), 368

Initialization,

Buffer, 402
Device, 400, 411

Job, 399
Initialize:

To set counters, switches, and
addresses to zero or other starting
values at the beginning of, or at

prescribed points in, a computer
routine.

In-out bit assignments, 170

In-out devices, 156, 170

Input-output, see 1/0

Input data word formatting, 217
INPUT (UUO), 368
Instruction: ;

A statement that specifies an operation,
and the values or locations of its

operands. In this context, the term
instruction is preferable to the
terms command or order which are

sometimes used synonymously.

instructions (illegal), 370
Instructions,

arithmetic testing, 59
byte, 34
fixed point, 45
floating point, 52

without rounding, 55
with rounding, 53

full word, 27
half word, 21
in-out, 86

jump, 74

logic, 36
logical testing, 66
move, 29

pushdown, 31, 80

shift, 43, 49
rotate, 43

Instruction flow, 106

Instruction -.formats, 12-14, 207

input-output, 209
primary, 210

Instruction times, 19

“Interactive time-sharing:
Denotes response between the computer
system such as the PDP-10 time-
sharing system in which many users

at Teletypes can develop and execute
programs simultaneously.

Interface, hardware options,
to PDP-10 interface, 632
to PDP-10 I/O bus, 632

Interleaving:
To insert segments of one program

into another program so that the
two programs can, in effect, be

executed simultaneously; e.g., a
technique used in multi-programming.

Interlock, 64

INTERN, 231

Internal request, 250
Internal symbol:

A symbol generating a global definition
which can be used to satisfy all

global requests for that symbol.
See 230

Interpreter:

A routine such as a Command String

Interpreter that translates and
stores each source language state-
ment before translating and storing
the next one.

Interpretive compiler:
A routine which, as the computation
progresses, translates a stored

program expressed in some machine-
like pseudo code into machine code
and performs the indicated oper-
ations, by means of subroutines,

as they are translated. (e.g., AID)
Interrupt, 91, 96

(1) A temporary disruption of the

normal operation of a routine by
a special signal from the computer,
e.g., for I/O purposes.
(2) channel, 117
(3) dismissing, 93

(4) instructions, 94
(5) requests, 92
(6) starting, 92

Interrupt enabled, 136

I/O device hardware options,
card punch, 630
card reader, 630

line printer, 630

plotter, 630
I/O (Input/Output),

(1) Input or output or both.

(2) See 78, 86-91

(3) codes, 157-169
(4) instruction format, 209

I/O instructions, 369

IOR, 39

IOWD, 219
IR (index register), 8
IRP, 237
IRPC, 238

example, 258

VERN Oye 250
JCRYO, 75, 230
VDCRVA ue) Dipsee 0
JEN, 77, 230
JFCL, 75
JFFO, 74

JFOV, 75, 230
Job:

A specified group of tasks pre-
scribed as a unit of work for a
computer. By extension a job .
usually includes all necessary
computer programs, linkages, files
and instructions to the Monitor.
See 299, 309

attached mode, : 309
detached mode, 309
number check, 312
termination Monitor command,
KJOB, 345

Job data area:
The first 140 octal locations of a
user's core area. This area pro-
vides storage for items used by
both the Monitor and the user
program. See page 356

JOBAPR, 358, 376
JOBBLT, 357

JOBCHN, 358

JOBCN6, 357

JOBCNI, 358, 376

JOBCOR, 358
JOBDA, 359
JOBDDT, 357

JOBERR, 356
JOB41, 356
JOBFF, 358
JOBHRL, 357
JOBOPC, 358
JOBREL, 356

JOBREN, 358
JOBSA, 358
JOBSYM, 357

JOBTPC, 358, 376 =

JOBUSY, 357

JOBUUO, 356
JOBVER, 358

VOW ely 230
JRA, 79
SRST, 76, 77, 230
OSA, 79
JSP, 76, 78
WSR, JD, 78
JUMP, 61

Jump :

A departure from the normal se-

quence of executing instructions,

synonymous with transfer (Cys

Justify:
3

(1) To adjust the printing posi-

tions of characters on a page So

that the lines have the desired |

length and that both the left

and right hand margins are

regular.

(2) By extension, to shift the

contents of a register so that
the most or the least significant
digit is at some specified posi-
tion in the register. Contrast
with normalize.
ED,

(1) An abbreviation for the prefix
file, i.e., 1000 in decimal

notation.
(2) In automatic data processing,
loosely, two to the tenth power,
1024 in decimal notation.

Keys, 105
KJOB command, 345

K switch, 364

Labels, 196, 197
LALL, 226
Latency:

The time delay while waiting for
a rotating memory to reach a

given location as desired by the
user. The average latency is one

half the revolution time.
LDB, 34, 218
Leader:

The blank section of tape at the

beginning of a reel or fanfold
of tape.

Least significant bit, 48
Library subroutines, 231

search mode, 248

Line Editor for Disk, 499-500
commands, 499

diagnostic messages, 499
initialization, 499
Monitor commands, 500

LINED

See Line Editor for Disk
Line printer:

A device that prints all charac-
ters of a line as a unit.
Contrast with character printer.

Line printer, 123-131
data modes, 440
instructions, 125
operation, 129
output format, 124

printing speed, 125

LINK, 248

Linking Loader:
This routine loads programs into
the user's area of memory,
properly relocating each one and
adjusting addresses to compensate
for relocation. It also links
(i.e., provides the main program
with the correct address of each
referenced subprogram, etc) in-
ternal and external symbols to
provide communication between ~
independently assembled programs.
It also loads subroutines- in
library search mode. See 245,
248, 526 :

chain feature, 533

commands, 527-530
diagnostic messages, 534
initialization, 527

Monitor commands, 536

requirements, 526
switches, 530-533

Linking subroutines, 230
UEST, 226, 247
LIST command, 323
List:

(1) An ordered set of items.
(2) See chained list, pushdown
list, pushup list.
(3) To printout a listing on the
line printer or Teletype.

Listing control, 225, 226
suppression, 225

List processing:
A method of processing data in
the form of lists. Usually,
chained lists are used so that
the logical order of items can be
changed without altering their
physical locations.

LIT, 224
Literals, 206

multilined, 207

nested, 206
Load: : :

In programming, to enter data into
storage or working registers.

LOAD command, 325

Loader:
Program which attaches pieces of
programs together which may have
been created separately previous
to the run. See Linking Loader,
360 3

,completion of loading, 363
H switch, 361
loading user programs, 356
reentrant, 361
switches, 334

Loading User Programs, 356
LOG, 22dk:

Local radix, 215
changing, 215

Location counter, 205, 208, 311
Logarithm of a complex argument, 256
Logic, 35
Logical device name:

The name used in ASSIGN commands,
Sal's)

Logical operations, 35-44, 72, 201
Logical shift, 43, 49, 50 -
Logical testing and modification,

65-72 ‘
Logic operator:

A logic operator each of whose
operands and whose result have one
of two values.

Login:

The number and the process with
which a user identifies himself to
a system. It then accepts him as
a valid user and assigns him
appropriate system resources.

LOGIN, 635. See inside front
cover.
Login check, 312
LOGIN command, 314
LOGIN CUSP, 378

LOGOUT CUSP, 635, 375
LOGOUT UUO, 375

LOOKUP (UUO), 368, 403

Loop:

A sequence of instructions that
is executed repeatedly until a
terminal condition prevails.

Low segment:

In the PDP-10 that segment of core
containing the job data area and
I/O buffers, unique and accessible
to the user. It is often used to
contain the program, but will be
used only for data tables, etc.
if the user is working with a
shared program, such as a system
CUSP.

LPT (line printer), 123, 126
LSH, 42, 43
LSHC, 42, 43

MA (memory address), 8

Machine language: }
A language that is used directly
by a machine.

Machine Mnemonics, 260

Macro calls, 234, 271
format, 234
nested, 239

Macro:
An instruction in a source lan-
guage which is equivalent to a
specified sequence of machine
instructions.

Macros
calls, 234, 271
concatenation, 272
created symbols, 235
definition, 233, 271

format, 234
indefinite repeat, 237
nesting, 239
redefining, 239

MACRO-10
creating or modifying programs,
493, 497
diagnostics, 278, 279
error codes, 280-281
operating instructions, 273

MACRO-10 assembler, 196
definition, 195
device requirements, 195

MACRO-10, entering data, 213
changing local radix, 215
under prevailing radix, 214

MACRO-10 statements, 195

assembler, 196

comments, 197
elements, 195
error codes, 241-243
format, 195

labels, 196
operands, 196
operators, 196
relocatable program, 245

Teletype error messages, 244
MACRO-10, symbols

addresses, 197
deleted, 199
operators, 198 -
operands, 198
table, 198

MAC.TMP, 336

Magnetic Tape, 453, 457
backspace file, 457
data modes, 453
format, 454
MTAPE, 455

9-channel Magtape, 458

Magnetic Tape Hardware Options
control, 630

modification kit, 630
units, 630

MAKE command, 321

649

Marginal check:
(1) A preventive maintenance pro-
cedure in which certain operating
conditions, such as supply voltage
or frequency, are varied about
their nominal values in order to
detect and locate incipient
defective parts.
(2) Panel, 103

Mask:
(1) A pattern. of characters that
is used to control the retention
or elimination of portions of
another pattern of characters.
@)) A fatter:
(S)P 4, ©. 65-715) 83),.8.6

Mass storage:
Secondary storage with a large

capacity. On a PDP-10, usually a

large disk.
Matrix:

(1) In mathematics, a two-dimen-
sional rectangular array of
quantities. Matrices are manipu-
lated in accordance with the rules

of matrix algebra.
(2) In computers, a logic network

in the form of an array of input
leads and output leads with
logic elements connected at some
of their intersections.
(3) By extension, an array of any
number of dimensions.

Meddling, 423
Memory, 14-15
Memory access time, 15
Memory allocation, 15
Memory conservation, 217
Memory protection:

An arrangement for preventing

access to certain areas of storage,
e.g., Monitor, for purposes of

reading or writing. See 97-100
and allocation, 353

flag, 354
MEMORY STOP, 104

Merge:
To combine items from two or more

similarly ordered sets into one
set that is arranged in the same

order.
Message: ;

An arbitrary amount of information

whose beginning and end are de-
fined or implied

MI (Memory Indicators), 8
Mnemonic symbol:

(1) A symbol chosen to assist the
human memory, e.g., an abbrevia-

tion such as "mpy" for "multiply".
See 16, 147

(2) Alphabetic, 152
(3) Derivation, 148

(4) Device, 156
(5) Numeric, 149

Mode:

(1) A method of operation, e.g.,
binary mode, interpretive mode,
alphanumeric mode.
(2) The characteristic of a
quantity being suitable for in-
teger or for floating point
computation.
(3) Method of card reading and
punching, i.e., Hollerith code,
which interprets each column as a
six-bit alphanumeric character or
transcription mode, which inter-
prets each punch as a binary one
(1) and each non-punch as a binary
zero (0). :

Modem (MOdulator-DEModulator) :
A device that modulates and demod-
ulates signals transmitted over
communication facilities.

Modes, 19
arithmetic testing, 59, 60
fixed point, 45

floating point,
half word, 21
HOGG soy SO peal

logical testing, 65
move, 29

paper tape punch,
readin, 90, 114
user, 99

MONEY, 635

Monitor:
The specific program which sche-
dules and controls the operation

_of several related or unrelated
routines, performs overlapped
I/O and allocates »resources so

that the computer's time is
efficiently used. Also provides
context switching in 9 time-
shared environment. See 99,

Monitor command diagnostic
messages, 321, 349

Monitor command interpreter, 311
Monitor commands

extended
<> construction,
= construction,
+ construction,

@ file, 326
functions, 298
interpreter, 302,

level, 302, 304
summary, 259

(see inside back cover of this
handbook)

Monitor locations,
Monitor mode, 310

Monitor operation codes, 371
Monitor UUO's, 367

restriction in reentrant programs,
368

Move instructions, 28
MOVE, 29, 32

50F 525 DO

89, 115

101

328
328
327

304

examining, 390

650

MOVM, 30
MOVN, - 29

MOVS, 29
MQ (multiplier-quotient register), 9
MUL, 46
Multiline literals,
Multiprocessing:

Pertaining to the simultaneous
execution of two or more computer
programs or sequences of instruc-
tions by a computer or computer

207

netword. Loosely, parallel pro-
cessing.

Multiprogramming:
(1) A technique which allows
scheduling in such a way that
more than one job is in an execu-
table state at one time.
(2) Disk Monitor, 295
(3) Non-disk Monitor, 295, 483

Name block, 250
Negative fixed point numbers, 203
Nesting:

(1) Including a routine or block
of data within a larger routine
or block of data.
(2) Macros, 239, 257
(3) Subroutines, 80

New symbol, 199
No-Divide, 51, 54, 58,
Non-Directory device:

A device such as mag tape or paper
tape which does not contain a file
describing the layout of stored
data (programs and other files).

Nonexistent memory, 98, 106, 108
Non-Reentrant program

one segment, 306
two segment, 306,

Non-Reentrant system,

Non-Sharable segment:
A segment for which each user has
his own copy. Non-sharable seg-
ments never have names even if
initialized from a file; they may
be created by CORE or REMAP UUO.

No-Op:

(1) An instruction that specifi-
cally instructs the computer to
do nothing, except to proceed to
the next instruction in sequence.

(2) P2652 66, 206 0-072
Normalization:

(1) This term refers to the posi-
tioning of data, left justified
with respect to the binary point.
(2) S25 1s SDS eo 9y cous

NOSYM, 226
Null character:

A control character that serves to

accomplish media fill or time fill
e.g., in USASCII the all zeroes
character (not numeric zero).

74, 104

353
296

Null characters may be inserted
into or removed from a sequence of
characters without affecting the
meaning of the sequence, but

control of equipment or the format
may be affected. Abbreviated NUL.

Numbers, 200-205

are metic and logical operations,

binary shifting, 201
evaluating expressions, 204
fixed-point decimal, 202
floating-point decimal, 202
terms, 204

Number system, 10-12
Numeric terms, 204
NXM STOP, 108

Object code:
(1) Output from a compiler or
assembler which is itself executa-
ble machine code or is suitable
for processing to produce executa-
ble machine code.

Object program:
(1) The program which is the out-
put of an automatic coding system,
usually in machine language ready
for execution.

OCT, 2.205
Octal codes, 260

Octal-to-Decimal conversion, 83
Offset:

(1) The number of locations toward
zero a program must be moved
before it can be executed. (See
LDRBLT description in the Monitor
manual.) See 361, 363

One's complement:
In the binary number system this
complement is formed by setting
each bit to the opposite value.
See 10

On-Line:
(1) Pertaining to equipment or
devices under direct control of
the central processing unit.
(2), Pertaining to a user's
ability to interact with a
computer.

OP codes, 259
OPDEF, 228
Open subroutine:

A subroutine that must be re-
located and inserted into a
routine at each place it is used.
Synonymous with direct insert

subroutine. Contrast with closed
subroutine.

OPEN (UUO), 368

Operand:
That which is operated upon. An
operand is usually identified by
an address part of an instruction.

See 196
Operating keys, 105

CONT, 105
DEPOSIT NEXT, 106

DEPOST, 106

EXAMINE NEXT, 106

EXAMINE THIS, 106

READ IN, 105

RESET, 105

XCT, 106
START, 105
STOP, 105

Operating instructions (MACRO-10),
PLUS)
procedures, 210

Operating switches, 107
FM ENB, 102, 109
EPaTRP;. 09

MA TRP OFFSET, 109

MI PROG DIS, 108

NXM STOP, 108

PAR STOP, 108

REPT, 108

REPT BYP, 108

SHIFT CNTR MAINT, 109

SING CYCLE, 107

SING INST, 107

Operation
card reader, 139

line printer, 129
plotter, 135

processor, 103
punch, 115

reader, 111

Teletype, 117
Operation codes, illegal, 369
Operator:

(1) In the description of a pro-
cess, that which indicates the
action to be performed on oper-
ands.

(2) See unimplemented user opera-
tor (UUO), programmed operator.
(3) User defined, 228

OR (See IOR), 39
ORCA, 39
ORCB, 40
ORCM, 40
Order of expression evaluation, 267

(TECO) 7 516
OUTPUT (UUO), 368

Overflow:
That portion of the result of an
operation that exceeds the capac—
ity of the intended unit of
storage. See 44, 49, 51, 63, 64

T2498
Overlay:

The technique of repeatedly using
the same blocks of internal
storage during different stages of
a program. When one routine is no
longer needed in storage, another
routine can replace all or part of
ate

652

Pack:

To compress data in a storage

medium by taking advantage of
known characteristics of the data
in such a way that the original
data can be recovered, e.g., to
compress data in a storage medium
by making use of bit or byte loca-
tions that would otherwise go
unused.

PAGE, 226

Paper tape punch,
data modes, 439
operation, 116
timing, 116

Paper tape reader,
data modes, 438

operation, 113

readin mode, 114
timing, 112

Parentheses, 206,

Parity bit:
A binary digit appended to an
array of bits to make. the sum of
all the bits always odd or always
even.

Parity check:
(1) A check that. tests whether the
number of ones (or zeroes) in an
array of binary digits is odd or
even. Synonymous with odd-even
check. See 48, 49, 118

Parity error, 94, 107
PAR STOP, 108

Pass:

One cycle of processing a body of
data.

PASS2, 224
Password,
Patch:

To modify a routine in a rough or
expedient way.

PC (program counter), 7, 72
Peripheral equipment:

In a data processing system, any
unit of equipment, distinct from
the central processing unit, which
May provide the system with out-
side communication.

Peripheral Interchange Program,
585-598 ;
commands, 586

diagnostic messages 592,
initialization, 585
Monitor commands, 596
requirements, 585
switches, 586-591

Permanent symbols, redefining,
PHASE, 213

PI, 91-94,
PI ON, 104
PIP, See Peripheral Interchange
Program 7

Tso FAY) oe: SS3)

111-115, 438

233

303

593

229

OS ie 97

PIP.TMP, 336

PJOB command, 344
Plotter, 131-135, 474

474
133

data modes,

instructions,
operation, 135
timing, 134

PLT (Plotter),
POINT, 218
Pointer: \

The location containing an address
rather than data and which the
user plans to use to implement
indirect addressing.
(2) Byte, 35
(3) I/O block,

POP) Siig oe
POPJ, 81
Postmortem dump:

A static dump used for debugging
purposes; performed at the end of
a machine run.

Power failure, 97

Powers of two, 174
Prevailing radix, 214
Primary instruction statement,
PRINT, 635

Printer, see "line printer".

PRINTR, 635
PRINTX, 227

Priority interrupt:
The interrupt that usurps control
of the computer program or system
and jumps the sequencing to
another device, program, program

step, or to the device that
generates the interrupt signal.
See 57) 28), 55y SO Dl, 186s ei,
113

conditions, 94
dismissing an interrupt, 93
interrupt requests, 92
starting an interrupt, 92
timing, 95

Priority of operations, 204
Processor conditions, 96-98
Processor hardware options

arithmetic processor, 629
dual memory protection, 629
fast registers, 629
relocation registers, 629

Processor modes, 365

Processor (standard), 330
Processor switches, 333
Program:

(1) A series of actions proposed
in order to achieve a certain
result.

F (2) To design, write and test a
program as in (1).

Program break:

The length of a program; the first
location not used by a program
(before relocation); the reloca-
tion constant for the following

133, 134

88

208

653

program (after relocation). See
247

Program control, 72-81
Program library:

A collection of available com-
puter programs and routines.

Programmed operators (UUO's):
PDP-10 instructions which instead
of doing computation, cause a
jump into the Monitor system at a
predetermined point. The Monitor
interprets these entries as
commands from the user to perform
specified operations. See 210,366

DECtape, 449
Programming conventions, 16
Program origin:

The location assigned by the
Loader to relocatable zero of a
program. See 361, 363

Program Starting, 369
PROGRAM STOP, 104

Project members, 408

Project-Programmer numbers, 313
Protected location:

A storage location reserved for
special purposes in which data
cannot be stored without under-
going a screening procedure to
establish suitability for storage
therein. See 99

Protection address, 353, 355
Protection register, 305,354
Pseudo code: .

A code that requires further
translation prior to execution.

Pseudo-Op:
(1) An operation that is not part
of the computer's operation
repertoire as realized by hard-
ware; hence an extension of the
set of machine operations.
(2) In MACRO-10, directions for
assembly operations.
(B)isSee- 21259), 261

PTP (paper tape punch), 115, 116
PTR (paper tape reader), 111,112
Punch on, 140-143

Pure code: ¢
Code which is never modified in
the process of execution. Hence
it is possible to let many users
share the same copy of a program.
This technique is used by many of
the CUSP's. See 99

PURGE, 224 *

PUSH, Si, 32
Pushdown list:

(1) A list that is constructed and
maintained so that the item to be
retrieved is the most recently .
stored item in the list, i.e.,
last.am, -tarst out. ~—Seer 30; 731
(2) Subroutines containing, 81,84

Pushdown overflow, 31, 80, 81, 98,

104!

PUSHJ, 80, 81

Pushup list:
A list that is constructed and

maintained so that the next item
to be retrieved and removed is
the oldest item still in the list,

Ue. Girst in, herst out.

_ Quantum time, 300

Queue:

An ordered line waiting for
service. See 299

Radix:
In positional representation, that

integer, if it exists, by which the

significance of the digit place
must. be multiplied to give the
‘significance of the next higher
digit place. For example, in
decimal notation, the radix of
each place is ten; Synonymous
with base. See 200,213

RADIX, 213
RADIX Statement, 213
RADIX50 statement, 216

Representation, 270
Random access: :

A device in which the access time
is effectively independent of the
location of the data... Synonymous
with direct access device.

R Command, 338

REACT, 635
READ IN key, 105
Read-in feature, 25D

Reading Card, 136, 138
Readin mode, 90, 114
Ready to read, 136, 138

Real time:
(1) Pertaining to the actual time
during which a physical process
transpires.
(2) Pertaining to the performance of
a computation during the actual
time that the related physical pro-
cess transpires in order that re-

sults of the computation can be
used in guiding the physical pro-
cess.

REASSIGN command,

Record:
- A collection of related items of
data, treated as a unit.

Redefining macros, 239

REENTER command, 339
Reentrant code:

See pure code.
Re-entrant program:

A two-segment program composed of-a

sharable and non-sharable segment.

316

See 296, 305, 353, 487
Reentrant System, 296, 361

Register, 49

654

Relative address:
The number that areata: the
difference between the absolute
address and the base address.

RELEASE programmed operator, 419
RELOC, 211
Relocatable object program, 245, 248

block formats, 249
conventions, 246

Relocate:
In computer programming to move a

routine from one portion of storage
to another and to adjust the
necessary address references so that

the routine, in its new location,
can be executed. See 99

Relocation address, 353, 355
Relocation before execution, 213

Relocation constant:
The number added to every relocatable
reference within a program. The
relocation constant is the re-
located breakpoint of the previous

program. See 246
Relocation Register, 296, 305, 354 -

REMARK, 227
Remote access:

Pertaining to communication with a date
processing facility by one or more
Stations that are distant from that

facility.
Remote station or terminal:

Data terminal equipment for
communicating with a data pro-
cessing system from a location
that is time, space, or electri-
cally distant.

RENAME command, 324

RENAME (UUO), 368
REPEAT, 227
Reserving storage, 221

blocks, 221

single location, 221

Response time:
The time which elapses between
generation of an inquiry at a
terminal and the receipt of a
response at the terminal.

Restore, 77
REPT, 108
REPT BYP, 108

RESET, 105
RESOURCES command, 318
Result, 50

RIM format, 252

RIM10 format, 251
RIM1OB format, 250, 253, 254
ROT, 425-43
Rotate, 42
ROTC, 42, 44

Rounding, 52, 59
RSW (See DATAI APR), 91, 230

RUN command, 338
Run control Monitor commands,

CONT, 339

R, 338
REENTER, 339

RUN, 338
SAVE, 340

SSAVE, 341
START, 339

RUN instruction, 103

er er et

SAVE command, 340, 341, 368

Scaling, 51
SCHEDULE command, 348
Scheduler:

A section of the Time-Sharing Monitor
which determines the sequence of

time allotments to users.
Science Library and FORTRAN Utility

Subprograms, 636

Serial access:
(1) Pertaining to the sequential or
consecutive transmission of data to

or from storage.
(2) Pertaining to the process of ob-
taining data from, or placing data

into, storage where the time re-
quired for such access is dependent
upon the location of the data
most recently obtained or placed

in storage. Contrast with random
access,

Service routine:
A routine in general support of the

operation of a computer, e.g., an
input-output, diagnostic, tracing,
or monitoring routine. Synony-
mous with utility routine.

SETA, 36

SETCA, 37
SETCM, 37

SETM, 37
SETO, 36

SETZ, 36
Sharable segment:

A segment which can be used by
several users at the same time.

Shared code:
Pure code residing in the high seg-
ment of’ user's core.

Shift:
A movement of data to the right
or left.

Shift and rotate, 42, 44, 50, 201
Shuffling, 301
Sign bit:

A binary digit occupying the sign
position. See 10,49

Significance, 51
Simulate:

(1) To represent certain features of

655

the behavior of a physical or ab-
stract system by the behavior of
another system.
(2) To represent the functioning of

a device, system, or computer pro-
gram by another, e.g., to represent
one computer by another, to represent
the behavior of a physical system

by the execution of a computer pro-

gram, to represent a biological
system by a mathematical model.

SIXBIT, 220

SKIP, 62
Software:

A set of computer programs, pro-
cedures, rules, and associated

documentation concerned with the
Operation of a data processing
system e.g., compilers, monitors,
editors, utility programs. Con-
trast with hardware.

SOT, 63
Sos, 64
Source Compare, 613, 617

commands, 614

diagnostic messages, 617
initialization, 613
requirements, 613

switches, 615

Source language:
The language from which a statement
is translated.

Source preparation monitor commands

CREATE, 321

iD AE 5s}
MAKE, 321
THEO, se

Source program:
A program written in a symbolic or
algebraic language designed for
ease of expression.

Source word, 20
Square brackets, 206
SQUOZE, 216

See RADIX50

SRCCOM

See Source Compare
SSAVE command, 341, 368

Stack, 635
START command, 339
START instruction, 105

Starting address, 250
Static dump:

‘A dump that is performed at a
particular point in time with
respect to a machine run, fre-

quently at the end of a run.
Status bits

(See entry for individual devices)
Status checking and setting, 416
STATUS (UUO), 368
SIMONE S57)

STOP, 105
STOPI, 238
Storage device:

The PDP-10 device used to store

named files by the GET, R, or RUN
commands. If the file is marked

as sharable (extension= "SHR"), the

Monitor will give the segment the
same name as the file. This is
the only way that a segment can

be shared.

Storage

conserving, 217,
reserving, 221

Storage allocation (TENDMP),
Storage I/O channel, 297
SUB, 45
Subroutines, 78

entry point, 78
frequently used,
Libvany, 231
linking, 230

multiple entry,

nesting, 81
non-reentrant, 78,
two byte unpacking,

SUBTTL, 225

SVC, TMP, 335

Swapping:
The movement of program sections bet-

ween core and secondary storage.

I/O channel, 297
Monitor, 295, 485
Space, 301

Storage, 297,

Swapping device:
Secondary storage suitable for
swapping usually a high speed drum

or disk.

220

625

213

7124 8Al

100_
257

301

Switches, 107
for compilation listings, 329
for forced compilation, 332

for library searches, 332

for loader maps,333
Switches used with monitor commands

Compile switches, 329

Loader switches, -34

Processor switches,
Symbol, 197, 200

created, 235

external, 230

format for block,
global, 230
internal, 230

Symbol table, 198, 208

(1) A dictionary of names used
in a program. For example, see
MACRO-10.
(2) direct assignment,

Symbolic address, 197
(1) An address expressed in symbols

convenient to the programmer.

(2) data reference, 206
(3) expressions, 216
(4) operands, 198
(5) operators, 198

Symbolic location name,
SYN, 229
Syntax:

333

249

199

17

656

(1) The structure of expressions in
a language.
(2) The rules governing the structure
of a language.

SYS (Device), 387
SYSTAT command, 348
SYSTAT CUSP, 380, 635
System access monitor

LOGIN, 314

System administration
ASSIGN SYS, 348
ATTACH dev, 348

CTEST, 348
DETACH dev, 348

SCHEDULE, 348
SYSTAT, 348

System configuration,
System timing monitor

DAYTIME, 346
TIME, 346

a

command

monitor commands

632
commands

Table:

(1) A collection of data in which
each item is uniquely identified
by a label, by its position re-
lative to the other items, or by
some other means.

(2) Search technique, 84.

Table numbers (RH of AC), 380
Tag:

One Or more characters attached to
an item or record for the purpose
of identification.

TALK command, 317
TAPE, 226

AWeyoysyy, sable?)

Cr 6,9

TDN, 68
TDO, 69
TDZ, 69
TECO,

See Text Editor and Corrector
TECO command, 321
Teletype, 7, 122

codes, 158, 161

input, 119
output, 119
timing, 119

Teletype error messages, 244
Teletype model 37, 197
Teletypes and terminals hardware options

DC10 Teleprinters, 631
680I Teleprinters, 631

TENDMP

assembling, 625
calling TENDMP as a subroutine, 626
command summary, 626

definition, 621

diagnostic messages, 624
functions, 621
self-starting, 8
storage allocation, 625
versions, 624

Testing macros,

114

224

Text codes, 269

Text Editor and Corrector, 501

commands, see commands, TECO
debugging aids, 522
diagnostic messages, 520-522

initialization, 502
monitor commands, 523
order of operator evaluation, 516

Text input, 220

entering characters, 220
TIME command, 346

Time quantum:
That portion of time given to a
specific time shared user.

Timing,
card reader, 138

COMEROM S77.

interrupt, 95
line printer,
plotter, 134
punch, 143

reader, 112

Teletype, 119
TITLE, 225

TLC, 68
TLN, 67

TLO, 68
7LZ, 67

Track:

The portion of a moving storage medium,
such as a drum, tape, or disk, that is
accessible to a given reading head
position. ;

125

Transfer block, 251

Trap:

An unprogrammed conditional jump to a
known location, automatically activated
by hardware with the location from which
the jump occurrence recorded. See 15

Trap offset, 98
TRC, 66
TRN,. 66 *
Trapping, 375

console-initiated traps, 376
TRO, 67.
diag wb ey AL Silo) eps} 7/
TRPSET call, 384
TRZ, 66
TSC, 70
TSN, 70
SOF aaa
SZ 79200
TTCALL UUO, 433

TTY (teletype), 117, 119
Two byte unpacking subroutines, 257
Two's complement arithmetic:

Subtraction is performed by means
of adding the two's complement of
One number to the number it is to
be subtracted from. Two's com-
plement is formed by adding one to
the one's complement of the given
binary number. SCOmLOye Obie noSi se OM

TYPE command, 323

140, 141

UFA,
Unary operators,

657

5)
201

Underflow:
Pertaining to the condition that
arises when a machine computation
yields a nonzero result that is
smaller that the smallest nonzero

quantity that the intended unit of
storage is capable of storing.
Contrast with overflow.

Unimplemented operations, 15, 82

Update:
A file is updated when opened for
reading and writing, one or more
blocks are rewritten in place,

and the file closed. Only one user

may be updating the file at a time.
USASCII (USA Standard Code for Information

' Interchange:)
The standard code, using a coded

character set consisting of 7-bit
coded characters (* bits including
parity check), used for information
interchange among data processing
communication systems, and
associated equipment. The USASCII

set consists of control characters

‘and graphic characters. Synonymous

with ASCII.

USer = 7/317 LOd:

User

User

User

User

User

A

defined operator, 228
facilities, 1=+8, 302
I/O Mode, 365, 383

In-out, 74, 86, 96,

Mode:

hardware defined state of the PDP-10

93, 100, TOL, 104

computed during which all instructions
executed normally except that all IO
and HALT instructions cause immediate
jumps into the Monitor. This makes
it possible to prevent the user from
interfering with any other user or
with the operation of the Monitor.
Memory protection and relocation are
in effect so that the user can modify

only his own area of core. See 104,
SOF SDS. eo.Ob:

User program:

All of the code running under control
of the Monitor in an addressing space
of its own.

programming, see 100
UUO:

Unimplemented User Operator.
program operator.

Monitor, 367
User, 366

See 15, 82, 304

See

VAR, 224

Vestigial job data area:
The first 10 octal locations of the
high segment used to contain data
for initializing certain locations
in the job data area. See 362, 343

Virtual core:
That amount of core space which the
user appears to be able to use.
Usually handled by a program which
allows the currently referenced

parts of the program to be in core
at one time, with additional in-
formation being brought off storage

as needed. See 302

Word formats, 167

Write protect, 99

—

xls
XALL,
XCT,
XLIST,
XOR, 40
XWD, 219

226
74, 106,

226
107

:

658

DIGITAL EQUIPMENT CORPORATION dlilgli|tlall WORLD-WIDE SALES AND SERVICE

MAIN OFFICE AND PLANT
146 Main Street, Maynard, Massachusetts 01754 * Telephone: From Metropolitan Boston: 646-8600 * Elsewhere: (617) 897-5111 * TWX: 710-347-0212 Cable: Digital Mayn. Telex: 94-8457

NORTHEAST
NORTHEAST OFFICE:
15 Lunda Street, Waltham, Massachusetts 02154
Telephone: (617)-891-1030 & 1033

WALTHAM OFFICE:
146 Main Street, Maynard, Massachusetts 01754
Telephone: (617)-891-6310 & 6315

CAMBRIDGE/BOSTON OFFICE:
899 Main Street, Cambridge, Massachusetts 02139
Telephone: (617)-491-6130 | TWX: 710-320-1167

ROCHESTER OFFICE:
130 Allens Creek Road, Rochester, New York 14618
Telephone: (716)-461-1700 TWX: 510-253-3078

CONNECTICUT OFFICE:
1 Prestige Drive, Meriden, Connecticut 06450
Telephone: (203)-237-8441 TWX: 710-461-0054

MID-ATLANTIC—SOUTHEAST
MID-ATLANTIC OFFICE:
U.S. Route 1, Princeton, New Jersey 08540
Telephone: (609)-452-9150 TWX: 510-685-2338

NEW YORK OFFICE:
Suite #1
71 Grand Avenue, Palisades Park, New Jersey 07650
Telephone: (201)-941-2016 or (212)-594-6955
TWX; 710-992-8974
NEW JERSEY OFFICE
1259 Route 46, Parsippany, New Jersey 07054
Telephone: (201)-335-3300 | TWX: 710-987-8319
PRINCETON OFFICE:
Route One and Emmons Drive,
Princeton, New Jersey 08540
Telephone: (609)-452-2940

LONG ISLAND. OFFICE:
1919 Middle Country Road
Centereach, L.I., New York 11720

Telephone: (516)-585-5410 = TWX: 510-228-6505
PHILADELPHIA OFFICE:
1100 West Valley Road, Wayne, Pennsylvania 19087
Telephone (215)-687-1405. © TWX: 510-668-4461
WASHINGTON OFFICE:
Executive Building
7100 Baltimore Ave., College Park, Maryland 20740
Telephone: (301)-779-1100 | TWX: 710-826-9662

TWx; 510-685-2337

CANADA
CANADIAN OFFICE:
Digital Equipment of Canada, Ltd.
150 Rosamond Street, Carleton Place, Ontario
Telephone: (613)-257-2615 TWX: 610-561-1651

OTTAWA OFFICE:
Digital Equipment of Canada, Ltd.
120 Holland Street, Ottawa 3, Ontario
Telephone: (613)-725-2193 TWX; 610-562-8907

TORONTO OFFICE:
Digital Equipment of Canada, Ltd.

_ 230 Lakeshore Road East, Port Credit, Ontario
Telephone: (416)-278-6111 TWX: 610-492-4306

MONTREAL OFFICE:
Digital Equipment of Canada, Ltd.
640 Cathcart Street, Suite 205, Montreal, Quebec
Telephone: (514)-861-6394 TWX: 610-421-3690

EDMONTON OFFICE:
Digital Equipment of Canada, Ltd.
5531-103 Street
Edmonton, Alberta, Canada
Telephone: (403)-434-9333 TWX: 610-831-2248

EUROPEAN HEADQUARTERS
Digital Equipment Corporation International-Europe
81 Route De L'Aire
1227 Carouge / Geneva, Switzerland
Telephone: 42 79 50 Telex: 22 683

GERMANY
COLOGNE OFFICE:
Digital Equipment GmbH
5 Koeln, Bismarckstrasse 7, West Germany
Telephone: 52 21 81 Telex: 841-888-2269
Telegram: Flip Chip Koeln

MUNICH OFFICE:
Digital Equipment GmbH
8000 Muenchen 19, Leonrodstrasse 58
Telephone: 516 30 54 TELEX: 841 524226

UNITED STATES
MID-ATLANTIC—SOUTHEAST (cont.)

CHAPEL HILL OFFICE:
P.O. Box 1186, Chapel Hill, North Carolina 27514
Telephone: (919)-929-4095 | TWX: 510-920-0763

HUNTSVILLE OFFICE:
Suite 41 — Holiday Office Center
3322 Memorial Parkway S.W., Huntsville, Ala. 35801
Telephone: (205)-881-7730 TWX: 810-726-2122

ORLANDO OFFICE:
Suite 232, 6990 Lake Ellenor Drive, Orlando, Fla. 32809
Telephone: (305)-851-4450 TWX: 810-850-0180 :

ATLANTA OFFICE:
Suite 116, 1700 Commerce Drive, N.W.,
Atlanta, Georgia 30318
Telephone: (404)-351-2822 TWX: 810-751-3251

KNOXVILLE OFFICE:
Digital Equipment Corporation
5731 Lyons View Dr., S.W., Knoxville, Tenn. 37919
Telephone: (615)-588-6571 TWX: 810-583-0123

CENTRAL

CENTRAL OFFICE:
1850 Frontage Road, Northbrook, Illinois 60062
Telephone: (312)-498-2560 TWX: 910-686-0655

PITTSBURGH OFFICE:
400 Penn Center Boulevard,
Pittsburgh, Pennsylvania 15235
Telephone: (412)-243-8500 TWX: 710-797-3657

CHICAGO OFFICE:
1850 Frontage Road, Northbrook, IIlinois 60062
Telephone: (312)-498-2500 TWX: 910-686-0655

ANN ARBOR OFFICE:
230 Huron View Boulevard, Ann Arbor, Michigan 48103
Telephone: (313)-761-1150 TWX: 810-223-6053

MINNEAPOLIS OFFICE:
Digital Equipment Corporation
15016 Minnetonka Industrial Road
Minnetonka, Minnesota 55343 *
Telephone: (612)-935-1744 | TWX: 910-576-2818

CLEVELAND OFFICE:
Park Hill Bldg., 35104 Euclid Ave.
Willoughby, Ohio 44094
Telephone: (216)-946-8484 | TWX: 810-427-2608

INTERNATIONAL
ENGLAND

READING OFFICE:
Digital Equipment Co. Ltd.
Arkwright Road, Reading, Berkshire, England
Telephone: Reading 85131 Telex: 84327

MANCHESTER OFFICE:
Digital Equipment Co. Ltd.
13/15 Upper Precinct, Walkden
Manchester, England m28 5az
Telephone: 061-790-4591 /2

LONDON OFFICE:
Digital Equipment Co. Ltd.
Bilton House, Uxbridge Road, Ealing, London W.5.
Telephone: 01-579-2781 Telex: 84327

FRANCE
PARIS OFFICE:
Equipment Digital S.A.R.L.
233 Rue de Charenton, Paris 12, France
Telephone: 344-76-07 TWX: 21339

BENELUX

THE HAGUE OFFICE:
(serving Belgium, Luxembourg, and The Netherlands)
Digital Equipment N.V.
Koninginnegracht 65, The Hague, Netherlands

Telex: 668666

Telephone: 635960 Telex: 32533

SWEDEN

STOCKHOLM OFFICE:
Digital Equipment Aktiebolag
Vretenvagen 2, S-171 54 Solna, Sweden
Telephone: 08981390 TELEX: 170 50 Digital S
Cable: Digital Stockholm

SWITZERLAND
SWITZERLAND OFFICE:
Digital Equipment Corporation S.A.
81 Route De L'Aire
1227 Carouge / Geneva, Switzerland
Telephone: 42 79 50 Telex: 22 683

CENTRAL (cont.)
ST. LOUIS OFFICE:
Suite 110, 115 Progress Pky., Maryland Heights,

. Missouri 63042
Telephone: (314)-872-7520 TWX: 910-764-0831

DAYTON OFFICE:
3101 Kettering Blvd., Dayton, Ohio 45439
Telephone: (513)-299-7377_ TWX: 810-459-1676

DALLAS OFFICE:
1625 W. Mockingbird Lane, Suite 309
Dallas, Texas 75235
Telephone: (214)-638-4880

HOUSTON OFFICE:
3417 Milam Street, Suite A, Houston, Texas 77002
Telephone: (713)-524-2961 TWX: 910-881-1651

WEST
WESTERN OFFICE:
560 San Antonio Road, Palo Alto, California 94306

Telephone: (415)-328-0400 TWX: 910-373-1266
ANAHEIM OFFICE: *
801 E. Ball Road, Anaheim, California 92805
Telephone: (714)-776-6932 or (213)-625-7669
TWX: 910-591-1189

WEST LOS ANGELES OFFICE:
2002 Cotner Avenue, Los Angeles, California 90025
Telephone: (213)-479-3791 TWX: 910-342-6999
SAN FRANCISCO OFFICE:
560 San Antonio Road, Palo Alto, California 94306
Telephone: (415)-326-5640 TWX: 910-373-1266
ALBUQUERQUE OFFICE:
6303 Indian School Road, N.E.
Albuquerque, N.M. 87110
Telephone: (505)-296-5411
DENVER OFFICE:
2305 South Colorado Blvd., Sulte #5
Denver, Colorado 80222
Telephone: 303-757-3332
SEATTLE OFFICE:
1521 130th N.E., Bellevue, Washington 98004
Telephone: (206)-454-4058 TWX: 910-433-2306
SALT LAKE CITY OFFICE:
431 South 3rd East, Salt Lake City, Utah 84114
Telephone: (801)-328-9838 TWX: 910-925-5834

TWX: 910-989-0614

TWX: 910-931-2650

ITALY
MILAN OFFICE;
Digital Equipment S. p
Corso Garibaldi, 49, sir Milano, Italy
Telephone: 872 748, 872 694, 872 394 Telex: 33615

AUSTRALIA
SYDNEY OFFICE:
Digital Equipment Australia Pty. Ltd.

75 Alexander Street, Crows Nest, N.S.W. 2065. Australia
Telephone: 439-2566 Telex: AA20740
Cable: Digital, Sydney

MELBOURNE OFFICE:
Digital Equipment Australia Pty. Ltd.
60 Park Street, South Melbourne, Victoria, 3205
Telephone: 69-6142 Telex: AA30700

WESTERN AUSTRALIA OFFICE:
Digital Equipment Australia Pty. Ltd.
643 Murray Street
West Perth, Western Australia 6005
Telephone: 21-4993 Telex: AA92140

BRISBANE OFFICE:
Digital Equipment Australia Pty. Ltd.
139 Merivale Street, South Brisbane
Queensland, Australia 4101
Telephone: 44047 Telex: AA40616

JAPAN
TOKYO OFFICE:
Rikei Trading Co., Ltd. (sales only)
Kozato-Kaikan Bldg.
No. 18-14, Nishishimbashi 1-chome
Minato-Ku,Tokyo, Japan
Telephone: 5915246 Telex: 7814208

Digital Equipment Corporation International
(engineering and services) ‘
Fukuyoshicho Building, No. 2-6, Roppongi 2-Chome,
Minato-Ku, Tokyo
Telephone No. 585-3624 = Telex No.: 0242-2650

Sees Se Baa See ae a pe en ene ee TIME-SHARING MONITORS

pees Sets Say eee ee ea cooteeereennennnnnnnnnnnnnnnnnnannIntroduction

| : EagsaserveStain coau Sarnath osuagensg ese wne roar evanteas teas sur tures ebbces dees ent Monitor Commands

ae De en er ee Pe Aa oR Somer eae Loading User Programs

Riese tes Si were Tone Sire ie A he Ee at User Programming

Baea, Ip Res et BRS a tc DR UT ee ee oe oe Device Dependent Functions

Bees] Bo Ie GEE AID) ere Neerae rater ee ete nie ONE Sein, Sree EDITOR

eae PTE aT TPO TIER a EC ER I RE, SRCCOM, BINCOM

2a Summary of Machine Mnemonics,

Assembler Pseudo-ops, Monitor UUO’s
ee Ae ROA LE eT eo eee ST A Oe TENDMP

es Ree ere re Meee einer hy Aad Sea Appendices
A. Equipment List

B. List of Systems Programs

C. Bookshelf

Re PR igen a IS RON ROSEN ONE ee Oe ee oe Index/Glossary

MONITOR COMMANDS

AS dey

NAME

ASSIGN

ASSIGN SYS

ATTACH

ATTACH

CCONT

COMPILE

CONT

CORE

CREATE

CREF

CSTART

CTEST

D(deposit)

DAYTIME

DDT

DEASSIGN

DEBUG

DELETE

DETACH

DIRECT

E(examine)

EDIT

EXECUTE

FINISH

GET

HALT

KJOB

LIST

LOAD

LOGIN

MAKE

PJOB

R

REASSIGN

REENTER

RENAME

RESOURCES

RUN

SAVE

SCHEDULE

SSAVE

START

SYSTAT

TALK

TECO

TIME

ihaus

proj prog

proj prog

proj prog
core

Key:

adr octal address lh rh octal value of left and right half words

core decimal number of 1K blocks proj prog project-programmer numbers

dev physical device name list a single file specification or a string of

Idev logical device name file specifications

ext filename extension arg a pair of file specifications or a string

file filename
of pairs of file specifications

job job number assigned by Monitor n scheduled use of the system.

See Book 3, Chapter 2 for further explanation of commands.

These abbreviations are accurate and unique as of ‘now, but their accuracy and unique-

ness may be changed in the future by the addition of new commands.

- Console Teletype 10: Disk Pack Unit* . Central Processor 11. Line Printer
- 16K, 1.0 psec Memory 12. Card Reader
- 16K, 1.0 psec Memory. 13. Magneticlape Transport . 16K, 1.0 sec Memory 14. Magnetic Tape Transport
1h ~ 15..Magnetic Jape Control

ie g Disk Control 16. ‘Communications System a Swapping Disk 17. Line Printer/Card Reader Control
\

Disk Pack Unit* 18. DECtape Control and 3 BEGone Units
“Disk Pack Cantrol Nos Shown

|

P. ean s

